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Editorial on the Research Topic

CRISPR tools, technology development, and application
CRISPR/Cas-based genome editing tools have revolutionized nearly every field of life

sciences, especially the plant biology (Hu and Li, 2022). The techniques have added a new

dimension to basic research to study the genes’ function through their knockout or

activation. The main significant application of the CRISPR system has been to develop

targeted genetic modification in plants to cope better in a changing climate that is

becoming less favorable to achieve higher plant productivity. The use of precise genome

editing has been shown to be much safer than traditional mutagenesis or transgenics,

especially since the changes often involve single nucleotides and are not necessarily related

to the presence of foreign DNA in the modified genome (El-Mounadi et al., 2020; Jung and

Till, 2021). Even though CRISPR tools are very dynamically developed and constantly

improved, there are still many challenges that must be overcome. In this Research Topic,

we made attempts to showcase the prospects for efficient and precise editing of plant

genomes, as well as present their application to overcome current issues in plant biology

and food security. Currently, many tools have been developed to allow editing of the target

loci. Unfortunately, the tools that are often available show low efficiency for certain plant

species or tend to induce unintended mutations at off-target sites. The possibility of

achieving efficient genome editing is also directly based on the development of

transformation techniques and the delivery of essential CRISPR system components to

plant cells, which is often much more complicated than in the case of animal cells.

In case of several horticultural crops, transgenic breeding has led to creation of genetically

modified plants (Ghag et al. 2022), however genome editing has been successfully achieved in

some vegetables. The transgenic plant development in broccoli has majorly focused on

nutritional quality and stress resistance. One of the important diseases occurring worldwide,

is the clubroot disease caused by Plasmodiophora brassicae affecting rapeseed, cauliflower,

broccoli, Brussels sprouts, Chinese cabbage, and radish. Hence there is a need to develop

protocols for targeted manipulation of the resistance genes into cultivars. Zhao et al. established

an efficient transformation system based on Agrobacterium sp. which can be useful for
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transgenic and genomic editing. The authors tested different broccoli

genotypes, transformation vectors, RNAi and CRISPR/Cas9, and

selection agents. The results of the study provide a platform for

further studies on the development of transgenic and gene editing

technologies in broccoli and other cruciferous crops.

Among the important vegetables, tomato stands as an

economically important, functional food due to several health

promoting bioactive metabolites such as lycopene, beta-carotene,

vitamins etc. (Ali et al., 2021). This crop also has been a good

candidate for genome editing studies and there have been several

reports on genome editing and characterization of plants for a wide

range of traits including plant architecture and flower characters, fruit

ripening, nutritional quality, and biotic and abiotic stress tolerance

(Egea et al., 2022). Tiwari et al. presented a detailed account of the

advances in CRISPR/Cas based technologies for use in tomato

improvement. Authors have also outlined the design of the guide

RNA and CRISPR/Cas9 constructs, transformation protocols, diversity

in CRISPR/Cas toolbox, and base/prime editing. This mini-review also

highlighted different applications of genome editing of different traits

useful in breeding of highly productive tomato crop.

Verma et al. reviewed the latest advancements in plant genome

editing technologies (base editing, prime editing, multiplex gene editing,

epigenome editing, gene delivery methods) while detailing the potential

roles that this technology has in store for the identification of novel gene

functions to improve the traits of commercial importance. The authors

have well described the applications of gene editing for the improvement

of consumer-demanded traits such as higher nutritional value, colour,

texture, aroma/flavour, and production of industrial products such as

biofuel, fibre, rubber and pharmaceuticals. Epigenetic alterations can

result in the creation of new epialleles which may have relevance for the

improvement of agronomic traits like yield, nutritional quality, and stress

tolerance (Fang et al., 2023). For example, the histone variant Sl_H2A.Z

has a functional role in the development and ripening of tomato fruits

(Yang et al., 2021), and histone modifications regulate flowering

efficiency and grain size that determine yield in rice (Shi et al., 2015).

While mentioning that the genome editing technology has certain

challenges like off-targeting, organellar genome editing and ploidy

changes, the authors stressed the need for further research and

universal regulatory framework on genome editing crops.

Anti-CRISPR proteins, discovered in phages (Bondy-Denomy

et al., 2013), have been exploited to prevent CRISPR/Cas-mediated

gene editing and gene activation in plants via the regulation of off-

targeted mutations and inhibiting Cas protein–editing operations

(Yang et al., 2023). In the article, Choudhary et al. have outlined

different mechanisms of inhibiting CRISPR-Cas9–based genome-

editing tools, and how engineering of plant genomes for trait

improvement can be efficiently managed through regulatory

mechanisms (Calvache et al., 2022). Acr proteins like AcrIIA4 and

AcrIIA5 inhibiting SpCas9, and all Cas9 orthologs respectively, have

been evaluated in both herbaceous and woody plant species (Liu et al.,

2023). The field of Acr proteins has now opened up newer

opportunities in crop improvement for cell type-specific genome

editing and inducible plant genome editing (Bubeck et al., 2018;

Hoffmann et al., 2019). The authors also surveyed the literature

suggesting that Acr proteins could be used to modify the insertion,

deletion, silence, and single-letter fixation of any functional trait.
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Most of the genome editing reports in barley are based on

Agrobacetrium mediated transformation but the system has shown

to be highly genotype dependant with some experimental limitations

(Han et al., 2020). This necessitates the development of rapid, genotype

independent transformation methods. The advent of virus-induced

genome editing has become very useful in different plants (Uranga and

Daròs, 2022). In their work, Tamilselvan-Nattar-Amutha et al. showed

testing of the barley stripe mosaic virus (BSMV) in Cas9-transgenic

barley plants for editing of the ALBOSTRIANS gene (CMF7) that led

to albino/variegated chloroplast-defective mutants. In addition, the

authors also achieved successful editing of the meiosis-related

candidate genes ASY1 encoding axis-localized HORMA domain

protein, MUS81 encoding a DNA structure-selective endonuclease,

and ZYP1 encoding a transverse filament protein of the synaptonemal

complex) in barley. The BSMV mediated VIGE gene editing has also

shown applicability in wheat (Chen et al., 2022a) and cotton (Chen

et al., 2022b) suggesting that BSMV with its broad host range can find

significant application in crop plants.

Rice is the most important staple food crop, however rice

production if often threatened by climate change, and incidence

of abiotic and biotic stresses including insects and pests (Mishra

et al., 2021). Among the diseases, bacterial leaf streak (BLS) and rice

blast cause significant yield losses, and hence breeding strategies

have been employed to develop resistant cultivars but the

development of broad spectrum resistance in case of blast disease

and selection of BLS resistance being a quantitative trait, are often

the demanding challenges. Yang et al. developed disease resistant

mutants in a susceptible material 58B by the CRISPR/Cas9 based

editing of target of the Pi21 gene and a target of the effector-binding

element (EBE) of the OsSULTR3;6 gene. The resultant mutant

plants showed upregulation of defense responsive genes and

lessened area of lesion characteristic of rice blast and bacterial leaf

streak. The study can be seen as a significant step in the generation

of rice varieties resistant to rice blast and bacterial leaf streak, for use

in breeding and improvement of rice varieties.

Genome editing in horticultural crops has progressed with rapid

genomics advancements. Despite availability of onion genome

sequence information in the past few years (Finkers et al., 2021),

genome editing research in onion has not progressed much. This

warrants studies on the optimization of different conditions for efficient

gene editing method, and evaluation of the strategy for use in onion

improvement. In a first report, Mainkar et al. presented their results on

the establishment of genome editing system based on a CRISPR/Cas9

system for targeting the gene encoding for Phytoene desaturase (PDS)

of the Indian short-day onion. The PDS gene involved in carotenoid

biosynthesis pathway has enabled researchers to identify the gene-

edited phenotype based on the albino phenotype. The authors

identified the AcPDS gene used it to evaluate the CRISPR/Cas9

based editing efficiency. The AcPDS knockout exhibited a visible

mutant phenotype within a short span of 8-weeks, and the muations

were mostly of InDels and substitutions type. The study can be useful

for further studies as a valuable method to achieve high efficiency

genome editing for different commercial traits in onion.

Among the legumes, common bean (Phaseolus vulgaris L.)

provides substantial dietary protein and essential nutrients. Genetic

engineering attempts in common bean are limited by experimental
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factors such as prolonged process, low efficacy, and genotype

dependence, and thus there is a need for a rapid and efficient

screening method to validate sgRNA efficiency. de Koning et al.

described a rapid method of hairy root transformation for assessing

sgRNA efficiency in common bean. Rhizobium rhizogenes mediated

hairy root induction, has been useful as a ideal system for studying

gene function in plants (Gutierrez-Valdes et al., 2020). The authors

tested three different methods of hairy root induction for use in

common bean cv. CIAP7247F, and employed the method to assess

the in planta efficiency of in silico-designed sgRNAs targeting genes

from the raffinose family oligosaccharides (RFOs) metabolic pathway

in common bean. The study highlighted the use of hairy root

transformation system for the speedy assessment of multiple

sgRNAs and promoters.
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