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Automatic classification of
ligneous leaf diseases via
hierarchical vision transformer
and transfer learning
Dianyuan Han and Chunhua Guo*

Media and Communications College of Weifang University, Weifang, Shandong, China
Background: Identification of leaf diseases plays an important role in the growing

process of different types of plants. Current studies focusing on the detection and

categorization of leaf diseases have achieved promising outcomes. However, there

is still a need to enhance the performance of leaf disease categorization for

practical applications within the field of Precision Agriculture.

Methods: To bridge this gap, this study presents a novel approach to classifying

leaf diseases in ligneous plants by offering an improved vision transformer model.

The proposed approach involves utilizing a multi-head attention module to

effectively capture contextual information about the images and their classes.

In addition, the multi-layer perceptron module has also been employed. To train

the proposed deep model, a public dataset of leaf disease is exploited, which

consists of 22 distinct kinds of images depicting ligneous leaf diseases.

Furthermore, the strategy of transfer learning is employed to decrease the

training duration of the proposed model.

Results: The experimental findings indicate that the presented approach for

classifying ligneous leaf diseases can achieve an accuracy of 85.0% above.

Discussion: In summary, the proposedmethodology has the potential to serve as

a beneficial algorithm for automated detection of leaf diseases in ligneous plants.
KEYWORDS

precision agriculture, transformer, neural networks, machine vision, transfer learning
1 Introduction

The occurrence of leaf diseases in plants holds significant relevance in the field of plant

pathology. Severe leaf disease can have detrimental effects on plants, including leaf drying

and hindered bud formation. It can weaken the health of the plant and worsen the

susceptibility to other diseases Kai et al. (2011); Bo et al. (2019); Xu et al. (2020);Wang et al.

(2021; 2022). In addition, the occurrence of fruit leaf disease can lead to a decline in both
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the quantity and quality of fruits, as well as increase the vulnerability

of nearby plants to infection. Given the strong reliance of the

economy on agricultural productivity, the impact of the leaf disease

on the environment becomes particularly significant if preventive

measures are not implemented in a timely manner. Therefore, the

prompt identification of diseases affecting fruit leaves is crucial for

human well-being Patil et al. (2017); Afzaal et al. (2021); Mahum

et al. (2022). In general, the identification and categorization of leaf

diseases have predominantly depended on the human visual system,

which is error prone, is time-consuming and labor-intensive.

Hence, the implementation of automated leaf disease

classification is imperative in the context of fruit production for

mitigating both the production and economic losses Sneha and

Bagal (2019); JencyRubia and BabithaLincy (2021); Y et al. (2022).

In recent decades, there has been a significant surge in the

utilization of machine learning-based algorithms for addressing leaf

disease categorization problems. Numerous machine vision

algorithms have been proposed to classify illnesses affecting plant

leaves. In the study conducted by Singh and Misra (2017), the

authors proposed an image segmentation method for the automatic

identification and classification of plant leaf diseases, specifically

focusing on the minor leaf disease common in pine trees within the

United States. The researchers investigated the utilization of several

classifier algorithms for the purpose of identifying plant leaf disease.

A system for automatic detection of plant disease using image

processing techniques was proposed by the authors Mounika and

Bharathi (2020). The approach was used for calculation of textural

data pertaining to illnesses affecting plant leaves. In their work,

Kulkarni and Sapariya (2021) proposed a method to automatically

detect and classify leaf illnesses, which encompasses many stages,

including image gathering, image pre-processing, segmentation,

and classification. In their study, Reddy et al. (2021) employed

Support Vector Machine (SVM) and Random Forest algorithms for

the purpose of detecting illnesses in leaves. This study compared

assessment measures, such as Root Mean Square Error (RMSE),

Peak Signal Noise Ratio (PSNR), for the diseaseaffected regions of

the leaves to assess their potential impact on agricultural output.

In recent years, deep learning has gained significant interest due

to its remarkable achievements in many domains, such as natural

language processing (NLP) and machine vision. Consequently, there

have been additional advancements in the field of plant leaf disease

categorization by the utilization of deep learning models. Liu et al.

(2017) introduced a methodology for detecting apple leaf diseases

utilizing deep convolutional neural networks (CNNs). The model

reported in this study is capable of generating an ample number of

diseased images with a deep learning model, AlexNet. The study

utilized a dataset including 13,689 images depicting various apple leaf

illnesses. The CNN model developed in this research was trained to

accurately classify four types of apple leaf diseases. In the study

conducted by Anagnostis et al. (2020), a resilient CNN model was

developed to address the timely identification of anthracnose, a

prevalent fungal disease that affects numerous tree species globally.

This model was to use to classify images of plant leaves as either

infected or uninfected by anthracnose. The researchers acquired a

dataset consisting of grayscale and RGB images. Then, they utilized a

rapid Fourier transform to extract characteristics from the images.
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Finally, to implement the classification task, they employed a CNN

model. To effectively identify olive leaf disease, Ksibi et al. (2022)

proposed the utilization of ResNet50 and MobileNet models for

image feature extraction, employing the technique of feature

concatenation. To train the deep learning models employed in this

investigation, a dataset including 5,400 images of olive leaves was

utilized. These images were acquired from an olive grove using an

unmanned aerial vehicle (UAV) equipped with a camera. In their

study, Devi et al. (2022) proposed a methodology for the prediction

and classification of corn leaf disease. The authors employed transfer

learning and the Alexnet model, leveraging the Adaptive Moment

Estimation (ADAM) optimizer and the Stochastic Gradient Descent

with momentum (SGDM) mechanism. The model was trained and

evaluated using a dataset consisting of 5,300 images, which were

categorized into four different types: healthy, blight, common rust,

and gray leaf spot. Yao et al. (2022) conducted a study focusing on the

identification of kiwifruit leaf disease. They developed a publicly

available dataset while using the YOLOX target detection algorithm

to mitigate the influence of environmental elements. The study of Yu

et al. (2022) introduced a method for efficiently detecting soybean

illnesses. It leverages a residual attention network (RANet) model.

This study included the incorporation of three types of soybean leaf

spot diseases, namely soybean brown leaf spot, soybean frog eye leaf

spot, and soybean phyllosticta leaf spot, into the dataset. The OTSU

algorithm was utilized to pre-process the initial images for

eliminating the surrounding features. Additionally, the image

dataset was augmented by the application of image enhancement

algorithms. Additionally, the residual attention layer was constructed

by integrating attention processes into a ResNet18 model.

The majority of the preceding approaches in the field of leaf

disease classification have predominantly employed CNN

architectures. Regrettably, the CNN-based models have

limitations due to the local receptive field inside the convolutional

modules. This characteristic directs attention towards the

surrounding region in an image, perhaps overlooking the

connections between distant pixels. In contrast, the transformer is

renowned for its utilization of an attention mechanism to effectively

capture and represent the extensive inter-dependencies within the

data samples. The successful performance of transformer in NLP

tasks has resulted in its integration and use in the field of computer

vision Liu et al. (2021). For instance, the work conducted by Qian

et al. (2022) introduced a novel strategy for classifying maize leaf

diseases using a vision transformer-based method. The authors of

the study also gathered RGB images from publicly available

databases and experimental fields, classifying them into four

distinct categories: southern corn leaf blight, gray leaf spot,

southern corn rust, and healthy specimens. Nevertheless, the

vision transformer model proposed in this study might provide

challenges when used to high-resolution images due to the

quadratic computational complexity of the self-attention

mechanism in relation to image resolution. Furthermore, the

original vision transformer necessitates a substantial allocation of

memory capacity and processing resources.

Taking the aforementioned research into consideration, we

propose a hierarchical vision transformerbased approach by

employing transfer learning strategy, for classifying leaf diseases of
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ligneous plants. The hierarchical design in the proposed vision

transformer yields notable reductions in computational resource

requirements and the number of weighting parameters for the

vision transformer. Furthermore, this work utilizes the weighting

factors that were pre-trained on the dataset ImageNet Russakovsky

et al. (2014). To assess the effectiveness of the suggested methodology,

a subset of a publicly available dataset was utilized. This subset

comprises a total of 22 types of ligneous leaf images. Furthermore, a

series of comparative tests were carried out to evaluate the

performance of the suggested methodology as well as the state-of-

the-art methods. The experimental findings provide evidence that the

suggested methodology outperforms the state-of-the-art techniques

in terms of accuracy, precision, recall, and, F1 score.

In general, the contributions of this study include:
Fron
• A leaf disease classification pipeline is proposed. The

proposed model primarily consists of a hierarchical

vision transformer.

• The presented vision transformer model comprises of two

channels, which are used to extract the features from the

original leaf images and the edges in the corresponding

images, respectively.

• The experimental findings prove the superiority of the

proposed methodology over the state-of-the-art algorithms.
The subsequent sections of this article are structured in the

following manner. Section 2 presents an elaborate exposition of the

suggested transformer concept. Section 3 provides a detailed

account of the experimental methodology employed in this study,

as well as the subsequent findings and their analysis. Finally, The

study concludes at Section 4.
2 Methodology

2.1 Dataset collection and pre-processing

The dataset utilized in this research is sourced from the publicly

accessible plant dataset of AI Challenger 2018 Wu et al. (2017),

which has a total of 10 plant specimens, each classified into one of

27 categories representing either leaf diseases or healthy conditions.

In a systematic manner, a total of 61 image classes have been

categorized into distinct groups based on species, pest species, and

severity levels. The objective of this work is to categorize diseases

affecting ligneous fruit leaves. Therefore, only the leaves that were

affected by diseases were selected from the dataset for the purposes

of training and validation. In this study, a total of 22 categories of

images depicting leaf diseases were included in the dataset. These

categories encompassed both sick leaves and healthy leaves.

As seen in Figure 1, the training set comprises 11,603 images,

whereas the testing set consists of 1,668 images. These images are

categorized into 22 distinct classes. Furthermore, the dataset

includes a collection of example images, as seen in Figure 1.

These images encompass both healthy and sick leaves.

In this study, the utilization of transfer learning is employed to

improve the performance of the proposed approach, taking
tiers in Plant Science 03
inspiration from the work of Chen et al. (2020). To achieve this,

the proposed model is initially trained on the ImageNet dataset

Russakovsky et al. (2014), considering the relatively small size of the

presented image dataset. In addition, the images are resized into a

uniform dimension of 224×224 to minimize the computing

resources needed during the training phase. Moreover, the

present study employs a set of data augmentation techniques to

increase the number of image samples, which can further enhance

the generalization of the proposed model and mitigate the risk of

over-fitting during the training process. These techniques include

RandomFlip, Color Jitter, Cutmix Yun et al. (2019), and Mixup

Zhang et al. (2017).
2.2 Overall framework

The proposed vision transformer model is provided in Figure 2,

which is a typical two-channel swin vision transformer Liu et al.

(2021) model, and there is no weighting parameter sharing between

these two channels.

As seen in Figure 3, the input of the lower channel is achieved

by the utilization of the Sobel operator Liu and Wang (2022) and

the continuous image fusion operation. The edge Sobel operator is

employed on the original image in order to provide input for the

suggested methodology. Initially, the gray-scale equivalent is

derived from each original image. Next, the original image

undergoes convolution with the Sobel operators of size 3×3 in

both the horizontal and vertical axes. The specific characteristics of

the horizontal and vertical Sobel operators, denoted as Gx and Gy

respectively, are outlined below in Equations 1 and 2.

Gx =

+1 0 −1

+2 0 −2

+1 0 −1

2
664

3
775� I, (1)

Gy =

+1 +2 +1

0 0 0

−1 −2 −1

2
664

3
775� I, (2)

where the original image is taken as I, and let Gx be equal to the

transpose of Gy. It is worth noting that the elements in the operators

Gx and Gy are differentiable. The starting values of the convolutional

layer, also known as the Sobel operator layer, are determined by the

elements in the Gx and Gy operators. These values may be optimized

by a back-propagation approach during the training phase of the

proposed transformer. In addition to combining the output of these

two channels through concatenation, the classification process

involves the utilization of a softmax classifier, an average pooling

layer, and a fully-connected layer.
2.2.1 Details of the backbone
As seen in Figure 2, the configuration of blocks in each channel

and the size of tokens may be adjusted to accommodate diverse

scales of machine vision applications. In accordance with the

present investigation, the quantity of blocks in each channel is
frontiersin.org
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multiplied by a factor of 2, 2, 6, and 2, respectively. Following the

input technique, the input image is initially partitioned into non-

overlapping patches of size 4×4. Hence, the feature dimension of a

single patch may be calculated as the product of its width, height,

and number of color channels, resulting in a value of 48 (where 3

represents the number of RGB channels). In a manner akin to the

vision transformer proposed by Dosovitskiy et al. (2020), the

approach involves treating each patch as a token, where the
Frontiers in Plant Science 04
feature representation of a token is obtained by concatenating the

pixel values inside the associated patch. Different from the original

vision transformer, the proposed transformer model leverages the

swin trans former b lock and the sh i f t -window se l f -

attention mechanism.

In the initial stage, a linear embedding layer is employed to

project the original feature into a dimension of arbitrary size (C=96

in the context of this work). Next, a series of swin transformer
FIGURE 1

A collection of sample images depicting various types of leaf diseases. The leaves in the top row exhibit signs of good health. The leaves exhibiting
signs of illness are seen in the bottom row.
FIGURE 2

The suggested model consists of a two-channel swin vision transformer, which exhibits a certain overall structure. The top channel of the proposed
model receives an initial image as its input, while the lower channel gets the edge information of the original image as its input. It is worth noting
that the value of C, which is equal to 96, might vary depending on the architecture of the model.
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blocks are utilized on the tokens, incorporating two distinct forms

of self-attention modules. Furthermore, it should be noted that the

number of tokens in the swin transformer blocks stays consistent

with the linear embedding unit, which is calculated as H
4 � W

4 .

The hierarchical representation is generated by the provided

model through the utilization of patch merging modules, which

effectively down-sample the feature resolutions by a factor of 2. The

first merger module and feature modification are denoted as Stage 2,

which are then repeated as Stage 3 and Stage 4. Furthermore, the

dimensions of the output features progress from Stage 1 to Stage 4

a s H
4 � H

4 � C, H
8 � H

8 � C,   H16 � H
16 � C, a n d H

32 � H
32 � C,

respectively. The hierarchical representation is primarily

distinguished between the swin vision transformer Liu et al.

(2021) and the original vision transformer Dosovitskiy et al.

(2020) by the inclusion of Stage 2, Stage 3, and Stage 3 together.

The given methodology does not include the utilization of any class

taken. In this approach, the output vector of dimensions N =
H
32 � W

32 is generated by using global average pooling followed by a

fully-connected layer. The linear classifier then takes into account

the first C components of this output vector.

2.2.2 Swin transformer block
Each stage of the proposed model consists of the swin

transformer blocks. And each swin transformer block consists of

consecutive modules, as shown in Figure 4. In this architecture,

there are two important modules W-MSA and SW-MSA, which

represent the multi-head self-attention (MSA) with a standard

window and the MSA with a shifted window, respectively.

The mathematical representation of the consecutive swing

transformer modules can be articulated in Equations 3–6:

bz l = W −MSA(LN(zl−1)) + zl−1, (3)

zl = MLP(LN(bz l)) + bz , (4)
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ẑ l+1 = SW −MSA(LN(zl)) + zl , (5)

zl+1 = MLP(LN(ẑ l+1)) + ẑ l+1, (6)

where the notation W-MSA refers to window-based MSA, MLP

stands for multiple layer perception Tolstikhin et al. (2021), SW-

MSA represents shifted-window MSA, and LN signifies layer

normalization Ba et al. (2016).

2.2.3 Shifted window-based self-
attention mechanism

In contrast to the initial vision transformer that heavily relies on

global self-attention, which necessitates calculating the relationships

between a token and all other tokens, the window-based MSA

module employs a window of size M × M (with a default value of

M=7) to restrict the extent of calculation. Hence, the computational

complexity becomes more manageable with the incorporation of

the window-based self-attention mechanism, as opposed to the

quadratic complexity of the vision transformer Dosovitskiy et al.

(2020), which is dependent on the image resolution h × w (as shown

in Equations 7, 8).

Ω(MSA)  =  4hwC2 + 2(hw)2C, (7)

Ω(W −MSA)  =  4hwC2 + 2M2hwC, (8)

where h and w denote the height and width of an image, C=96,

and M=7 in the following settings.

Furthermore, the SW-MSA strategy is intended to enhance the

encoding of global relationships among the pixels in multiple windows.

The use of the relationship across many windows may be maximized

with the introduction of SW-MSA. As seen in Figure 5, the partitioning

method of the regular window is employed in layer l, where self-

attention is computed within each window. In the subsequent layer,

denoted as l + 1, the partitioning of the window is adjusted both
FIGURE 3

The formation of the input for the bottom channel of the proposed vision transformer model.
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horizontally and vertically, resulting in the creation of a greater number

of distinct windows. Thus, the self-attention calculation in Layer l+1

traverses the initial windows in Layer l.

It should be noted that the loss function employed in the

proposed model is a cross-entropy loss. This loss is computed by

comparing the ground truth category of the image with the

classification output given by the suggested model, as seen in Figure 2.
3 Experiments

3.1 Implementation details

The tests were done employing four NVIDIA RTX 3080 GPUs, the

PyTorch deep learning framework Paszke et al. (2019) version 2.0.1,
Frontiers in Plant Science 06
and the Python programming language version 3.8.3. The backbone of

the suggestedmodel consists of the Swin-T vision transformer, which is

employed for each channel. The dimensions of the input images are

standardized to 224×224. Furthermore, the suggested swin vision

transformer was initialized using the pre-trained weighting

parameters of ImageNet Russakovsky et al. (2014). Typically, the

hyper-parameters employed in the experiments encompass the

subsequent elements, as shown in Table 1 To note that the

experiments by using the proposed approach were conducted in a

10-fold cross-validation scheme. Meanwhile, the hyper-parameters

were determined by using a trial-and-error strategy.

In order to assess the effectiveness of the suggested model and

the comparison methodologies, the experiments contained several

assessment measures, including accuracy, precision, recall, and F1

score (as shown in Equations 9–12).
FIGURE 5

The diagram depicting the SW-MSA mechanism employed in the proposed methodology. The red boxes are used to indicate the local window,
which serves the purpose of constraining the scope of self-attention calculation.
FIGURE 4

The detailed components inside the Swin Transformer model. The abbreviation LN is used to refer to layer normalization. The normal and shifted-windows
multi-head self-attention modules are denoted as W-MSA and SW-MSA, respectively. The acronym MLP stands for multiple-layer perception. .
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Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (9)

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1 =
2� Precision� Recall
Precision + Recall,

(12)

where TP, TN, FP, and FN denote number of true positive, true

negative, false positive, and false negative, respectively.
3.2 Ablation study

The proposed vision transformer model incorporates two

distinct topologies for swin vision transformers. To evaluate the

efficacy of the introduced swin vision transformer, a series of

ablation experiments were conducted on a publicly available

dataset. These experiments involved varying the settings of the

introduced models, which were used to replace the original settings

of the proposed approach. The original approach consisted of a

vision transformer Dosovitskiy et al. (2020) and the Sobel operator

with fixed 3×3 values.

As seen in Figure 6, it is evident that the accuracy of the suggested

methodology surpasses that of the model utilizing the original vision

transformer or the fixed Sobel operator. The transformer model

under consideration has demonstrated a performance improvement

of 2.2% and 1.4% compared to the vision transformer version and the

fixed Sobel operator version, respectively, when evaluated on a subset

comprising 25% of the utilized dataset. Furthermore, the transformer
Frontiers in Plant Science 07
model under consideration has demonstrated a performance

improvement of 2.22% and 1.40% compared to the vision

transformer version and the fixed Sobel operator version,

respectively, when evaluated on 50% of the identical dataset.

Hence, the selected model was deemed suitable as the foundational

framework for the subsequent investigations.
3.3 Experimental results

To evaluate the performance of the proposed approach in a fair

manner, the comparison experiments were conducted between the

state-of-the-art methods, including, and ours on the same dataset as

provided in Table 2.

In order to objectively assess the performance of the proposed

approach, a series of comparative experiments were conducted.

These experiments involved benchmarking the proposed approach

against several state-of-the-art methods, namely AlexNet

Krizhevsky et al. (2012), GoogleNet Szegedy et al. (2014), VGG

Abas et al. (2018), ResNet101 Zhang (2021), EfficientNetB3 Singh

et al. (2022), Inception V3 Jenipher and Radhika (2022), MobileNet

V2140 Elfatimi et al. (2022), and vision transformer Dosovitskiy

et al. (2020). In the experiments, these state-of-the-art methods

adopted their original settings in the literature. To note that the

former seven state-of-the-art algorithms are CNN models. And the

proposed approach was inspired by the work of the last model

vision transformer. Meanwhile, the evaluation was carried out on

the dataset specified in Table 2.

As seen in Table 3, the suggested strategy exhibits superior

accuracy, precision, recall, and F1 score compared to existing state-

of-the-art approaches. To provide specific results, our method

demonstrates an increase in overall accuracy of 2.1% when

compared to MobileNet V2140. Additionally, our proposed

approach exhibits improvements in Precision, Recall, and F1 score
FIGURE 6

Ablation study with different settings with ratios (25% and 50%) of the training set in the publicly available dataset.
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by 2.6%, 2.7%, and 2.7% respectively, when compared to MobileNet

V2140. Furthermore, even when compared to the original vision

transformer, our approach showcases enhancements in accuracy,

Precision, Recall, and F1 score by 1.1%, 1.5%, 0.59%, and 1.1%

respectively. In summary, the suggested methodology demonstrates

higher performance compared to both CNN-based and vision

transformer-based algorithms. This provides evidence of the

prospective capability of the proposed technique in feature extraction.

In order to assess the effectiveness of the suggested methodology

on various image categories within the leveraging dataset, we have

included the accuracy-based confusion matrix (as seen in Figure 7)

for the proposed technique. This matrix pertains to the 22

categories of leaf disease images inside the public dataset. The

majority of the categories have demonstrated encouraging

outcomes. The leaf disease images that exhibit inadequate

classification pertain to the plant species “Apple” and “Citrus.”

The category labeled as “Citrus healthy” can sometimes be mistaken

with the category known as “Citrus Greening June general.” The

attribution of the resemblance between various forms of leaf

diseases is warranted. Another challenging classification

assignment involves distinguishing between “Apple_Scab general”

and “Apple_Scab serious.” This phenomenon may be ascribed to

the existence of two distinct variants of an image falling under the

overarching classification of “Apple_Scab.”

In addition, the T-distributed stochastic neighbor embedding (t-

SNE) was implemented using the suggested methodology, as seen in

Figure 8, van der Maaten and Hinton (2008). It should be noted that

t-SNE is a computational approach employed for the purpose of

visualizing the multidimensional feature space of the 22 categories of

sick leaves in a two-dimensional (2D) format. Figure 8 presents a

summary of the t-SNE clustering outcomes for both the output

produced by the suggested technique and the ground truth. Figure 8

exhibits a notable clustering pattern as classes 16 and 17 are closely

packed together on the right side. It should be noted that the distinct

attributes of these leaf images can only be ascribed to a limited

number of locations that are outside the clusters.
3.4 Discussion

The utilization of CNN models in deep learning has become

prevalent. These models possess the capability to extract feature

maps from images. Furthermore, the effectiveness of feature

extraction may be enhanced by employing a network structure
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with increased depth. Nevertheless, the efficacy of CNNs may be

limited due to the inherent constraint of the convolutional module,

which primarily emphasizes the analysis of small receptive fields

inside the images. This phenomenon rapidly results in the disregard

of the interconnections among distant pixels within an image. In

addition, the process of enhancing the performance of deeper

convolutional neural network models necessitates a greater

allocation of processing resources.
TABLE 2 Distribution of the images in the dataset of this study.

Class Label Name No. of train-
ing images

No. of
testing
images

1 Apple healthy 1,185 169

2 Apple_Scab general 211 30

3 Apple_Scab serious 152 22

4 Apple Frogeye Spot 427 61

5 Cedar Apple
Rust general

142 20

6 Cedar Apple
Rust serious

40 6

7 Cherry healthy 598 85

8 Cherry_Powdery
Mildew general

116 12

9 Cherry_Powdery
Mildew serious

110 18

10 Grape healthy 294 42

11 Grape Black Rot
Fungus general

381 54

12 Grape Black Rot
Fungus serious

462 66

13 Grape Black Measles
Fungus general

503 74

14 Grape Black Measles
Fungus serious

419 59

15 Grape Leaf Blight
Fungus general

61 9

16 Grape Leaf Blight
Fungus serious

630 90

17 Citrus healthy 367 52

18 Citrus Greening
June general

1,828 269

19 Citrus Greening
June serious

1,799 262

20 Peach healthy 251 36

21 Peach_Bacterial
Spot general

857 122

22 Peach_Bacterial
Spot serious

770 110

– Total 11,603 1,668
TABLE 1 Hyper-parameters used in the experiments.

Item Value

Batch_size 8

optimizer Adam

learning rate 1e-4

depth 12

epochs 100
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In the context of leaf disease images, it is observed that the

affected regions are frequently dispersed over the whole image,

rather than being confined to a specific localized location. This

characteristic is exemplified in Figure 9. Given the limitations of

the local receptive field mechanism in addressing the specific leaf

disease image, the mere addition of extra layers to the CNN

models does not always ensure improved performance in image

classification. This study presents the introduction of a vision

transformer-based model for image classification, which leverages

the relationships among distant pixels inside the images. The
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suggested dual channel model employs the technique of MSA to

continually extract the correlation between image patches. This

approach effectively preserves the information that is

advantageous for classification purposes. In contrast to the

original vision transformer model, the swin vision transformer

model is capable of extracting valuable information from images

while concurrently mitigating its computing resource

requirements. Nevertheless, this research endeavor is subject to

many constraints: The dataset utilized in the experiments suffers

from unbalanced image samples, hence limiting the effectiveness
TABLE 3 Comparison results between the state-of-the-arts and the proposed method.

Method Accuracy Precision Recall F1 score

AlexNet 78.51 77.63 80.16 78.87

GoogleNet 81.23 80.59 82.05 81.31

VGG 82.35 82.19 82.94 82.56

ResNet101 83.18 82.56 83.29 82.92

EfficientNetB3 83.25 83.03 83.48 83.25

Inception V3 84.01 83.23 84.33 83.78

MobileNet V2140 84.69 83.52 84.92 84.21

Vision Transformer 85.47 84.38 86.71 85.53

Our method 86.43 85.73 87.22 86.47
fr
Bold values denote the best performance.
FIGURE 7

The confusion matrix of the proposed approach on the presented dataset.
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of the presented method. Meanwhile, number of the image

samples contained in the leveraged dataset is still limited, which

constrains the accuracy of the proposed approach at relatively low

level. In addition, there exists duplication between the edge

information included in the lower channel of the proposed

model and the upper channel.
4 Conclusion

The present study introduces a novel network architecture for

leaf disease image classification, utilizing a two-channel swin

transformer-based approach. The system consists of a dedicated

channel for the original image and an additional channel specifically
Frontiers in Plant Science 10
intended to capture the edges in the merged image. In addition, the

Sobel operator has been utilized to extract the edge information

from the images of leaf diseases. The utilization of the two-channel

swin vision transformer model has resulted in the attainment of

improved performance compared to the current state-of-the-art

methods. The efficacy of the suggested model is demonstrated by

experimental findings conducted on the publically accessible

dataset. The experimental results of the proposed approach have

proved the superior performance of the proposed approach in leaf

disease classification. It can be concluded that the proposed

approach could be a valuable algorithm for leaf classification and

Precision Agriculture.

Recently, there has been encouraging performance

demonstrated by vision transformer-based models in challenges
FIGURE 8

The outcome of performing t-SNE on outcome generated from the proposed approach (Top) and on the ground truth samples (Bottom).
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related to multi-modal machine vision. Henceforth, we shall further

explore the intricacies of multi-model-based deep learning models

in the context of leaf disease categorization and prediction. In

addition, more samples need to be collected to eliminate the class

imbalance issue in the dataset used in this study.
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