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Modeling the effects of
strigolactone levels on maize
root system architecture
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Abderrahmane Eleiwa1,2, Alberto Marin-Sanguino1,2,
Ester Vilaprinyo1,2, Albert Sorribas1,2 and Rui Alves1,2*

1Systems Biology Group, Department Ciències Mèdiques Bàsiques, Faculty of Medicine, Universitat de
Lleida, Lleida, Spain, 2Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
Maize is the most in-demand staple crop globally. Its production relies strongly

on the use of fertilizers for the supply of nitrogen, phosphorus, and potassium,

which the plant absorbs through its roots, together with water. The architecture

of maize roots is determinant in modulating how the plant interacts with the

microbiome and extracts nutrients and water from the soil. As such, attempts to

use synthetic biology and modulate that architecture to make the plant more

resilient to drought and parasitic plants are underway. These attempts often try to

modulate the biosynthesis of hormones that determine root architecture and

growth. Experiments are laborious and time-consuming, creating the need for

simulation platforms that can integrate metabolic models and 3D root growth

models and predict the effects of synthetic biology interventions on both,

hormone levels and root system architectures. Here, we present an example of

such a platform that is built using Mathematica. First, we develop a root model,

and use it to simulate the growth of many unique 3D maize root system

architectures (RSAs). Then, we couple this model to a metabolic model that

simulates the biosynthesis of strigolactones, hormones that modulate root

growth and development. The coupling allows us to simulate the effect of

changing strigolactone levels on the architecture of the roots. We then

integrate the two models in a simulation platform, where we also add the

functionality to analyze the effect of strigolactone levels on root phenotype.

Finally, using in silico experiments, we show that our models can reproduce both

the phenotype of wild type maize, and the effect that varying strigolactone levels

have on changing the architecture of maize roots.
KEYWORDS

maize, strigolactones, rsa, root system architecture, mathematical model,
multiscale modeling
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1 Introduction

Maize is the largest crop in the world with respect to both

production and consumption (OECD and Food and Agriculture

Organization of the United Nations, 2021). It is a food staple to

most African and Latin American countries (Nuss and

Tanumihardjo, 2010; Guzzon et al., 2021). In other parts of the

world, maize is used as feed for farm animals that supply meat, eggs,

and dairy products, and as a source of biofuel (OECD and Food and

Agriculture Organization of the United Nations, 2021). Since 2019,

the average yearly global production for the crop lags 8.7 million

tonnes behind its total demand (Erenstein et al., 2022). If this

persists, a world food crisis is inevitable (OECD and Food and

Agriculture Organization of the United Nations, 2021).

Improving maize’s root structure can contribute to crop growth,

which is one of the ways to boost maize production (Paez-Garcia

et al., 2015). Longer and denser roots enable the plant to forage for

nutrients and water (Jaramillo et al., 2013; Tajima, 2021), making

the plant less reliant on fertilizers and more resistant to drought. In

principle, this could be partially achieved by manipulating the

production of maize strigolactones (SLs; Rich and Ejeta, 2008;

Kapulnik et al., 2011; Koltai, 2011; Ruyter-Spira et al., 2011; Arite

et al., 2012; Rasmussen et al., 2012; Rasmussen et al., 2013; Sun

et al., 2014; Sun et al., 2015; Gobena et al., 2017; Sun et al., 2022; Li

et al., 2023; Luqman et al., 2023). SLs are plant hormones that

mediate maize root development and germination of parasitic

plants (Cook et al., 1966; Koltai, 2011; Sun et al., 2015).

Increasing SLs levels leads to longer crown, brace, primary and

seminal roots, with diminished secondary root formation through

branching (Ruyter-Spira et al., 2011; Arite et al., 2012).

The greater potential for boosting maize production lies in

developing countries, where drought (Fisher et al., 2015; McMillen

et al., 2022) and pests (Yacoubou et al., 2021), such as Striga

hermonthica, drag down the production(Yacoubou et al., 2021).

Genetic modification of maize is the most likely means of achieving

that production boost on a short timescale without the excessive use

of fertilizers and insecticides that damage the environment (Liu and

Stewart, 2015; Wurtzel et al., 2019; Kowalczyk et al., 2022). Still, due

to the nonlinear regulatory interactions occurring at the level of

gene expression and protein activity, genetic manipulation can have

many unforeseen side effects (Husaini, 2022). As such, achieving a

certain phenotypical goal via direct genetic modification is still a

trial and (frequent) error process (Clark et al., 2020; Gudmundsson

and Nogales, 2021), often taking too long to yield appropriate

results. We need tools that accelerate the process, improve

efficiency, and help minimize the probability of undesired side

effects resulting from genetic manipulation. These tools should help

predict the effect of alternative manipulations, allowing us to

prioritize implementing the ones that are more likely to meet the

desired goals.

Mathematical models are good candidates to play this role

(Chandran et al., 2008; Cloutier et al., 2009; Lee and Voit, 2010;

Srinivasan et al., 2019; Correa et al., 2020). By incorporating

information about the genetic makeup and molecular interactions

of an organism, mathematical models can simulate and predict the
Frontiers in Plant Science 02
outcome of genetic alterations in a controlled and reproducible

manner. This can help to identify potential off-target effects and

unintended consequences before they occur, providing valuable

information to guide decisions about genetic manipulation.

Additionally, mathematical models can be used to test and refine

hypotheses about gene function, providing valuable insights into the

under ly ing bio log ica l mechanisms through in s i l i co

experimentation (Nijhout et al., 2015; Lucido et al., 2022).

Ultimately, the use of mathematical models to predict the effects

of genetic manipulation can contribute to improving the precision

and efficiency of genetic engineering and help to ensure a

responsible development of safe new genetic technologies.

In previous work (Lucido et al., 2022), we used mathematical

models of metabolic pathways to understand how SLs biosynthesis

might work in maize, and predict how that biosynthesis could be

manipulated. We now intend to model and predict the effects of

changing SLs levels on maize’s RSA.

There are several methodologies and platforms to model RSA.

The simplest ones are based on L-Systems, where a small set of rules

is used to recursively generate fractal structures that resemble roots

(Prusinkiewicz et al., 1996; Leitner et al., 2010; Boudon et al., 2012).

For example, RootBox is a 3D, L-system based, RSA model built in

Matlab. On the other end of the complexity spectrum, some

platforms utilize on ordinary and partial differential equations to

generate the RSA in either mechanistic (Pagès et al., 2004; Javaux

et al., 2008; Schnepf et al., 2018) or empirical way (Lynch et al.,

1997; Postma et al., 2017). OpenSimRoot is an example of such a

platform, allowing users to build a comprehensive and open-source

functional structural plant model that allows simulating the

development of a RSA by modeling root growth, and including

water and nutrient uptake, carbon allocation, root plasticity, and

shoot growth (Postma et al., 2017). Earlier, (Dunbabin et al., 2013),

(Lobet et al., 2013) and (Schnepf et al., 2018) compared the

functionality of these and other root platforms. We have now

updated that comparison and further listed some of the more

recent RSA modeling platforms in Table 1 (Dunbabin et al., 2013;

Lobet et al., 2013; Schnepf et al., 2018).

Environment, genetic variability, and the interaction between

both affect plant development. While some of the RSA modeling

platforms (Leitner et al., 2010; Postma et al., 2017; Schnepf et al.,

2018) can model the interactions between root and environment,

we found none that could easily be integrated with metabolic

models of plant metabolism. This prevents the use of modeling to

predict the macroscopic effects that changing hormone levels might

have on RSAs at the macroscopic level. In previous work (Lucido

et al., 2022), we modeled the biosynthesis of SLs in maize. We are

now interested in coupling the SLs biosynthesis model to an RSA

model and testing in silico the effects of changing SLs on the root.

To do so, and using Mathematica (Wolfram Research, Inc,

2022) we developed an integrated modeling platform that can

simultaneously model the biosynthesis of SLs at the molecular

level and the effects of changing that biosynthesis on the 3D RSA

of maize. The SLs biosynthesis model predicts the amount of SLs

synthesized by the plant, and this amount is one of the inputs for the

RSA model. RSA model outputs are root length and lateral root
frontiersin.or
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branching density, among others. Here we describe the

methodology used for the integrated modeling and show that we

are able to mimic experimental determinations of how SLs affects

RSAs and extrapolate this effect to previously undetermined

SLs concentrations.
2 Materials and methods

2.1 General modeling approach
and software

We used Mathematica (Wolfram Research, Inc, 2022) as the

simulation environment for modeling and analysis. The models

developed in (Lucido et al., 2022) were implemented in a

Mathematica notebook and coupled to the RSA 3D model for

maize. Figure 1 summarizes the general approach for the 3D

modeling of the RSA of one maize plant. Using experimental data

(Zhu et al., 2006; Hochholdinger, 2009; Jia et al., 2018; Liu et al.,

2019; Liu et al., 2021) we build a statistical distribution for the

characteristics of each main type of maize roots (primary, seminal,

crown, brace, and secondary lateral roots for each of the other root

types, Figure 1A). We also collected information from the literature

about the influence of SLs on maize’s RSA (Figure 1B). The number

of each type of roots in an RSA is randomly determined at the

beginning of the simulation, based on the experimental
Frontiers in Plant Science 03
distributions. Then, each main root grows (Figure 1C), and the

simulation stochastically determines whether lateral roots branch

out and for how long they grow. Finally, accumulation of enough

individual RSA simulation allows us to perform statistical analysis

of or modeling results (Figure 1D).
2.2 Calculating model parameters and
statistical distributions for 3D maize RSA

Table 2 summarizes the parameter values used in our 3D maize

RSA model. We estimated them from the experimental data

published in (Pagès et al., 1989; Hochholdinger, 2009; Arite et al.,

2012). We note that n and tf are user-defined parameters of the

simulation. The larger n is, the more detailed the RSA will be, and

the longer the simulation will take. We set n = 200 for the

simulations reported in this work. The range of values for tf
shown in Table 2 are simply the estimate of how long one RSA

will take to be fully developed, based on (Pagès et al., 1989). Table 3

summarizes the experimental distributions of phenotypical

characteristics for each root type, as based on literature

measurements (Zhu et al., 2006; Jia et al., 2018; Liu et al., 2019).

We collected the data reported in the references shown in Tables 2

and 3 and adjusted that data to the best-fit statistical distribution

that describes it, using Mathematica’s FindDistribution function.
TABLE 1 Summary of RSA modeling platforms.

Model
name

Model features Programming
Language

Numerical
methods

Authors

– RSA Fortran Explicit* (Lungley, 1973)

ROOTMAP RSA, environmental conditions, resource acquisition and allocation, water
flux, solute-of-water?, containers

Turbo pascal Explicit* (Diggle, 1988)

Simroot RSA, environment conditions, resource acquisition and allocation, water flux,
solute flux, shoot dry mass

C++ Explicit* (Lynch
et al., 1997)

RootTyp RSA C, C++ Explicit* (Pagès
et al., 2004)

GRAAL-CN RSA, environmental conditions, resource acquisitionl Explicit* (Drouet and
Pagès, 2007)

SPACYS RSA, environmental conditions, water flux, solute flux C++ Explicit* (Wu et al., 2007)

R-SWMS RSA, environmental conditions, water flux, solute flux C++, Fortran Explicit* (Javaux
et al., 2008)

RootBox RSA, environmental conditions, resource acquisition and allocation, Matlab L-system (Leitner
et al., 2010)

ArchiSimple RSA, environmental conditions, shoot dry mass C, C++ Explicit* (Pagès
et al., 2014)

OpenSimRoot RSA, environmental conditions, resource acquisition and allocation, water
flux, solute flux, shoot dry mass

C++ Explicit*, Runge-
Kutta 4

(Postma
et al., 2017)

CRootBox RSA, environmental conditions, resource acquisition and allocation, water
flux, containers

C++, Python Explicit* (Schnepf
et al., 2018)

DigR RSA, environmental conditions C++, Java Explicit* (Barczi
et al., 2018)
*Explicit methods calculate the values at a later time using the known values from the current time.
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2.3 Building maize RSAs that simulate
biological variability

Each plant has its own RSA, which depends on the interactions

between genetic background, environmental cues, and other

random factors (Sultan, 2000). To generate this variability, we use

the distributions described in Table 3 and assign random values

drawn from those distributions each time we simulate a root. This

ensures that our root models have statistical properties that match

those of real plants.

We build a single maize RSA by randomly drawing its

properties from the distributions in Table 3 and deciding how

coarse the time course for building that root should be. We have
Frontiers in Plant Science 04
four modules corresponding to each root type (primary, crown,

seminal, and brace roots). First, we start by defining a primary root.

Second, we find the number of crown, seminal, and brace roots

from the relevant distributions in Table 3. The crown, seminal, and

brace root modules follow the same algorithm. The primary root

module follows a similar algorithm without branching. The first step

of the algorithm determines the origin of all roots. Level ground is

assumed to be at coordinates (0, 0, 0). Primary root and seminal roots

start growing at or below the 0 coordinate in the z-direction. While

shoot-borne/nodal roots are classified as either brace root if it forms

above the ground or crown root if below the ground. In addition,

maize has mainly 2 above ground whorls of brace root and up to 6

below ground whorls of crown roots (Hochholdinger, 2009; Liu et al.,
TABLE 2 Experimental parameters used to create 3D models of RSA in maize.

Notation Description Value Unit References

n Maximum number of iterations 200* –

tf Final time 30 – 40* days (Pagès et al., 1989)

kprim   Maximal primary root length 22.67 cm (Arite et al., 2012)

  ksem Maximal seminal root length 22.67 cm (Arite et al., 2012)

kcro Maximal crown root length 22.67 cm (Arite et al., 2012)

kbra Maximal brace root length 22.67 cm (Arite et al., 2012)

klat Maximal lateral root length cm

r Initial growth rate 2 cm/day (Pagès et al., 1989)

rlat Initial growth rate for lateral 6:4e−0:8t cm/day (Pagès et al., 1989)
*Input parameter values of the model for the simulations reported in this paper.
A

B

DC

FIGURE 1

3D modeling of an RSA in maize. We calculate experimental distributions (A) and the effect of SL on RSA parameters (B) from the literature. Then,
individual root strands are grown and assembled into an RSA (C). After generating a large number of RSA simulations, statistical analysis of the results
can be performed (D).
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2021).We use the distribution of the whorl distance from the study of

Liu et al. (2021). We pick a random value which sets the distance

between whorls of onemaize root and represented this whorl distance

as wd . Thus, the initial point of a brace root will be either (0, 0, wd) or

(0, 0, 2 wd). For the z-coordinate of the initial point of a crown root, it

will be randomly chosen from 0, - wd , -2 wd , -3 wd , -4 wd , or -5 wd .

Third, we randomly generate the length of each root strand,

drawing this number from the relevant distribution in Table 3. The

model picks random axial angles that will set the direction of the

point subsequent to the origin of the root strand. We determine the

distance between two successive points in a root strand by using an

elongation function (see section 2.4) that depends on time after

germination, length variability, and effect of SLs.

Fourth, we generate lateral roots for each main root strand. We

do so by bootstrapping one thousand samples for the number of

branches that sprout out of each strand and use the median value

for that sample as the maximum possible number of lateral roots in

the strand. Then, we use a piecewise stochastic function that decides
Frontiers in Plant Science 05
whether there will be lateral root branching or not for each potential

branching point. If there is a lateral root branch, another stochastic

function determines when its growth will stop. Figure 2 summarizes

the entire process.
2.4 Mathematical implementation of root
elongation in the 3D RSA model

Figure 3 illustrates the growth of a maize RSA from an initial

point to a 3D structure. First, we define a function that uses a point

and angles to locate the subsequent point towards which the root

will grow. We repeat this step until the strand is fully-grown.

We define a rule describing root elongation and branching, as

shown in Figure 3A. A single root P = P0,   P1, P2,…,   Pnf g grows

from the initial point P0 = (x0, y0, z0) to the endpoint Pn = (xn, yn,

zn) in a 3-dimensional space. In general, we use Equation (1) to

calculate the coordinates (xi, yi, zi)   of point Pi>0:
TABLE 3 Experimental data of length and branching of maize root axes and lateral root.

Root parts Notation Values
(Mean ± SD)

Unit Distribution References

Root axes length

• Primary primLen Gamma
Shape: 5
Scale: 0.22

(Zhu et al., 2006)

• Seminal semLen Gamma
Shape: 5
Scale: 0.22

(Zhu et al., 2006)

• Crown croLen 0:98 ± 0:11 Normal (Liu et al., 2019)

• Brace braLen 1 ± 0:38 Normal (Liu et al., 2019)

Lateral root length

• Primary primLatLen 0:97 ± 0:34 Normal (Jia et al., 2018)

• Seminal semLatLen 1 ± 0:30 Normal (Jia et al., 2018)

• Crown croLatLen 0:95 ± 0:17 Normal (Jia et al., 2018)

• Brace braLatLen 0:95 ± 0:17 Normal (Jia et al., 2018)

Root axes branching

• Seminal semBranch Binomial
Trials: 19
Probability: 0.16

(Zhu et al., 2006)

• Crown croBranch Gamma
Shape: 91.89
Scale: 0.41

(Liu et al., 2019)

• Brace braBranch 18:83 ± 9:12 Normal (Liu et al., 2019)

Lateral root branching

• Primary primLatBranch 6:65 ± 0:63 cm−1 Normal (Jia et al., 2018)

• Seminal semLatBranch 5:05 ± 0:66 cm−1 Normal (Jia et al., 2018)

• Crown croLatBranch 7:05 ± 1:99 cm−1 Normal (Jia et al., 2018)

• Brace braLatBranch 7:05 ± 1:99 cm−1 Normal (Jia et al., 2018)
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xi = xi−1 +
i
n EF
� �

( cosA cosB)

yi = yi−1 +
i
n EF
� �

( cosB sinA)

zi = zi−1 +
i
n EF
� �

( − sinB)

(1)

The expression ( cosA cosB) in xi, ( cosB sinA) in yi, and ( −

sinB) in zi determines the direction of elongation for the root strand

by using axial angles A and B. The axial angle A is set randomly

between 180° and 360° while the axial angle B is set randomly

between 0° to 180°.

EF is an elongation function, defined in Equation (2). It is used

to calculate the length of a root strand at time ti, such that ti =
i
n tf ,

where i is the ith iteration, n is the maximum number of iterations,

and tf is the final time.

EF = G · LD · SLeffect (2)

We calculate EF by multiplying the growth function (G) in

Equation (3) by a number LD drawn randomly from a root specific

normalized length distribution (Table 3), and then multiplying both

by a function SLeffect (Equation 4) at the beginning of the root strand

simulation. The growth function G, which was taken from Leitner
Frontiers in Plant Science 06
et al. (2010), is defined as (3):

G = k   (1 − e−
r
k   ti ) (3)

Here, k is the maximal root length, r is the initial growth rate,

and ti stands for the iteration time step. LD is dimensionless and

decides by what percentage the length of a specific root strand will

differ from the mean length of strands from that root type. We note

that the function SLeffect , which we define below in section 2.5

describes the effect of SLs on root elongation.
2.5 Modeling the effect of changing
external strigolactone concentration on
root growth

We focus on SLs to model the effect of changing external

hormone concentration on RSA. The reason for this choice was

the abundance of experimental data against which to validate the

model. The SLeffect function simulates the effect of strigolactones on

RSAs. Equation (4) represents SLeffect :
FIGURE 2

Workflow for building a 3D RSA for two different types of roots. Tap roots have only one primary root while fibrous roots have several root axes.
Here we focused on modeling the root axes of maize. The procedure could be easily adapted for plant with different types of roots. Each panel have
the same flow except in the last step since primary root is only one branch. The workflow starts with initial point then picks a random axial angle to
decide the direction of the elongation. Next, lateral root function (LRF) simulates lateral root branching, depending on the critical parameter stop
branching threshold (SBT). If there is lateral branching, then it continues to decide about elongation at every iteration, depending on lateral root
growth threshold (LRGT). All other root axes will repeat the process except for primary root.
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SLeffect = RTinitial +
D  RT
D   SL

· (SL − SLinitial) (4)

Here, RTinitial is the wild type value for the specific root trait. For

example, the root trait in our case is either root length or average
Frontiers in Plant Science 07
number of branches. D  RT
D   SL is the experimentally determined effect of

changing the amount of SLs on property RT , determined by the

slope in the experimental data. SLinitial is the initial quantity of SLs,

while SL is an input of the model.

Table 4 summarizes the known effect of changing strigolactone

levels on RSA. This data regard the effect of synthetic strigolactone

analog GR24 on the RSA of Arabidopsis thaliana (Ruyter-Spira

et al., 2011) and Oryza sativa (Arite et al., 2012), as we were unable

to find quantitative information about its effect on maize RSAs. In

order to extrapolate the data to maize, we normalize the effect of

GR24 with respect to wild type roots of Arabidopsis thaliana and

Oryza sativa and assume a similar relative effect on maize roots.

Equations (1–4) are used from t1, t2,  …,   tn to generate a single

root strand P.
2.6 Mathematical implementation of lateral
root branching in the 3D RSA model

Lateral roots branch out from primary, seminal, crown, and

brace roots. Lateral root branching is often quantified by counting

the number of lateral root branches per cm of the axis root. K.-P. Jia

et al. (2018) reported that there is variation in the number of lateral

roots per cm for each type of main roots. We consider this in

building a RSA, as illustrated in Figure 3B.
A B DC

FIGURE 3

Schematic diagram of maize RSA model. First, we generate succeeding point from preceding point (initial point; P0) using a function that tells the
direction and the elongation between two consecutive points which also composed of the following: length function (Pagès et al., 1989), length
variability, strigolactone effects (A). Second, we continue generating points from initial point (P0) to end point (Pn) where P0,…,Pn forms a single root
strand P. From the root strand P, we select branching points Br1,…,Brm in which for each point it decides whether to branch or not. If it branches, it
elongates similar with the function in (A) with respect to lateral root growth, but here it decides whether it will continue to grow or not (B). After
generating a single strand with lateral roots, we repeat the same process for each respective root axis that differs on number of branches, where it is
generated as random number from a distribution that we obtained from literature (C). Then we use Mathematica function Line and Graphics3D to
generate one root (D).
TABLE 4 Effects of strigolactones on RSA.

Strigolactone
( mM)

Effect on
root length

Relative effect on root
branching with
respect to no
added GR24

Primary/
Seminal*

Crown/
Brace**

per cm of root axes*

0 1 1 1

0.01 – 1.01 –

0.1 – 0.99 –

1 – 1.10 –

1.25 1.25 – 1.08

2.5 1.2 – 1.08

5 1 – 0.73

10 0.63 1.19 0.83
*(Ruyter-Spira et al., 2011) **(Arite et al., 2012). We normalize the effects with respect to wild
type roots in the absence of GR24.
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The simulation of branching in a root strand starts by drawing a

random number B from the distributions in Table 3. We multiply

this number by the length of the strand and obtain the maximum

number of possible branches, Br1,  Br2,  …,  Brmf g, in that strand.

Brp is a point in 3D space:

Brp = (xp,   yp, zp), p = 1,   2,…,  m : (5)

From each branching point, the lateral root function (LRF)

stochastically decides if a lateral branch will be formed or not by

drawing a random number between 0 and 1and comparing that

number to the probability of branching defined in Equation (6).

LRF =
½Brp�, P(Lp) −   SBT ≥ 0

½Brp,   Lp� P(Lp) −   SBT < 0

(
(6)

In Equation (6), each branching point Brp will generate P(Lp), a

random value between 0 and the maximum number of lateral root

branches, denoted as MaxL. Lateral root branching depends on

whether P(Lp) is greater than the stop branching threshold (SBT)

threshold, such that SBT = MedL · SLeffect . MedL is the median of

1000 generated random value from the distribution in Table 3 and

SLeffect was defined earlier, in Equation (4).

If, according to Equation (6), a lateral root branch forms, then

Brp will be connected to the set of points Lp, as illustrated in

Figure 3B. The length of the lateral root Lp is determined based the

piecewise function defined in Equation (7). We use this equation to

calculate the probability of growth for the lateral root P(Lpq) and the

lateral root growth threshold (LRGT).

Lp =
½Lp1,   Lp2,…, Lp q�, P(Lp q) −   LRGT ≥ 0

½Lp1,   Lp2,…, Lp q, Lp   q+1� P(Lp q) −   LRGT < 0

(
(7)

P(Lpq) is a random value from 0 to 1 and LRGT is a random

value from 0.4 to 0.9 which we choose to simulate biological

variability in lateral roots, as there is no strong evidence about

the effect of strigolactones to lateral root elongation (Ruyter-Spira

et al., 2011; Arite et al., 2012). The condition in Equation (7) states

that when P(Lpq) is above the threshold then the lateral root stops

growing at Lpq, otherwise it will continue to grow up to Lp   q+1.

As in Equation (1), we define the points of the lateral root Lp as

Lpq = (upq,   vpq,wpq), q = 1,   2,…,   s

upq = xp + (Glat · LLD) cos (A ± R) cos (B ± R)

vpq = yp + (Glat · LLD) cos (B ± R) sin (A ± R)

wpq = zp + (Glat · LLD)( − sin (B ± R)) :

(8)

In Equation (8), xp,   yp,   zp are the coordinates of branching

point Brp from (5), which is the initial point of the lateral root

branch Lp. The expressions cos (A ± R) cos (B ± R) in upq, cos (B ±

R) sin (A ± R) in vpq, and − sin (B ± R) in wpq determine the

direction of the lateral root Lp in three-dimensional space, in an

analogous process to that described for Equation (1), adding/

subtracting R to the axial angles. We remind the reader that

angles A, B are the same axial angles from the root axis P where

the branching point Brp belongs. In this context, R represents the

radial angle of Lp, set to be a random angle between 0° and 180°.
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Lastly, Glat · LLD determines the length of Lp per iteration where

Glat is the same function in Equation (3) but with a different initial

growth rate rlat and a maximal root length klat than those specified

for the lateral root. LLD is a random number drawn from the

appropriate normalized lateral root length distribution defined in

Table 3 and works in a similar way as LD in Equation (2).

Glat = klat 1 − e−
rlat
klat

t
� �

rlat = 6:4e−0:8t (9)

Equations (5–9) are iteratively used to simulate all branching

points in Br. The final list is merged to generate a single root strand

with lateral branches.
3 Results

3.1 Modeling maize RSAs

As described in the methods section, we used Mathematica to

simulate the growth of a Root System Architecture (RSA) for a

maize plant (Supplementary Data Sheet S1). The use of random

number generation ensures that, while all RSA have similar

phenotypical characteristics, each RSA is unique. We illustrate

this in Supplementary Data Sheet S1, where we present 5

examples of RSA that were generated using the same

initial parameters.

We further validated the ability of our modeling methodology

to reproduce RSAs and their development. We took photos of two

individual maize roots at two different developmental stages. The

plants are South African elite white maize variety M37W and were

grown in University of Lleida. Then, we simulate a RSA with our

modeling methodology and take a snapshot of the model at the

same two developmental stages. Figures 4A, B show an RSA at 75

days after seeding, while Figures 4C, D show RSAs at 120 days after

seeding. In both cases, our model-generated RSA is similar to the

real RSA. We also provide a short animation of a growing root in

Supplementary Video S1.

To ensure that, in addition to being able to reproduce RSAs

appearance, the modeling methodology can indeed reproduce the

statistical properties of real RSAs, we generated a set of 100 wild

type maize RSAs. We then calculated the median length and the

number of lateral roots per cm of each root axis for each of the 100

RSAs. Subsequently, we compared our results to experimental data

(Ruyter-Spira et al., 2011; Arite et al., 2012). We present the results

of the comparison in Figures 5 and 6. In all cases, the average

primary, seminal, crown, and brace root lengths are within 1% of

the experimental values.
3.2 Modeling the effect of SLs on
maize RSAs

In previous work (Lucido et al., 2022) we modeled the

biosynthesis of SLs in maize. The supplementary materials of that
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reference contain the metabolic models that permit simulating the

biosynthesis of both strigol-type and orobanchol-type of

strigolactones. The output of those models can then be used as

input for the RSA modeling platform (Supplementary Data Sheet

S2). To model the effect of changing SLs concentrations on maize

RSAs we repeat the simulations described in section 3.1, generating

sets of RSAs containing 100 root systems each, at concentrations of

SLs that range from 0.25 to 10 mMwith increment of 0.25. In total,

we generate 40 sets of 100 maize RSAs. We then calculate the

median of the root length of each root axis and the number of lateral

roots per cm of each root axes for each set. We normalized these

results with respect to the wildtype, growing at physiological levels

of SLs. Then we compare our results to experimental data (Ruyter-

Spira et al., 2011; Arite et al., 2012). We present the results for the

comparison in Figures 5, 6.

Figure 5 illustrates the effect of varying SLs levels on the length

of different root types in our simulated RSA models. To create that

figure we generated three architectures at different SLs

concentrations (Figures 5A–C), using the parameter values in

Table 2 and obtaining 2 seminal root axes (blue), 39 crown root

axes (brown), and 12 brace root axes (red) from the distribution in

Table 3. To facilitate visualizing the main root axes, we limit lateral

root growth in the simulations by increasing the lateral root growth

threshold (LRGT) to 0.7. By comparing Figures 5A (wild type maize

and physiological SLs levels) and 5B (SL= 1.25 mM) we see that
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increasing SLs amounts in this range leads to the elongation of

seminal (brown) and primary (cyan) roots. In contrast, when the

amount of SLs increases to 10 mM (Figure 5C) we observe a decrease

in the length of those roots.

The properties of 100 RSAs models generated at each of those

SLs concentrations, show that the models statistically follow a

similar trend for the effect of SLs concentration on the length of

primary and seminal roots, respectively.

In contrast, the influence of SLs on the length of crown and brace

roots is monotonic. The length of both types of these roots increases

in a way that matches those observed for seminal and primary roots

when SLs concentrations are below 1.25mM.When the concentration

of SLs increases from 1.25mM to 10  mM the length of crown and

brace roots increases only slightly (Figures 5F, G).

We also tested if our simulated RSA could reproduce the effects

of changing the concentration of the SLs analog GR24 on plant

RSAs. Figure 6 summarizes the results and shows how our

simulated RSAs compare to real RSAs. Because the experimental

data were obtained from Arabidopsis thaliana (Ruyter-Spira et al.,

2011) andOryza sativa (Arite et al., 2012), we normalized the length

of each plant (Arabidopsis thaliana, Oryza sativa and simulated Zea

mays RSAs) by the length of the RSA when 0 mM of GR24 are added

to the medium, to make the effects quantitatively comparable across

species. Figure 6 clearly shows that our simulated RSAs reproduce

the trend of the experimental results for all types of roots.
A B DC

FIGURE 4

Comparison of real maize root and our model results. (A) Maize roots at 75 days after seeding. (B) Simulated maize RSA at 75 days after simulation
start. (C) Maize roots at 120 days after seeding. (D) Simulated maize RSA at 120 days after simulation start.
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3.3 Effects of GR24 on lateral
root branching

Figure 7 shows the comparison between our model results of

lateral root branching per cm of root axis and experimental results

from the study of Ruyter-Spira et al. (2011). In all the plots, we can

observe minimal changes in the normalized lateral root branching

per cm of the root axis within the 0 to 10 mM of SLs. Figures 7A–D

show that we can barely notice the changes in the density of lateral

root branches as the concentration of SLs changes. Still, while the

effect is small, we see that the simulated RSAs replicate the trend

observed in real RSAs (red dots in Figure 7).
4 Discussion

Altering a plant’s genes to enhance crop quality affects

metabolism, which subsequently influences the plant ’s

architecture and phenotype. Thus, it is crucial to have simulation

platforms that can concurrently model changes in gene expression,

protein activity, metabolite concentrations, and their effects on the

overall plant structure. There are several modeling platforms that
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can simulate RSAs, but only a few of them can simulate how

environmental interactions and nutrient uptake affect RSAs

(Table 1). None of these platforms can simulate how genome

manipulation affects metabolism and how this affects RSAs. The

work reported here and elsewhere (Comas et al., 2016; Pereira et al.,

2018; Basallo et al., 2023) serves as a proof of principle that such

multilevel modeling efforts are possible.

Mathematica, with its versatility and extensive function library,

offers a suitable environment for developing a platform to perform

such multilevel simulations and analysis. Given Mathematica’s

ability to easily implement metabolic and gene circuit models

(Comas et al., 2016; Pereira et al., 2018; Basallo et al., 2023), the

current manuscript illustrates how to model the effects of different

SLs levels on maize root system properties through simulated

growth of 3D RSAs. Leveraging our prior work on modeling SLs

biosynthesis (Lucido et al., 2022), here we extended the model to

simulate the effects of varying SLs concentrations on maize RSAs.

How do these phenotypical characteristics of roots affect plant

performance? This performance strongly relates to, among other

things, the capacity of plants to acquire resources from the

environment and use those resources to grow (Lynch, 2007).

Strigolactone, despite being a germination stimulant, can be
A B

D E F G

C

FIGURE 5

Maize root 3D simulation results of the RSA model in Mathematica with varying strigolactone quantity; 0 mM (A), 1.25 mM (B), 10 mM (C). Plots (D–G)
show the changes in length of primary, seminal, crown, and brace roots, respectively, as strigolactone quantity changes from 0 to 10 mM. The plot is
obtained using the median of 100 simulated roots with 99% confidence interval. The color corresponds to different root types; primary (cyan),
seminal (yellow), crown (brown), and brace (red).
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A B

DC

FIGURE 7

Plots showing the effects of strigolactones (within the range of 0 to 10 mM) to the normalized lateral root branching for primary (A), seminal (B),
crown (C), and brace (D) roots of maize. Red dots represent the experimental results from Ruyter-Spira et al. (2011). The blue line is the median of
100 roots while the orange dashed lines represent the 99% confidence interval.
A B

DC

FIGURE 6

Plots showing the effects of increasing strigolactone quantity (from 0 to 10 mM) to the normalized length of primary (A), seminal (B), crown (C), and
brace (D) roots in maize. Red dots represent the experimental results from Ruyter-Spira et al. (2011) and Arite et al. (2012). The blue line is the
median of 100 roots while the orange dashed lines represent the 99% confidence interval.
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utilized as a beneficial hormone that alters the RSA towards longer

root axes and denser lateral root branches. On the one hand, longer

root axes allow root exploration to deeper soil, where additional

water sources become accessible to the plant. On the other hand,

higher root densities improve the uptake of mineral nutrients

(Tajima, 2021). Hence, overall, a wider area for root exploration

benefits resource acquisition and makes plants more resilient to

drought and less reliant on fertilizers. This coincides with the goal of

the second Green Revolution that aims to make resilient crops that

can still be productive despite harsh environmental conditions

(Lynch, 2007).

Our 3D RSA model enables direct simulation, analysis, and

visualization of the effects of changing SLs concentrations on the

root system architecture. This, in turn, allows an indirect inference

of the effect of SLs levels on the ability of the RSA to acquire

resources for growth. Our simulation results suggest that SLs

amounts lower than 2.5mM promote elongation of several main

root axes (namely primary, seminal, crown, and brace) and lead to

more dense lateral root branching. This is consistent with the

known experimental results discussed throughout the paper

(Ruyter-Spira et al., 2011; Arite et al., 2012). Maize with

strigolactone quantity that ranges from 0.25 to 2.5mM shows the

longest primary and seminal root and more lateral root branches.

While, increasing strigolactones up to 10mM results in shorter

primary and seminal roots, lesser lateral root branching but

slightly longer nodal (crown and brace) roots (see Figures 5-7).

These results highlight the potential of modeling to analyze

multilevel effects of genetic modifications on the metabolism,

physiology, and architecture of plants.

The work presented here does have several limitations;

however, each limitation presents an opportunity for

methodological advancements that can facilitate the exploration

of intriguing biological questions. Firstly, our maize RSA modeling

platform is still in its early stages compared to platforms like

OpenSimRoot (Postma et al., 2017). Still, our methodologies are

distinct and our approach implements a degree of stochasticity on

root growth that mimics real plants. In addition, our approach

enables direct simulation of metabolite effects, such as SLs, on RSA

growth, which is something you cannot yet do in other root growth

simulation platforms.

Secondly, our current study focuses solely on the impact of

changing SLs concentrations on RSA architecture. We chose to

model the effect of SLs on RSA growth because it is well established

that SLs influences various parameters in RSA and an established

model for the biosynthesis of SLs already existed (Lucido et al.,

2022). As such, we could illustrate how we could simultaneously

model the dynamic behavior of SL biosynthesis and the effect of

changing SLs amounts on RSA growth and validate our approach

by comparison to experimental data. However, many other factors,

such as the environment and other intrinsic plant signals, also

influence this architecture (Smith and Smet, 2012; Khan et al., 2016;

Lombardi et al., 2021; Maqbool et al., 2022). Known intrinsic signals

encompass hormones like auxins, brassinosteroids, cytokinins,

ethylene, abscisic acid, and signaling peptides (Smith and Smet,

2012; Khan et al., 2016; Lombardi et al., 2021; Maqbool et al., 2022).

This limitation presents an opportunity to expand our methodology
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and include these additional factors and their interactions (He et al.,

2023). Expanding the model to simulate the effects of other

hormones requires suitable experimental data. Similarly, we can

extend our methodology to account for environmental effects by

simulating nutrient and water uptake, interactions with the

environment and other organisms, and above-ground plant

growth. In fact, SLs serve as vital exudates that can trigger hyphal

branching in arbuscular mycorrhizal fungi (Steinkellner et al., 2007;

De Cuyper and Goormachtig, 2017; Saleem et al., 2018; Olanrewaju

et al., 2019). Including SLs in our model facilitates the integration of

fungi and simulating their symbiotic relationship with plants, which

enhances plant nutrient uptake, particularly phosphorus

(Wang, 2023).

Thirdly, our model is currently only applicable to maize RSAs,

opening the door to methodological developments that would

require additional work to implement other types of plant RSAs

(Maqbool et al., 2022).

Finally, the availability of data for calibrating our model’s

implementation is limited. This presents an opportunity to use

modeling to elucidate root development aspects and prioritize

experiments in synthetic biology and plant biology. By simulating

RSA development across various parameter ranges, we can formulate

in silico RSAs that generate hypotheses about the correct parameter

ranges. Physiological parameter ranges should yield simulated RSAs

similar to real ones, enabling the prioritization of experiments and

accelerating the development of new plant varieties.
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