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Seung Hwan Yang4* and Zahid Hussain Shah2*

1College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College,
Jilin, China, 2Department of Plant Breeding and Genetics, Pir Mehr Ali Shah, Arid Agriculture
University, Rawalpindi, Pakistan, 3Department of Plant Production, College of Food and Agriculture
Science, King Saud University, Riyadh, Saudi Arabia, 4Department of Biotechnology, Chonnam
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Soybean is an important oilseed crop worldwide; however, it has a high

sensitivity to temperature variation, particularly at the vegetative stage to

the pod-filling stage. Temperature change affects physiochemical and

genetic traits regulating the soybean agronomic yield. In this regard, the

current study aimed to comparatively evaluate the effects of varying regimes

of day and night temperatures (T1 = 20°C/12°C, T2 = 25°C/17°C, T3 = 30°C/

22°C, T4 = 35°C/27°C, and T5 = 40°C/32°C) on physiological (chlorophyll,

photosynthesis, stomatal conductance, transpiration, and membrane

damage) biochemical (proline and antioxidant enzymes), genetic (GmDNJ1,

GmDREB1G;1, GmHSF-34, GmPYL21, GmPIF4b , GmPIP1;6, GmGBP1,

GmHsp90A2, GmTIP2;6, and GmEF8), and agronomic traits (pods per plant,

seeds per plant, pod weight per plant, and seed yield per plant) of soybean

cultivars (Swat-84 and NARC-1). The experiment was performed in soil plant

atmosphere research (SPAR) units using two factorial arrangements with

cultivars as one factor and temperature treatments as another factor. A

significant increase in physiological, biochemical, and agronomic traits with

increased gene expression was observed in both soybean cultivars at T4 (35°

C/27°C) as compared to below and above regimes of temperatures.

Additionally, it was established by correlation, principal component analysis

(PCA), and heatmap analysis that the nature of soybean cultivars and the type

of temperature treatments have a significant impact on the paired association

of agronomic and biochemical traits, which in turn affects agronomic

productivity. Furthermore, at corresponding temperature regimes, the

expression of the genes matched the expression of physiochemical traits.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1332414/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1332414/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1332414/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1332414/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1332414/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1332414&domain=pdf&date_stamp=2024-02-06
mailto:zahid.uaar578@hotmail.com
mailto:ymichigan@jnu.ac.kr
https://doi.org/10.3389/fpls.2023.1332414
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1332414
https://www.frontiersin.org/journals/plant-science


Ding et al. 10.3389/fpls.2023.1332414

Frontiers in Plant Science
The current study has demonstrated through extensive physiochemical,

genetic, and biochemical analyses that the ideal day and night temperature

for soybeans is T4 (35°C/27°C), with a small variation having a significant

impact on productivity from the vegetative stage to the grain-filling stage.
KEYWORDS
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1 Introduction

Soybean (Glycine max L.) is an important legume crop providing

approximately 29% of the oil and 71% of protein for humans and

livestock in the world (Alsajri et al., 2022).With the sudden rise of the

world population, there is a need to keep the pace of soybean

production compatible with human demand under changing

climatic conditions (Raza et al., 2019). Among projected climatic

changes, the temperature is reported to have more adverse effects on

main crops, such as soybeans (Osei et al., 2023). The average annual

temperatures of regions producing wheat, rice, corn, and soybean

have increased by 1°C during the past century (Zhao et al., 2017).

Climate modeling experts forecast that the 21st century will witness a

rise of temperatures by 1°C–4°C depending upon the region (Fahad

et al., 2017). The coincidence of high temperature with flowering and

grain-filling stages causes a severe reduction in yield due to the

impairment of physiological processes (Alsajri et al., 2019).

Furthermore, high temperatures trigger oxidative stress due to the

generation of reactive oxygen species (ROS) (Sachdev et al., 2021).

Plants like other living systems tend to retain their homeostatic

balance (Awasthi et al., 2015). Therefore, plants activate ROS

scavenging mechanisms by enhancing the activities of antioxidant

enzymes such as peroxidase (POD), catalase (CAT), and superoxide

dismutase (SOD) (Rajput et al., 2021). Additionally, a high

concentration of ROS impairs the structural integrity of the cell

membrane, resulting in membrane damage and less water retentively

due tomore electrolyte leakage (Jianing et al., 2022).With every 0.8°C

rise above the mean temperature, soybean yield is projected to

decrease by 2.4% (Djanaguiraman et al., 2019). Hence, it is

mandatory to understand the responses of soybeans to temperature

variations for devising mitigation strategies. Although a rise in

temperature impacts adversely the soybean reproductive phase and

seed formation, the effect of temperature changes varies with extent,

the period, and cultivars (Djanaguiraman et al., 2019). It has been

projected that soybean production decreased by 17% with every 1°C

rise in temperature above optimum in soybean-growing regions

(Yang et al., 2023). In addition, the rise of temperature above

optimum significantly decreases agronomic yield such as pods per

plant, seed size, seed number, and seed yield in soybeans (Choi et al.,

2016). Likewise, reproductive and grain-filling stages, biochemical,

and physiological activities are also highly susceptible to high
02
temperatures. Photosynthesis is among the primary cell events that

are highly prone to high-temperature stress and are impaired on

priority before the inhibition of other events (Mathur et al., 2014).

The foremost target site of high temperature is photosystem II (PSII),

which is an integral part of chlorophyll (Sasi et al., 2018). Therefore,

reduction in chlorophyll content and disruption of chloroplast

function lead to decreased photosynthesis and crop productivity.

With every 4°C rise in temperature up to optimum, soybean shows a

59% increase in net photosynthesis (Alsajri et al., 2022). Additionally,

there is a 17% drop in net photosynthesis when the temperature is

raised by the same percentage above the optimal level (Ortiz et al.,

2022). Plant responses to environmental stresses are genetically

regulated; therefore, it is important to elucidate the relative

expression of temperature stress-associated genes under varying

regimes of temperatures. Heat shock proteins (HSPs) play an

essential role in providing tolerance against biotic and abiotic

stresses. In addition, HSPs increase the scavenging of ROS by

positively regulating the antioxidant enzymes and enhancing

membrane stability (Ul-Haq et al., 2019). For instance, Huang et al.

(2019) noticed that the overexpression of soybean gene GmHsp90A2

under high temperatures is associated with a decrease in oxidative

stress and high chlorophyll content. Similarly, GmDNJ1, a type of

HSP-40, also regulates the antioxidant enzymes and chlorophyll

under heat stress as reported by Li et al. (2021). The dehydration-

responsive element-binding protein (DREB) regulates the expression

of the pyrabactin resistance 1-like (PYL) gene that enables plants to

retain normal physiological and biochemical activities under the

increasing regime of temperatures (Kidokoro et al., 2015).

Moreover, Di et al. (2018) identified 14 PYL genes in Brassica

napus that play vital roles in ABA signaling during different

regimes of heat stress. In fact, heat stress raises endogenous ABA

content that keeps water balanced and increases heat tolerance by

regulating stomatal conductance (Hsieh et al., 2013). Additionally,

the phytochrome interacting factor 4 (PIF4) mediates physiological

and molecular processes in soybean by regulating the HSPs and

transcripts of heat shock factors (HSP) (Arya et al., 2023). The HSF

proteins increase plants’ endurance to heat stress and enable plants to

retain their essential metabolic activities under heat stress (Li et al.,

2014). The overexpression of soybean plasma membrane intrinsic

protein 1;6 (GmPIP1;6) during heat stress optimizes the physiological

processes and agronomic yield (Zhou et al., 2014). Moreover,
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tonoplast intrinsic proteins (TIPs) are also responsible for regulating

the movement of water and the molecules of physiological

significance; hence, they facilitate plants to sustain essential physio-

chemical processes during abiotic stress (Kapilan et al., 2018).

Likewise, in another study, Feng et al. (2019) reported that gene

GmTIP2;6 enhances plant growth under heat stress by modulating

the activities of some essential proteins. Correspondingly, the

gibberellic acid myeloblastosis (GAMYB)-binding protein (GBP) is

an important gene of the GA pathway and encodes a gibberellin-

induced regulatory protein that is involved in plant reproductive

development (Bienias et al., 2020). Moreover, GBP plays a vital role in

plant growth, cell differentiation, physiological processes, secondary

metabolism, and tolerance to abiotic stress (Zhang et al., 2020). For

instance, the gene GmGBP1 depicts positive upregulation with the

increasing regime of heat stress, enables tolerance to heat stress, and

sustains soybean normal growth activities (Zhao et al., 2013). The

elongation factor (EF) gene GmEF8 enhances protein levels when

soybean faces temperature stress and has a protective role via osmotic

adjustments (Zhang et al., 2022). Soybean plants with high tolerance

to temperature stress show a high transcript level ofGmEF8with high

proline content as compared to plants grown under control

conditions (Jianing et al., 2022). The understanding of genetic

responses under varying levels of temperature provides a

foundation to further understand the temperature response

pathway (Jianing et al., 2022). Tariq et al. (2022) performed

transcriptome analysis of soybean genotypes NARC-1 and Swat-84

under the same conditions within a glass house; however, the detailed

genetic analysis in association with physiological, biochemical, and

morphological traits is lacking. Additionally, soybean is a

temperature-sensitive crop; therefore, we comprehensively

evaluated soybean genotypes at varying regimes of day and night

temperatures by focusing on physiological, biochemical, agronomic,

and genetic indices. Temperature directly affects the genetic,

physiological, and biochemical traits of soybeans, which are

ultimate determinants of agronomic productivity. In this context,

the current study aimed to investigate the impacts of varying regimes

of temperature on the genetic, physiological, biochemical, and

agronomic traits of soybean cultivars (NARC-1 and Swat-84).

Furthermore, the current study aimed to know how physiological,

biochemical, and genetic traits are interconnected to determine the

agronomic productivity of soybean cultivars.
2 Materials and methods

The present study was performed in soil plant atmosphere

research (SPAR) units located at the experimental area of Jilin

Agricultural Science and Technology Center, Jilin, China. Two

soybean cultivars, the thermosensitive Swat-84, released in 1984

by the Agricultural Research Institute, Swat Pakistan (Asad et al.,

2020), and the thermotolerant NARC-1, released in 1991 by

National Agricultural Research Center, Islamabad, Pakistan (Asad

et al., 2020), were evaluated at five different regimes of day/night

temperatures (T1 = 20°C/12°C, T2 = 25°C/17°C, T3 = 30°C/22°C,

T4 = 35°C/27°C, and T5 = 40°C/32°C), which were obtained via

thermo-static adjustments of the five SPAR units (Alsajri et al.,
Frontiers in Plant Science 03
2020). The tri-replicate experiment was conducted in a two-

factorial design, with cultivars as one factor and temperature as

the other factor.
2.1 Plant growth and
temperature treatment

The temperature during the day was applied at sunrise, while

the temperature during the night was applied after sunset. Seeds

were sown at 2-cm depth in a plastic container having a diameter of

30 cm and a height of 50 cm. The pots were supplemented with

gravel at the bottom and filled with a 3:1 mixture of topsoil and

sand. Additionally, plants were fertilized with Hoagland nutrient

solution using an automated drip irrigation system every day at 7:00

a.m., 12:00 a.m., and 5 p.m. Furthermore, solar radiations were

recorded regularly using a pyranometer. Moreover, temperature

treatments were applied starting at the vegetative stage V3-Vn

(Purcell et al., 2014) and continued till the seed-setting stage R5

(Purcell et al., 2014). For each treatment in a replicate, five pots each

containing three plants were used.
2.2 Physiological quantification

The chlorophyll (Chl) content was determined using the SPAD-

502Plus (Konica Minolta, Langenhagen, Germany) from three

different leaves of each plant, and data were recorded as average.

Furthermore, the IRGA apparatus (ADC Bioscientific, Hoddesdon,

UK) was used to record stomatal conductance (Gs), photosynthesis

rate (Pn), and transpiration rate (Tr) from soybean leaves between

8:00 a.m. and 10:00 a.m. Moreover, the cell membrane damage

(MD) was measured following the procedure used by Sairam et al.

(1997). To measure MD, two test tubes each with 20 mL of

deionized water were used, and 100 mg of soybean leaf pieces was

placed in each tube. One tube was put in the water bath at 40°C for

30 min to record conductivity A, and a second tube was put in a

water bath at 100°C for 10 min to record conductivity B. Afterward,

the MD was calculated using relation [1 − (A/B)] × 100. For

physiological assessments, the data for each treatment were

collected from randomly selected five plants on a weekly basis

from the start to the end of treatment. The data for each treatment

were averaged for statistical analysis. Additionally, the results

showing the significant variation at the R5 stage were only

included for analysis.
2.3 Biochemical quantification

For the assay of antioxidant enzymes, 1 g of frozen leaves was

homogenously mixed in 1 mL of ice-cold 0.1 M Tris-HCl buffer with

pH 7.4. Afterward, the mixture was centrifuged at 20,000 g and 4°C

for 15 min, and the supernatant was extracted to record the

enzymatic act ivity fol lowing the procedure opted by

Djanaguiraman et al. (2018). The SOD activity was estimated using

the SOD assay kit (Cell Biolabs, San Diego, CA, USA) following the
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instructions provided by the manufacturer. Correspondingly, the

CAT activity was estimated using the CAT assay kit (Cell Biolabs,

USA) according to the manufacturer’s instructions. Likewise, the

POD assay kit (Cell Biolabs, USA) was used for the estimation of

POD activity following the manufacturer’s protocol. Meanwhile,

proline content was measured using a UV-Vis spectrophotometer

(Konica Minolta, Langenhagen, Germany) based on ninhydrin

reactivity. For the measurement of biochemical traits, the data for

each treatment in a replicate were taken from randomly selected five

plants on a weekly basis from the start till the end of temperature

treatments. Afterward, the data for each treatment were averaged for

analysis. Additionally, the results illustrating significant variation at

the R5 stage were only included in the analysis.
2.4 Measurement of agronomic characters

The agronomic characters, pods per plant (PPP), and seeds per

plant (SPP) from randomly selected five plants of each treatment

were counted and averaged for statistical analysis. Correspondingly,

pod weight per plant (PWPP) and seed yield per plant (SYPP) from

randomly selected plants of each treatment were measured using

weighing balance and averaged afterward for statistical analysis.
2.5 Gene relative expression analysis

The genes GmDNJ1, GmDREB1, GmHSF-34, GmPYL21,

GmPIF4b, GmPIP1;6, GmGBP1, GmHsp90A2, GmTIP2;6, and

GmEF8 were relatively analyzed at R5 stage for their expression.

For relative gene expression, RNA was extracted from selected leaf
Frontiers in Plant Science 04
samples of soybean genotypes (Swat-84 and NARC-1) exposed to

varying regimes of day and night temperatures (T1 = 20°C/12°C,

T2 = 25°C/17°C, T3 = 30°C/22°C, T4 = 35°C/27°C, and T5 = 40°C/

32°C) by using an RNA extraction kit (Cell Biolabs, USA).

Afterward, the cDNA library was established according to Ding

et al. (2020). For this purpose, 2 mg of RNA sample was used, and

qRT-PCR was performed according to the cited procedure. In

addition, the relative gene expression was normalized by the

GmActin gene. The sequences of primers are indicated in Table 1.
2.6 Data analysis

Analysis of variance (ANOVA) at a 5% probability level was

applied to analyze the data statistically. For this purpose, Statistix

ver. 8.1 (McGraw-Hill, 2008) was used. Furthermore, correlation,

principal component analysis (PCA), and heatmap cluster analysis

were carried out using RStudio version 1.1.456 (RStudio Team,

2020). For PCA, “factoextra” and “FactoMineR” R packages were

used. Pearson’s correlation was performed using R packages

“GGally” and “ggplot2”, and heatmap cluster analysis was

performed using “pheatmap” and complex Heatmap R packages.
3 Results

3.1 Physiological traits

All physiological traits including chlorophyll (Chl), stomatal

conductance (Gs), photosynthesis rate (Pn), transpiration rate (Tr),

and MD varied significantly (p ≤ 0.05) with varying regimes of day
TABLE 1 List of primers used for relative expression of genes under changing regimes of temperatures.

Gene Accession no. Primer sequence

GmDNJ1 Glyma.12G095700
TAAGACATCTTGGCCCATCC (F)
CACAACCTTCTCTCCCTTGC (R)

GmDREB1G;1 Glyma.14G084700
CAACTCCAAAGGGAGGGTTCC (F)

CAAAAGAACCTTTCAGAACCTCCTTC (R)

GmPYL21 Glyma.13g29380
TGAGGTGGTTTCAAGCTGTCA (F)

GCCTACAAAGGAATCGAATCAATC (R)

GmHSF-34 Glyma.17g34540
ACTTACAGAAGGCACAGAGGA (F)
ACACTTGTTTCAGTTCAGGGA (R)

GmPIF4b Glyma.14G032200.1
CTGTGGCAGCAGTCATATCC (F)
TCTGATTTTCCTTTGTCACTCC (R)

GmPIP1;6 Glyma.08G015300
AACTATGAGTTGTTCAAAGGA (F)

AGAAAACGGTGTAGACAAGAAC (R)

GmHsp90A2 Glyma.14g40320
CTGTTTTGTGTTCTAACAATGGCT (F)

GATTTGTAACTTATTCTATGAGGGCA (R)

GmGBP1 Glyma.01G008600v4
TGAGAAATAAAAGTGGATAGGAAAAG (F)
TGGAAGATATAATATATGAGGGAGGA (R)

GmTIP2;6 Glyma.15G018100
CACTGGCTATGACACTCCTATTC (F)
ACACCGTGTACACTAATCCAAA (R)

GmEF8 Glyma.19G052400
GGCTGATTGTGCTGTCCTT (F)

GGTAGTGGCATCCATCTTGTTA (R)
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and night temperatures (Figure 1). The chlorophyll (Chl),

photosynthesis rate (Pn), and stomatal conductance (Gs)

illustrated a steady increase from temperature regimes T1 (20°C/

12°C) to T4 (35°C/27°C) with a sudden decrease at regime T5 in

both soybean cultivars Swat-84 and NARC-1 (Figure 1). However,

at the same regimes of day and night temperatures, NARC-1

recorded higher Chl, Pn, and Gs values as compared to Swat-84

(Figure 1). Moreover, at T1 (20°C/12°C), these traits showed

minimum mean values in Swat-84 (Chl = 16 g/kg, Gs = 700
Frontiers in Plant Science 05
mmol m−2 s−1, and Pn = 20 µmol m−2 s−1) and NARC-1 (Chl =

20 g/kg, Gs = 750 mmol m−2 s−1, and Pn = 25 µmol m−2 s−1) and

maximum mean values at T4 (35°C/27°C) in both Swat-84 (Chl =

30 g/kg, Gs = 800 mmol m−2 s−1, and Pn = 30 µmol m−2 s−1) and

NARC-1 (Chl = 35 g/kg, Gs = 850 mmol m−2 s−1, and Pn = 38 µmol

m−2 s−1). In contrast, Tr and MD depicted consistently dramatic

increases in both cultivars with increasing day and night

temperature regimes T1 (20°C/12°C) to T5 (40°C/32°C)

(Figure 1). Additionally, MD and Tr depicted minimum values at
B C

D E F

G H I

J K L

A

M

FIGURE 1

(A–M) Effect of varying regimes of day and night temperatures on physiological, biochemical, and agronomic traits of soybean cultivars. Chl,
chlorophyll; CAT, catalase; Gs, stomatal conductance; MD, membrane damage; Pn, photosynthesis; POD, peroxidase; PPP, pods per plant; PWPP,
pods weight per plant; SOD, superoxide dismutase; SPP, seeds per plant; SYPP, seed yield per plant; Tr, transpiration rate. T1 = 20°C/12°C, T2 = 25°
C/17°C, T3 = 30°C/22°C, T4 = 35°C/27°C, and T5 = 40°C/32°C. Values in figures are mean estimates averaged at R5 stage of soybean development,
bars show standard deviation ( ± SD), and letters represent significant differences at p ≤ 0.05. Units: Gs (mmol m−2 s−1); Pn (µmol m−2 s−1); Tr (mmol
m−2 s−1); Chl (g/kg); POD, CAT, and CAT activities (enzyme units); proline (mg/g FW); MD (%); PWPP (g); SYPP (g).
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T1 (20°C/12°C) in Swat-84 (MD = 10% and Tr = 13 mmol m−2 s−1)

and NARC-1 (MD = 8% and Tr = 10 mmol m−2 s−1) and maximum

mean values in both Swat-84 (MD = 20%, Tr = 19 mmol m−2 s−1)

and NARC-1 (MD = 15% and Tr = 17 mmol m−2 s−1) at T5 (40°C/

32°C). Contrary to Chl, Pn, and Gs, the Tr and MD recorded higher

values in Swat-84 as compared to NARC-1 at corresponding

regimes of day and night temperatures (Figure 1).
3.2 Biochemical traits

The activity of all biochemical traits including antioxidant

enzymes (SOD, CAT, and POD) and proline varied significantly

(p ≤ 0.05) under varying regimes of day and night temperatures

(Figure 1). The activity of antioxidant enzymes in terms of enzyme

unit increased consistently from T1 (20°C/12°C) to T4 (35°C/27°C)

and decreased afterward at T5 (40°C/32°C) in both cultivars

(Figure 1). However, as compared to Swat-84, the cultivar NARC-1

revealed the maximum activities of antioxidant enzymes at the same

regimes of temperatures (Figure 1). Furthermore, at T1 (20°C/12°C),

the enzymes SOD, CAT, and POD illustrated the minimum activities

in both genotypes Swat-84 (SOD = 28, CAT = 8, and POD = 0.2) and

NARC-1 (SOD = 28, CAT = 8, and POD = 0.4) and the maximum

mean values at T4 (35°C/27°C) in both Swat-84 (SOD = 35, CAT =

12, and POD = 0.6) and NARC-1 (SOD = 39, CAT = 14, and POD =

0.7). However, the concentration of proline depicted a significant (p ≤

0.05) consistent increase in both cultivars with increasing regimes of

temperatures from T1 (20°C/12°C) to T5 (40°C/32°C) (Figure 1).

Moreover, at corresponding regimes of temperature, the soybean

cultivar NARC-1 showed higher proline content as compared to

Swat-84 (Figure 1). Additionally, proline showed the minimum value

at T1 (20°C/12°C) in Swat-84 (proline = 20 mg/g FW) and NARC-1

(proline = 25 mg/g FW) and the maximummean value in both Swat-

84 (proline = 30 mg/g FW) and NARC-1 (proline = 35 mg/g FW) at

T5 (40°C/32°C).
3.3 Agronomic traits

All agronomic traits such as PPP, PWPP, SPP, and SYPP varied

significantly (p ≤ 0.05) due to varying regimes of day and night

temperatures (Figure 1). All agronomic traits manifested a

consistent increase in both soybean cultivars from temperature

regimes T1 (20°C/12°C) to T4 (35°C/27°C) with a sudden decline at

T5 (40°C/32°C) (Figure 1). However, under corresponding regimes

of temperatures, NARC-1 showed comparatively high values of

PPP, PWPP, SPP, and SYPP as compared to Swat-84 (Figure 1).

Additionally, at T1 (20°C/12°C), the agronomic traits recorded

minimum values in soybean genotypes, Swat-84 (PPP = 90,

PWPP = 50 g, SPP = 200, and SYPP = 30 g) and NARC-1 (PPP

= 110, PWPP = 70 g, SPP = 210, and SYPP = 38 g) and maximum

mean values at T4 (35°C/27°C) in Swat-84 (PPP = 180, PWPP =

105 g, SPP = 310, and SYPP = 60 g) and NARC-1 (PPP = 210,

PWPP = 125 g, SPP = 450, and SYPP = 85 g).
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3.4 Correlation, principal component
analysis, and heatmap analysis

All traits showed a significant degree of paired association in a

positive direction according to correlation analysis, with correlation

coefficients ranging from 0.196 to 0.978 (Figure 2). Among

physiological traits, Chl illustrated significantly high paired

association with Pn, Gs, SOD, CAT, POD, PPP, PWPP, SPP, and

SYPP excluding Tr, MD, and pro-line. In contrast, Tr, MD, and

proline showed weak and non-significant associations with all

biochemical, physiological, and agronomic traits (Figure 2).

Additionally, except for Tr, MD, and proline, the activities of

antioxidant enzymes (SOD, POD, and CAT) demonstrated a

significant paired association with Chl, Pn, Gs, PWPP, SPP, and

SYPP (Figure 2). Furthermore, all agronomic traits such as PPP,

PWPP, SPP, and SYPP depicted strong correlations among

themselves. Additionally, PCA showed varying dispersion of

physiochemical and agronomic traits from biplot origin due to

changing regimes of temperature that explicated changing

expression and association pattern of traits due to variation of

temperature (Figure 3). Furthermore, both genotypes showed a

comparative difference in the orientation of trait clusters in the PCA

graph under corresponding regimes of temperature that indicated

the differential physiochemical responses of each genotype

(Figure 4). Different cultivars of soybeans responded differently to

applied temperature regimes, as demonstrated by PCA. In terms of

the paired association of traits at T1, T2, T3, and T5, the genotype

Swat-84 of the thermosensitive soybean showed a negative

deviation (Figures 3, 4). At the temperature T4, Swat-84

demonstrated a greater positive influence on the paired

association of trait variables. The high dispersion of Swat-84 from

the biplot origin further supports its high-rated sensitivity against

varying temperature regimes (Figures 3, 4). Conversely, at T1, the

thermotolerant cultivar NARC-1 solely displayed a negative

deviation concerning its origin, whereas, in the remaining

temperature regimes, it demonstrated a positive influence on the

trait-variable association (Figures 3, 4). Additionally, at T4, NARC-

1 had a significant effect on paired association. Overall, the close

distribution of NARC-1 to the biplot origin at varying temperature

regimes confirmed its tolerance against varying temperature

regimes (Figures 3, 4). Additionally, heatmap analysis further

validated the results from PCA by grouping the traits into various

clusters because of variations in the strength of their association

with genotypes as well as with different day and night temperature

regimes (Figure 5).
3.5 Relative expression analysis

The relative expression of genesGmDNJ1,GmDREB1G;1,GmHSF-

34, GmPLY21, GmPIF4b, GmPIP1;6, GmGBP1, GmHsp90A2,

GmTIP2;6, and GmEF8 showed significant (p ≤ 0.05) change with

changing regimes of day and night temperatures (Figure 6). The

transcript levels of GmDNJ1, GmDREB1G;1GmPLY21, and GmPIF4b
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FIGURE 3

Principal component analysis (PCA) biplot of physiological, biochemical, and agronomic parameters grouped concerning their similarity and dissimilarity
at varying regimes of day and night temperature. The varying lengths of vectors for origin indicate differential association with treatments, while the
closeness of vectors indicates their strong association. The varying orientations of temperature regimes on biplots indicate that each treatment exhibits a
different impact on trait association and expression. Chl, chlorophyll; CAT, catalase; Gs, stomatal conductance; MD, membrane damage; Pn,
photosynthesis; POD, peroxidase; PPP, pods per plant; PWPP, pods weight per plant; SOD, superoxide dismutase; SPP, seeds per plant; SYPP, seed yield
per plant; Tr, transpiration rate. T1 = 20°C/12°C, T2 = 25°C/17°C, T3 = 30°C/22°C, T4 = 35°C/27°C, and T5 = 40°C/32°C.
FIGURE 2

Correlogram showing the extent of overall paired association between physiological, biochemical, and agronomic traits in soybean cultivars due to
varying regimes of temperature. Chl, chlorophyll; CAT, catalase; Gs, stomatal conductance; MD, membrane damage; Pn, photosynthesis; POD,
peroxidase; PPP, pods per plant; PWPP, pods weight per plant; SOD, superoxide dismutase; SPP, seeds per plant; SYPP, seed yield per plant; Tr,
transpiration rate. ***, Significant at p ≤ 0.001; **, Significant at p ≤ 0.01; *, Significant at p ≤ 0.05.
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significantly increased from T1 (20°C/12°C) to T4 (35°C/27°C) and

dropped dramatically at T5 (40°C/32°C) in both soybean cultivars

(Figure 6). The relative expression of growth-mediating gene GmGBP1

increased significantly (p ≤ 0.05) from T1 (20°C/12°C) to T4 (35°C/27°

C) and declined suddenly at T5 (40°C/32°C) in both soybean cultivars

Swat-84 and NARC-1 (Figure 6). Correspondingly, GmHsp90A2

recorded significantly (p ≤ 0.05) increasing relative expression from

T1 (20°C/12°C) to T4 (35°C/27°C), which decreased dramatically at T5

(40°C/32°C) in both soybean cultivars (Figure 6). The gene GmTIP2;6

illustrated significantly (p ≤ 0.05) high upregulation at T2 (25°C/17°C)

and T4 (35°C/27°C) and low expression at T1 (20°C/12°C), T3 (30°C/

22°C), and T5 (40°C/32°C) in both soybean cultivars (Figure 6).

Conversely, the relative expression of genes GmHSF-34, GmPIP1;6,

and GmEF8 increased significantly (p ≤ 0.05) with increasing regimes

of day and night temperatures from T1 (20°C/12°C) to T5 (40°C/32°C)

in both soybean cultivars (Figure 6). Overall, the relative expression of

all genes was higher in NARC-1 as compared to Swat-84 at all

corresponding regimes of temperatures (Figure 6). Overall, the

overexpression of all genes was consistent with increased activities of

antioxidant enzymes (SOD, POD, and CAT), proline content, and

physiological traits (Chl, Gs, and Pn) as shown in Figure 7.
4 Discussion

The current study was performed to assess the impact of varying

regimes of day and night temperatures on the physiochemical,
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genetic, and agronomic traits of soybean cultivars. Like any other

living organism, plants are equipped with the tendency to respond to

their metrological environment (Raza et al., 2019). In this context,

temperature is an eminent environmental factor regulating plant

physiochemical processes both directly and indirectly (Osei et al.,

2023). The optimum temperature is a prerequisite to regulate the

plant’s essential physiological processes including chlorophyll

biosynthesis, Pn, Gs, and Tr (Muhammad et al., 2021).

Photosynthetic machinery in leaves is a tentatively logical place to

begin particularly when speculating the effects of temperature on crop

photosynthesis, as various steps of photosynthesis are highly

temperature-dependent (Moore et al., 2021). From a biochemical

perspective, CO2 assimilation is determined by the activation and

efficiency of the enzyme Rubisco at ambient temperature

(Muhammad et al., 2021). Additionally, enhanced enzymatic

activity till optimum temperature triggers the function of the

photosystem due to an increase in chlorophyll biosynthesis (Moore

et al., 2021). However, temperatures beyond the optimum impede the

function of the photosystem and hamper the Rubisco activation in

addition to the decrease in chlorophyll content, which collectively

result in a substantial reduction in Pn and CO2 assimilation in

soybean as reviewed by Herritt and Fritschi (2020). Consistent with

these findings, the current study reported a significant decline in

chlorophyll content and Pn below and beyond the ambient regime of

the temperature T4 (35°C/27°C) (Figure 1). In contrast, stomatal

behavior is significantly important to control the gaseous exchange

between plant interior and atmosphere (Driesen et al., 2020).
FIGURE 4

Principal component analysis (PCA) biplot of physiological, biochemical, and agronomic parameters grouped with respect to soybean cultivars based
upon their similarity and dissimilarity. The varying lengths of vectors for origin indicate differential association with treatments, while the closeness of
vectors indicates their strong association. The varying orientations of the cultivars on biplots indicate that each genotype exhibits a different impact
on trait association and expression. Chl, chlorophyll; CAT, catalase; Gs, stomatal conductance; MD, membrane damage; Pn, photosynthesis; POD,
peroxidase; PPP, pods per plant; PWPP, pods weight per plant; SOD, superoxide dismutase; SPP, seeds per plant; SYPP, seed yield per plant; Tr,
transpiration rate.
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Moreover, Gs is imperative for CO2 uptake and leaf water Tr in

addition to an indicator of increased Pn (Xu et al., 2016). The

tendency of plants to sustain Gs, Tr, and Pn under wide ranges of

temperature is directly correlated with their potential to tolerate wide

regimes of temperatures (Driesen et al., 2020). The decline in

chlorophyll pigment below or beyond the ambient temperature is

respectively a consequence of the decline in Chl synthase activity and

peroxidation of chloroplast and thylakoid membrane

(Hasanuzzaman et al., 2013). Furthermore, Alsajri et al. (2019) and

Djanaguiraman et al. (2019) respectively evaluated the effect of

specific and varying regimes of day and night temperatures on

physiological and agronomic traits of soybean and found a strong

relation between chlorophyll, Gs, Pn, and yield-related traits. The Gs

is a measure of stomata opening, which determines the uptake of CO2

and release of water vapors (Farquhar and Sharkey, 1982).

Interestingly the stomatal Gs was maximum at T4 (35°C/27°C),

while Tr was maximum at T5 (40°C/32°C) (Figure 1). This was

probably due to the robust CO2 fixation at T4 (35°C/27°C) as

confirmed by the maximum rate of Pn at this temperature.

Furthermore, at T4 (35°C/27°C), the CO2 fixation contributed
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maximally to Gs as compared to Tr. Moreover, temperature above

optimum results in decreased membrane stability and enhanced Tr

(Jianing et al., 2022). This reflects that all these processes strongly

adhere to and are affected by the temperature as a unit as indicated in

Figures 2, 3. In contrast, a consistent increase in temperature

enhances the level of ROS in plant cellular systems, inducing lipid

peroxidation in cell membranes that disrupts the structural integrity

of the membranes (Awasthi et al., 2015). An increase in membrane

damage leads to the inhibition of plant vital physiological processes

including Pn. However, plants are not passive entities; instead, they

respond actively to metrological factors intended to perturb plant

homeostasis. In this way, the increasing regimes of temperature

trigger the activities of antioxidant enzymes that are actively

involved in cellular homeostasis and ROS scavenging (Rajput et al.,

2021). Siebers et al. (2015) noticed that the activities of CAT, SOD,

and POX increase in soybean due to oxidative stress caused by high

temperatures. Consistent with these findings, the current study

reported a dynamic increase in the activities of antioxidant

enzymes with increasing regimes of temperatures from T1 (20°C/

12°C) to T4 (35°C/27°C) to mask the effect of ROS through
FIGURE 5

Heatmap cluster analysis depicting the differential impacts of varying regimes of day and night temperatures on the extent of expression of
physiological, biochemical, and agronomic traits in two different soybean cultivars, Swat-84 (left) and NARC-1 (right). Chl, chlorophyll; CAT, catalase;
Gs, stomatal conductance; MD, membrane damage; Pn, photosynthesis; POD, peroxidase; PPP, pods per plant; PWPP, pods weight per plant; SOD,
superoxide dismutase; SPP, seeds per plant; SYPP, seed yield per plant; Tr, transpiration rate. T1 = 20°C/12°C, T2 = 25°C/17°C, T3 = 30°C/22°C,
T4 = 35°C/27°C, and T5 = 40°C/32°C.
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scavenging (Figure 1). Correspondingly, proline acts as an excellent

osmolyte in plants subjected to various types of stresses by playing its

role as an antioxidative defense and signaling molecule (Hayat et al.,

2012). Consistently increasing variations of temperature facilitate the

speedy production of proline, which not only balances cellular water

and osmotic potential but also activates the physiological and

biochemical processes monitoring plant yield directly and indirectly

as confirmed by the present study (Figure 1). Temporal and specific
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variations in temperature over soybean growing areas affect soybean

yield (Alsajri et al., 2022). Plants continuously struggle for survival

under varying regimes of temperature. Plant endures, to some extent,

the dynamically changing temperature in various ways, specifically by

producing osmo-protectants with a tendency to modify the

antioxidant system for reestablishing the cell redox ionic

homeostasis (Ghosh et al., 2021). In this perspective, it is important

to consider the impact of temperature while optimizing the
FIGURE 6

Relative expression analysis of heat stress-associated genes in soybean cultivars Swat-84 and NARC-1 under varying regimes of day and night
temperatures. T1 = 20°C/12°C, T2 = 25°C/17°C, T3 = 30°C/22°C, T4 = 35°C/27°C, and T5 = 40°C/32°C. Bars show standard deviation ( ± SD).
* indicates significant difference at p ≤ 0.01 and ns indicates non-significant difference.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1332414
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ding et al. 10.3389/fpls.2023.1332414
metrological conditions for the cultivation of soybeans (Yang et al.,

2023). The temperature has a direct relationship with physiological

and biochemical processes determining agronomic productivity

(Vogel et al., 2021). Additionally, the variation of temperature

exhibits multifarious, and often detrimental, changes in plant

physiological processes, development, metabolism, and agronomic

yield (Vogel et al., 2021; Yang et al., 2023). This strong connection

was further confirmed through correlation and PCA (Figures 2–4).

The optimal regime for soybeans is essentially important from

seedling to grain filling for efficient physiological processes to

maximize the agronomic yield in terms of PPP, PWPP, SPP, and

SYPP (Alsajri et al., 2022; Jianing et al., 2022). The agronomic yield

varies corresponding to physiological yield at changing regimes of

day and night temperatures. Consistent with these studies, the

current study reported a complete parallelism between the variation

in physiological and biochemical traits below and beyond the

optimum temperature T4 (35°C/27°C) (Figures 1–3), which was in

accordance with the results of Alsajri et al. (2019); Yang et al. (2023),

and Choi et al. (2016). Additionally, the paired association of

physiological, biochemical, and agronomic traits varies not only

with changing regimes of temperatures but also with the nature of

the cultivar used. This speculation was further confirmed by PCA and

heatmap studies (Figures 4, 5). To unravel the complex response of

soybean genotypes to changing regimes of temperature, both cultivars

Swat-84 and NARC-1 were further evaluated for their genetic

response. In the present study, the expression of temperature-

related genes varied significantly in both soybean cultivars due to
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varying regimes of day and night temperatures (Figure 6). The

GmDNJ1, a type 1 HSP-40 protein, has a tendency to sustain

overall soybean growth under heat stress by modulating the

activities of various enzymes involved in ROS scavenging and

chlorophyll synthesis in addition to inhibition of protein

catabolism (Li et al., 2021). Correspondingly, the current study

recorded the maximum expression of GmDNJ1 at T4 (35°C/27°C),

the temperature at which the activity of antioxidant enzymes and

amount of chlorophyll, Pn, and Gs were maximum (Figures 1, 6).

Furthermore, the upregulation of DREB1 target genes such as

GmDREB1B;1, GmDREB1C;1, and GmDREB1F;1 play an essential

role in triggering the expression of various genes under heat stress

(Kidokoro et al., 2015). The enhanced expression of GmDREB1G;1

activates the expression of other heat-responsive genes such as

GmPYL21 that ensure plant normal physiological and molecular

processes (Kidokoro et al., 2015). This was the most probable reason

for the maximum transcript level of GmDREB1G;1 and GmPYL21 at

T4 (35°C/27°C) in both soybean cultivars in proportion to enhanced

physiochemical activities (Figures 1, 6). Heat shock transcription

factors (HSFs) play a significant role in responses against heat stress.

Additionally, HSFs in association with heat stress elements activate

HSPs in plants to strengthen their thermotolerance (Li et al., 2014).

Moreover, Guo et al. (2016) found that overexpression of GmHSF1A

strengthens the thermotolerance of transgenic soybeans due to

activation of GmHSP70, GmHSP22, and GmHSP90A2 under heat

stress. Correspondingly, the activity of GmHSF-34 increased

consistently till T5 (40°C/32°C) in both soybean cultivars, and
FIGURE 7

A general model representing how genes (GmDNJ1, GmHSF-34, GmPYL21, GmPIF4b, GmPIP1;6, GmHsp90A2, GmTIP2;6, and GmEF8) and TFs
(GmDREB1G;1 and GmGBP1) interact in both soybean genotypes for enhancing the physiochemical processes and increasing the agronomic yield
when temperature regime is optimum. Chl, chlorophyll; CAT, catalase; Gs, stomatal conductance; Pn, photosynthesis; POD, peroxidase; SOD,
superoxide dismutase. The red arrows indicate the activation of gene expression or process.
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plants retained their activities essential for survival (Figure 6).

Furthermore, Arya et al. (2023) confirmed through qRT-PCR

analysis that the soybean cultivars with upregulating GmPIF4b had

higher heat shock proteins GmHSP90A2 and transcripts of heat

shock factor. Hence, the gene GmPIF4b regulates multiple

morphological (plant height, number of branches, and leaf surface

area) and physiological traits (chlorophyll and proline) for better crop

yield under high temperatures. Accordingly, the present study

recorded a complementary increase in the expression of the

aforementioned genes at T4 (35°C/27°C) in addition to high

proline and chlorophyll contents (Figures 1, 6). The overexpressing

soybean plasma membrane intrinsic protein 1;6 (GmPIP1;6) is an

aquaporin with multiple functions that regulate plant normal water

uptake, photosynthesis, and grain filling under saline stress as

confirmed by Zhou et al. (2014). The current study reported

similar results under temperature regime T4 (35°C/27°C) in

addition to enhanced Pn, Gs, and chlorophyll (Figures 1, 6). The

overexpression of soybean gene GmHsp90A2 under high

temperatures is associated with countering oxidative stress and

maximizing chlorophyll production as reported by Huang et al.

(2019). Correspondingly, the current study recorded the maximum

expression of GmHsp90A2 at T4 (35°C/27°C), the temperature at

which chlorophyll production and antioxidant activities were also

maximum (Figures 1, 6). Similarly, Zhao et al. (2013) and Feng et al.

(2019) respectively found that high expression of GmGBP1 and

GmTIP2;6 produces specific proteins that modulate agronomic

growth under specific temperatures. In agreement with these

findings, the current study recorded high expressions of GmGBP1

and GmTIP2;6 in both soybean cultivars at temperature regime T4

(35°C/27°C), where the highest agronomic yield was recorded

(Figures 1, 6). Unlike GmDNJ1, GmDREB1G;1, GmPYL21,

GmPIF4b, GmHsp90A2, GmGBP1, and GmTIP2;6, the genes

GmHSF-34, GmPIP1;6, and GmEF8 showed the highest level of

transcript at T5 (40°C/32°C) in both soybean cultivars, which was

consistent with the rise in proline content (Figures 1, 6). In fact,

GmEF8, GmHSF-34, and GmPIP1;6 respectively enhance proline,

HSP, and water uptake when soybean faces temperature stress, and

they have a protective role via osmolyte adjustments (Zhou et al.,

2014; Zhang et al., 2022; Arya et al., 2023). High-temperature regimes

accelerate the loss of water from plant surfaces due to transpiration

and create a water-deficit environment within plants (Fahad et al.,

2017). Plants, being active entities, respond to water-deficit

conditions through osmotic adjustments. In response to high

temperatures, plants alter their metabolism in different ways,

particularly by enhancing the production of solutes that re-establish

cellular homeostasis and redox balance by organizing proteins,

modifying the antioxidant system, and maintaining cell turgor

owing to osmotic adjustments (Hasanuzzaman et al., 2013). The

plant copes with heat stress through the synthesis of compatible

solutes known as osmoprotectants that regulate the water contents.

Among extensively studied osmolytes, proline is one of the most

effective compatible solutes and is ranked as the top osmoprotectant

in plants (Siddique et al., 2018). Despite proline being an important

signaling molecule, the most important functions of accumulated

proline are osmoregulation, cell membrane maintenance, and

protein stability under water-deficit conditions (Liang et al., 2013).
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The present study confirmed these essential roles of proline under

increasing temperature regimes that were consistent with the

expression of proline-regulating genes (Figures 1, 6). Additionally,

the regulation of aquaporins (AQPs) is vital for maintaining water

balance during heat stress, as excessive transpiration can lead to water

loss and dehydration (Afzal et al., 2016). Aquaporins are channel

proteins facilitating the across-membrane transport of water, which

plays an important role in biological processes (Li et al., 2019). In this

perspective, the overexpression GmPIP1;6 retains the water

conductance to enhance the thermotolerance during heat stress,

which is not an astonishing phenomenon. Moreover, GmEF8 has

tendency to regulate the production of proline through interaction

with other genes involved in the proline synthesis pathway (Kishor

et al., 2005). Although high temperature increases the level of HSP in

plants, to some extent, it is correlated with the expression of

antioxidant enzymes as reported by Wang et al. (2021) in rice.

Perhaps, the decreased activities of antioxidant enzymes at T5

(40°C/32°C) were the cause of the reduced expression of

GmHsp90A2. Like all other organisms, plant processes including

physiological and biochemical are genetically regulated. The change

in the transcript level of genes with different temperature regimes was

complementary to the variation of physiological and biochemical

traits that determine the crop agronomic productivity (Figure 7). In

general, the soybean cultivar NARC-1 showed significantly high

values of physiological, biochemical, agronomic, and genetic traits

as compared to Swat-84 at corresponding regimes of temperatures,

which confirms that NARC-1 is more tolerant against temperature

variations as compared to Swat-84. Overall, the current study proved

that physiological, biochemical, agronomic, and genetic traits are

deeply linked and susceptible to varying regimes of temperature.

Different regimes impact the physiological and agronomic

productivity differently; however, thorough investigation through

genetic study proved that the optimum day and night temperature

for soybean from the vegetative stage to the grain-filling stage was T4

(35°C/27°C), whose slight variation impacts its productivity

significantly. Soybean is a highly temperature-sensitive crop;

therefore, breeding against temperature stress should be an integral

part of soybean future breeding programs. To devise an efficient

breeding program to breed soybeans with tolerance against

temperature stress, there is a need to consolidate the screening

techniques of genotypes. Temperature stress is a major problem in

arid regions where farmers face substantial losses in soybean

production due to inappropriate selection of genotypes that are not

adaptable to the metrological conditions of that particular area.

Therefore, soybean germplasm requires comprehensive screening at

molecular, biochemical, physiological, and morphological levels to

optimize their adaptability in regions where temperature variation is

a potential constraint at the terminal stages of soybean.
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