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Introduction: Pubescence is an important phenotypic trait observed in both

vegetative and generative plant organs. Pubescent plants demonstrate increased

resistance to various environmental stresses such as drought, low temperatures,

and pests. It serves as a significant morphological marker and aids in selecting

stress-resistant cultivars, particularly in wheat. In wheat, pubescence is visible on

leaves, leaf sheath, glumes and nodes. Regarding glumes, the presence of

pubescence plays a pivotal role in its classification. It supplements other spike

characteristics, aiding in distinguishing between different varieties within the

wheat species. The determination of pubescence typically involves visual analysis

by an expert. However, methods without the use of binocular loupe tend to be

subjective, while employing additional equipment is labor-intensive. This paper

proposes an integrated approach to determine glume pubescence presence in

spike images captured under laboratory conditions using a digital camera and

convolutional neural networks.

Methods: Initially, image segmentation is conducted to extract the contour of

the spike body, followed by cropping of the spike images to an equal size. These

images are then classified based on glume pubescence (pubescent/glabrous)

using various convolutional neural network architectures (Resnet-18,

EfficientNet-B0, and EfficientNet-B1). The networks were trained and tested on

a dataset comprising 9,719 spike images.

Results: For segmentation, the U-Net model with EfficientNet-B1 encoder was

chosen, achieving the segmentation accuracy IoU = 0.947 for the spike body and

0.777 for awns. The classification model for glume pubescence with the highest
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performance utilized the EfficientNet-B1 architecture. On the test sample,

the model exhibited prediction accuracy parameters of F1 = 0.85 and AUC =

0.96, while on the holdout sample it showed F1 = 0.84 and AUC = 0.89.

Additionally, the study investigated the relationship between image scale,

artificial distortions, and model prediction performance, revealing that higher

magnification and smaller distortions yielded a more accurate prediction of

glume pubescence.
KEYWORDS

wheat, wheat species, pubescent (hairy) glume, image analysis, segmentation, deep
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1 Introduction

1.1 Glume pubescence in wheat

Pubescence, an important phenotypic trait in vegetative and

generative plant organs (Johnson, 1975; Karabourniotis et al., 2020;

Shvachko et al., 2020), provides increased resistance to drought,

pests, and various environmental factors (Fahmy, 1997; Bickford,

2016; Moles et al., 2020). This trait serves as a crucial morphological

marker and is actively studied in genetic and breeding research

aimed at developing crop varieties with enhanced resistance to

stressful environmental factors (Papp et al., 1992; Du et al., 2009;

Doroshkov et al., 2014).

Wheat is one of the most significant crops thriving in a wide

ecological range (Volis et al., 2015; Sadras, 2021), exhibiting

pubescence as an important adaptive trait on leaves, leaf sheath,

glumes, and nodes (Dobrovolskaya et al., 2007). Similar to leaf

pubescence (Pshenichnikova et al., 2019), glume pubescence in

wheat is linked to the plant’s adaptive properties seemingly

contributing favorably to drought or cold tolerance (Threthowan

et al., 1998)—for instance, analysis offloret temperatures in freezing

conditions indicated higher temperatures in pubescent florets

compared to their glabrous counterparts (Maes et al., 2001).

Studies of landrace populations of tetraploid wheat collected at

various altitudes in Ethiopia revealed that up to 20% of accessions

above 2,300 m have pubescent glumes, while glume hairiness was

completely absent in accessions from lower altitudes (Eticha et al.,

2005). However, studies on bread wheat cultivars and crosses with

pubescent and glabrous glumes indicated similar agronomic traits,

showing no significant influence on productivity in these accessions

governed by the genes controlling glume pubescence (McNeal et al.,

1971). Glume pubescence emerges as an important trait in wheat

genetic studies (Tsunewaki, 1966; Khlestkina et al., 2006; Luo et al.,

2016; Hu and Zuo, 2022), demonstrating linkage to several

important genes/loci such as resistance to Blumeria graminis

(DC) Speer f. sp. tritici Marchal (syn. Erysiphe graminis DC f. sp.

tritici Marchal) (Briggle and Sears, 1966) and spikelet size and

number (Echeverry-Solarte et al., 2015) among others (Hu and Zuo,
02
2022). Furthermore, glume pubescence serves as a classification

trait, adding in the determination of wheat species and varieties

(Goncharov, 2011; Yen et al., 2020)—for example, in Triticum

timopheevii (Zhuk.) Zhuk. and T. vavilovii Jakubz., all accessions

have haired glumes (Goncharov, 2011).
1.2 Image analysis for plant
pubescence evaluation

Determining pubescence and assessing its characteristics

usually necessitate a visual analysis of plants conducted by an

expert. Methods devoid of a binocular loupe tend to be subjective.

Recent developments include automatic techniques for analyzing

pubescence primarily in leaves. These methods are based on

analyzing 2D images obtained via a microscope (Genaev et al.,

2012; Pomeranz et al., 2013; Mirnezami et al., 2020) or 3D images

(Kaminuma et al., 2008; Bensch et al., 2009; Failmezger et al., 2013).

They not only identify trichomes on plant organs but also estimate

their number and size, employing machine vision algorithms and

demonstrating high accuracy and swift data processing. This

demonstrates the potential of using image analysis to assess

pubescence characteristics across various plant organs.
1.3 Deep machine learning for plant
image analysis

Remarkable strides in image analysis has been achieved through

the utilization of deep machine learning neural networks. Deep

learning networks are characterized by a multilayered architecture

where subsequent layers utilize the output of the previous layer as

input to extract features related to the analyzed objects (Ubbens and

Stavness, 2017; Singh et al., 2018; Demidchik et al., 2020; Alzubaidi

et al., 2021; Xiong et al., 2021). These approaches enable the

automatic extraction of image features with regression or

classification in a single pipeline, trained simultaneously from end

to end (LeCun et al., 2015).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1336192
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Artemenko et al. 10.3389/fpls.2023.1336192
Deep learning algorithms are categorized based on how input

data is prepared (Alzubaidi et al., 2021; Wang et al., 2021; Yan and

Wang, 2022): supervised learning, semi-supervised learning, and

unsupervised learning. Supervised learning demands all input data

to be expert-labeled, requiring an image training dataset to derive

network parameters. This technique, popular in solving plant

phenotyping image analysis tasks (Ubbens and Stavness, 2017;

Singh et al., 2018), can tackle image segmentation, classification,

and object detection (Jiang and Li, 2020; Sanaeifar et al., 2023).

Supervised learning has found success in plant phenomics for

disease recognition (Barbedo, 2019; Liu and Wang, 2021), plant

stress detection (Azimi et al., 2021), morphometrics (Kurbanov

et al., 2020; Gibbs et al., 2021), weed detection (Hasan et al., 2021;

Rai et al., 2023), and plant classification into different species

(Dyrmann et al., 2016; Sundara Sobitha Raj and Vajravelu, 2019;

Liu et al., 2022). However, it requires large labeled datasets,

involving substantial expert effort in preparation and labeling

(Minervini et al., 2016; Barbedo, 2018). Consequently, semi-

supervised and unsupervised learning methods have gained recent

traction (Yan and Wang, 2022).

Semi-supervised learning involves training samples with labeled

and unlabeled images, where unlabeled images can receive pseudo-

labels or be assigned negative labels based on trained networks. This

approach has been utilized in plant disease analysis (Zhou et al.,

2023), counting cotton balls (Adke et al., 2022), and plant shoot

counting (Karami et al., 2020).

Contrarily, unsupervised learning techniques for image analysis

do not rely on labeled datasets and are akin to solving clustering

problems without known object classes (Alzubaidi et al., 2021; Yan

and Wang, 2022). These methods have been employed for tasks such

as image denoising, reconstruction, generation, clustering, and

dimensionality reduction (Raza and Singh, 2021; Akçakaya et al.,

2022). They have found applications in plant phenomics, including

plant image generation (Madsen et al., 2019), disease recognition

(Nazki et al., 2020; Benfenati et al., 2023), leaf segmentation (Al-

Shakarji et al., 2017), weed recognition (Hu et al., 2021), and plant

development prediction (Drees et al., 2021). Some studies propose

modifying neural network structures to transform original

unsupervised problems into supervised ones using predefined

kernels and only patches from the input test image (Yan et al., 2024).

In supervised learning problems for image analysis, various deep

convolutional neural network (CNN) architectures have gained

immense popularity (Toda and Okura, 2019; Jiang and Li, 2020).

CNNs encompass convolutional layers—sets of repetitive image

filters convoluted to images or feature maps—alongside pooling

layers. These networks interpret images by converting them into

numerical values, successfully addressing plant image analysis tasks

such as segmentation, object detection, and classification (Duong

et al., 2020; Saleem et al., 2020; Seki and Toda, 2022).
1.4 Related works

This paper proposes a method to classify wheat spikes based on

their digital images according to the presence or absence of glume

pubescence. Notably, no previous work has specifically addressed
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the pubescence of wheat glumes. However, in a study by Grillo et al.

(2017), 138 descriptors of glume shape, size, and color were used for

classifying wheat landraces using the linear discriminant analysis

(LDA) algorithm. The classification performance was 100% for

distinguishing T. aestivum L., T. durum Desf., and T. turgidum L.,

achieving 100% correct classification for five landraces belonging to

T. aestivum species and 89.7% for 39 landraces of durum wheat

(Grillo et al., 2017).

One of the intriguing tasks in spike image analysis is detecting

and counting spikes in field images (Li et al., 2022; Wen et al., 2022;

Zhang et al., 2022; Sanaeifar et al., 2023). However, several studies

focus on identifying spikes in laboratory conditions or greenhouses,

where plants or ears are imaged against a uniform background,

facilitating ear identification through segmentation. Bi et al. (2010)

utilized 2D images of wheat spikes against a black background to

assess various characteristics, such as spike length and awn number

and length, and classified the spike shape type according to its

length-to-width ratio. Segmentation was performed using the Otsu

algorithm. The backpropagation neural network was designed to

classify spike images into four wheat varieties using spike

morphometric parameters as input. The recognition accuracy rate

was 88%.

Qiongyan et al. (2017) implemented a neural network-based

method using Laws texture energy for spike detection in the images

of plants in the pot obtained in glasshouse conditions. Image

segmentation was performed before the spike detection into

background and plant regions using five color indices. These

indices depended on the R, G, B and hue channel intensities. The

performance of the segmentation method was not reported. The

accuracy of spike detection varied from 86.6% (single plant in the

pot) to 81.5% (four plants in the pot).

Narisetti et al. (2020) modified the algorithm proposed by

Qiongyan et al. (2017) by using the wavelet amplitude as an input

to the Laws texture energy-based neural network. They also

suppressed non-spike structures on the image (leaves and stems)

by combining the result of the neural network prediction with a

Frangi-filtered image. As a result, the accuracy of spike detection in

the images increased to 98.6% on the test dataset.

In the work by Ullah et al. (2021), spikes were detected and

counted in images of wheat plants obtained in greenhouses using

detection and segmentation algorithms. Several deep learning

neural network architectures were tested for ear detection: SSD

with Inception resnet v2 as a backbone, Faster-RCNN with

Inception v2 as a backbone, YOLOv3 with Darknet53 as a

backbone, and YOLOv4 with CSPDarknet53 as a backbone.

Networks were trained using 234 images. The performance of

spike detection measured as the AP0.5 value on the set of 58 test

images varied from 0.78 for SSD to 0.95 for Faster-RCNN models.

Three network models were used for spike segmentation: shallow

artificial neural network (ANN), U-net with a VGG-16 backbone,

and DeepLabv3+ with ResNet101 were used for spike segmentation.

The Jaccard index (IoU parameter) varied for these methods from

0.610 (ANN) to 0.922 (DeepLabv3+).

The work by (Qiu et al., 2022) is aimed at the problem of

spikelet detection on images of spikes against a white background.

Before spikelet detection, the images were segmented into spike and
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background. This procedure was performed using the watershed

algorithm. The authors do not provide an estimate of the accuracy

of image segmentation but report that it was successfully used to

identify candidate spikelets.

A number of approaches were developed for counting spikelets

in the images without spike segmentation. In the work by Pound

et al., the problem of detecting spikelets in an ear was addressed for

wheat images acquired in a greenhouse (Pound et al., 2017). In this

work, no spikelet segmentation was performed, but the whole spike

region could be distinguished due to closely spaced spikelets on the

processed images. Hammers et al. (2023) detected spikelets based

on VGG16, the ResNet152V2, and the EfficientNetV2L deep

learning models. Shi et al. (2023) detected spikelets in wheat

images captured in the field. The authors implemented YOLOv5s-

T network model to count spikelets and obtained R2 between

manual and deep learning counts from 0.85 to 0.97 depending on

the plant development stage.

In a previous work, the authors of this paper performed spike

segmentation on images acquired in laboratory conditions against a

blue background (Genaev et al., 2019). Spike segmentation was

performed based on a thresholding algorithm in HSV space. Both

the spike body and awns were identified in the image. The Jaccard

coefficient (IoU) for spike segmentation was 0.932 and for awns

0.634. The shape and size of the spike body were described by a

geometric model. Its parameters made it possible to classify spikes

by three types (compact, normal, and spelt) by ML algorithms. The

best performance was achieved for the random forest model (F1 =

0.85). The spike geometric parameters were later used to compare

the spike shape for hexaploid and tetraploid wheat accessions

(Pronozin et al., 2021).

Deep learning was applied to solve tasks related to plant

pubescence detection and analysis. It was used to classify soybean

crops according to the type of leaf pubescence on multispectral

aerial images (Bruce et al., 2021). The authors used a support vector

machine classifier with a radial basis function to classify

multispectral images of soybean plots into three classes by

pubescence. The overall classification accuracy was 83.1%.

Neural networks of various architectures were applied to identify

and count trichomes on cotton leaves. Rolland et al. (2022)

implemented the deep learning neural network HairNet to classify

cotton leaf images obtained using a handheld microscope into nine

classes by the intensity of trichome occurrence on their veins and

surface. Five ResNet architectures were tested. They demonstrated

different performance depending on the accuracy measurement

method. ResNet34 demonstrated the best performance (84.85% for

accuracy of all images and 91.36% for leaf accuracy). The authors

used different dataset stratification strategies (leaf-based splits, year-

based splits, and environmental-based splits).

Luo et al. (2023) developed a deep learning approach to detect

and quantify trichomes on cotton leaves and stems. The trichomes

on the stem edge and leaf edge were photographed using an

Olympus szx10 stereoscope with ×12.5 magnification. The

authors evaluated three network models: YOLOv3, YOLOv4, and

YOLOv5 with different backbones and Mask R-CNN. The work

demonstrated that the YOLOv5 network outperformed other

YOLO models (F1 = 83% for single trichomes and 97% for
Frontiers in Plant Science 04
clustered trichomes), and Mask R-CNN outperformed YOLOv5

on the images without separation of the single/clustered trichomes

dataset (mAP@0.5% 96.18 vs. 74.45).

In the current work, classification approaches were

implemented to attribute spike images into classes with haired or

hairless glumes. This paper makes the following contributions:
1. The phenotyping of the novel wheat trait, glume

pubescence, was proposed on the basis of the spike

image classification.

2. The multistep deep learning approach was applied to solve

this task. First, image segmentation is performed to detect

the spike region; second, spike images are classified by

glume pubescence into haired and hairless classes.

3. The deep learning segmentation model outperformed the

previous method of spike and awns detection based on

machine vision algorithms. The classification model based

on the EfficientNet-B1 architecture demonstrated high

performance (AUC parameter from 0.86 to 0.96

depending on the dataset stratification method) and

robustness with respect to small image distortions in the

classification of the whole spike by glume hairiness.
2 Materials and methods

2.1 Methods overview

An integrated approach using deep machine learning neural

networks to classify spike based on glume pubescence relies on

images obtained through a standard laboratory protocol. The ear

occupies a relatively small area in the image, with the rest being

uninformative. Hence, the approach initially involves image

segmentation to extract the spike body region from the image,

followed by glume pubescence prediction for the spike image

fragment. Figure 1 summarizes the methods employed in this work.

The analysis included three steps: preparation of image datasets

to train and test neural networks for segmentation and classification

tasks (Figure 1A), development of an image segmentation method

for identification of the spike region (Figure 1B), development of a

method for the classification of spike body images by the type of

glume pubescence (pubescent or glabrous) (Figure 1C). Special

algorithms were developed for dataset preparation and

stratification, taking into account wheat species diversity and the

proportion of spikes of the studied accessions with pubescent/

glabrous glumes. In developing deep machine learning methods,

various neural network topologies were investigated.
2.2 Biological material and spike imaging

Material from the collection of N.P. Goncharov (Institute of

Cytology and Genetics of the Siberian Branch of the Russian

Academy of Sciences) was used in the study. It included 239

accessions of 19 wheat species. Their list is given in
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Supplementary Table S1. Wheat accessions included species of

different ploidy (three diploid, eight tetraploid, and seven

hexaploid). Hybrids of different wheat species were also used for

analysis (see Supplementary Table S2). The analysis was performed

for the main spike of the plants.

Spike images were obtained in laboratory conditions using two

protocols, “table” and “clip”, as described in the previous work

(Genaev et al., 2019). For the “clip” protocol, images were obtained

in four projections with 90° of rotation around the spike axis. The

spikes on the table were imaged in the natural position at one image

per spike. All images contained a ColorChecker Mini Classic target

(https://xritephoto.com/camera) for scale determination. The

resolution of the images was either 5,184 × 3,456 px (18 Mp) or

3,168 × 4,752 px (15 Mp). Examples of several typical spike images

obtained using the “clip” protocol are shown in Figure 2.
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A holdout dataset of 40 spike images of wheat hybrids obtained

by the “clip” protocol supplemented the dataset for classification

(see Supplementary Table S2). These images (as well as wheat

accessions) were not used in the network training, validation, or

testing. Spikes in 20 images from the holdout dataset had haired

glumes, and 20 had hairless glumes. All preprocessing steps of the

holdout dataset before classification were the same as for the main

image dataset.
2.3 Image markup

To develop the automatic image segmentation model, a sample

of 1,245 spike images for 249 plants was used, representing different

accessions obtained using both “table” and “clip” protocols. This
A B

DC

FIGURE 2

Examples of the spike images obtained using the “clip” protocol. The species names are indicated in the top-left part of the images. (A, B) 18 Mp
images; (C, D) 15 Mp images.
A

B

C

FIGURE 1

Overview of the integrated approach for analysis of wheat spike images to classify them based on glume pubescence. (A) Image dataset preparation,
(B) image segmentation pipeline, and (C) spike image classification pipeline.
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image dataset was described in a previous work in (Genaev et al.,

2019). As a test sample, additional 30 images segmented manually

were used. This dataset for testing is also identical to that from the

previous work (Genaev et al., 2019). Initially, each image from the

dataset was segmented automatically into four regions

(background, ColorChecker target, awns, and spike body) using

the program WERecognizer (Genaev et al., 2019). This program

uses machine vision algorithms to segment spike images.

Segmentation is performed into background and spike regions

based on binarization in the HSV color space. After identification

of the spike with its awns, the algorithm uses partial skeletonization

of the spike image to extract the awns regions. For some images, the

algorithm resulted in errors noticeable to the eye (violation of the

integrity of the spikelet contour, misclassification of awns if they

were densely spaced or touched together). Such images can be easily

identified in the image preview mode and corrected manually in the

raster graphic editor Gimp (https://www.gimp.org/). The fraction of

images with correction was about 1%.

When labeling images by glume pubescence type, it was taken

into account that glume hairiness is a classification trait at the level of

varieties, which is characteristic of most wheat species (Goncharov,

2012; Yen et al., 2020). Therefore, the types of pubescence of each

wheat species were used in labeling images. As an additional control,

for a part of the images, glume pubescence was determined on the

basis of visual analysis with a magnifying glass.
2.4 Image dataset stratification for
segmentation and classification

For the segmentation task, the set of 1,245 images was randomly

divided into training (70%) and validation (30%) parts. The test

sample included 30 images as described in the previous section.

The dataset of spike images included plants of different species,

images of the same spike in different protocols/projections, and was

unbalanced by glume hairiness classes (there were k = 1.77 times

more images of spikes with hairless glumes than haired ones). In

addition, the glume hairiness trait is a characteristic of the plant

belonging to a wheat species/variety (Dorofeev et al., 1979).

Varieties within the same species are often very similar in glume

hairiness. These factors had to be taken into account during image

dataset stratification in order to maintain the proportions of

different classes of images for the training, validation, and

test subsamples.

Two methods of image dataset stratification were generated. These

methods were aimed at keeping the proportion of the images in the

training, validation, and testing subsamples as much as close to

80%:10%:10%, respectively. The first method, Str_TrainMaxDiversity,

is to stratify the dataset by manual partitioning to obtain the maximum

diversity of species represented in the training subsample. At the same

time, the proportion k between the number of images with hairless

glumes and the number of images with haired glumes is maintained

only approximately in the validation/testing subsamples.

The second stratification method, Str_BalancedByClass, was

aimed at minimizing the deviation of the k ratio in the three
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subsamples. For this purpose, the following steps of dataset

stratification were implemented (Supplementary Figure S3):
(1) Images of a species presented in a fraction greater than 0.1

+ epsilon of the total number of images were included in the

training sample (lines 2–11).

(2) A species is randomly selected from the list of remaining

species and a subsample type (training, test, or validation)

(lines 40 and 41).

(3) If the selected subsample is training, then images of this

type are added to it (lines 48–50).

(4) If the selected subsample is validation or testing and adding

images of a species to it will result in the subsample fraction

being less than the threshold (0.1 + epsilon), then images of

this species are added to the subsample (lines 45–47).

Otherwise, these images are added to the training sample

(lines 49 and 50).

(5) If the fraction of testing and validation subsamples deviates

from the target values within the epsilon value, all

remaining species are added to the training subsample.

The algorithm proceeds to step 6. Otherwise, steps 1–5 are

repeated (lines 35–39).

(6) The maximum deviation of the parameter k between the

three subsamples for the obtained partitioning, dev, is

estimated (line 52).

(7) If dev is smaller than it was for the previous partitioning,

this value and stratification (dev_max) are memorized, and

best_index parameter is updated by the iteration index with

the smallest dev value. Otherwise, the iteration counter is

increased by 1, and current image split is added to the list of

splits obtained previously. The algorithm proceeds to step 8

(lines 53–57).

(8) The algorithm is terminated if at least one of the following

conditions is fulfilled: the number of iterations is more than

10,000; the dev value is less than 0.01. Otherwise, the

iterating process is repeated from step 1 (line 28).
The proposed algorithm converged in less than 300 iterations,

with a dev_max value of 0.009. The lists of species in the training,

validation, and test samples for the two types of stratifications, class

balance coefficients k, and the percentage of images in these samples

are represented for both stratifications in Supplementary Table S3.
2.5 Image segmentation method

2.5.1 Neural network model
The U-Net model (Ronneberger et al., 2015; Falk et al., 2019)

was used for spike image segmentation. This model was developed

for biomedical image analysis. The network contains two main

parts: an encoder and a decoder. The encoder has a typical

architecture of a CNN. The decoder part increases the

dimensions of the feature maps, performs a deconvolution, which

increases the number of feature maps, and combines them with the
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corresponding feature map from the compression part. The

structure of the U-Net makes it possible to use different

backbones represented by modern neural network models that

have proven their effectiveness in image processing instead of the

original version of the U-Net model (Konovalenko et al., 2022).

Here the EfficientNet-B2 encoder was used in the U-Net

network architecture. The EfficientNet network was proposed to

solve the classification task (Tan and Le, 2019). It has a lightweight

architecture based on AutoML. The main building block is the

mobile inverted bottleneck (MBConv) (Sandler et al., 2018).

Initially, a baseline network was developed, EfficientNet-B0. A

family of topologies was obtained, differing by depth, width, and

resolution of the network layers depending on the compound

coefficient determining the total FLOPs for the network and

varying from 0 (the most compact architecture) to 7 (the largest

architecture) (Tan and Le, 2019). This architecture has also been

successfully used as an encoder for segmentation tasks (Abedalla

et al., 2021; Konovalenko et al., 2022; Jin et al., 2023). The images

were segmented into four regions: background, ColorChecker

target, spike body, and awns. The input data for the network were

fragments of the original image of 512 × 512 pixels. For each pixel of

the image, four weights from 0 to 1 were defined in the output of the

network, according to the four specified classes. Figure 3 shows the
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architecture of the U-Net network used for the segmentation of

spike images with the EfficientNet-B2 encoder.

The EfficientNet-B2 includes seven types of sequential blocks

built on the basis of the Conv and MBConv layers (Sandler et al.,

2018; Tan and Le, 2019). In MBConv, the blocks consist of a layer

that first expands and then compresses the channels, so direct

connections are used between bottlenecks that connect much fewer

channels than expansion layers. This architecture has in-depth

separable convolutions that reduce calculation compared to

traditional layers (Howard et al., 2017).

2.5.2 Image pre-processing for segmentation and
accuracy assessment

The preprocessing of images for segmentation consisted of the

following steps:

(1) The image was split into 512 × 512 px tiles that overlapped

each other in the 256 × 256 px area horizontally and/or vertically.

(2) An augmentation procedure was applied to the resulting

tiles using the Albumentations library (Buslaev et al., 2020):

Transformations for the training subset:

- HorizontalFlip (p = 0.5).

- ShiftScaleRotate (shift_limit = 0.0, scale_limit = (0., 0.1),

rotate_limit = 5, interpolation = cv2.INTER_LINEAR, p = 0.75).
FIGURE 3

The U-Net architecture with the EfficientNet-B2 encoder used for the segmentation of spike images. The encoder part is shown on the left, and the
decoder part is shown on the right. Gray rectangles indicate multichannel feature maps. The number of channels is given above the rectangles. The
feature map size is indicated below the rectangles, on the left. Arrows indicate the type of operation and its direction.
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- ColorJitter (brightness = 0.4, contrast = 0.4, saturation = 0.,

hue = 0., always_apply = False, p = 0.75.).

- Normalize.

Transformations for validation and test subsets:

- Normalize.

(3) Tiles form the batches that the model receives as input.

Since tiles were obtained with overlap, one pixel in this analysis

corresponded to the class prediction in several tiles. To obtain the

final class prediction for a single pixel, the weight of each class was

averaged over several overlapping tiles and the class with the

maximum weight was selected as the predicted pixel class.

The IoU metric was used to evaluate the quality of class

prediction (Everingham et al., 2010):

IoU =
A ∩  Bj j
A ∪  Bj j =

A ∩  Bj j
∣ Aj j + Bj j − A ∩  Bj j ,

where A denotes the pixels of the image region generated by

segmentation using the segmentation algorithm and B denotes the

manually marked pixels of the image region.
2.6 Image classification method

2.6.1 Neural network models
To classify images according to the type of pubescence of

glumes, ResNet-18 (He et al., 2016) and two networks of

EfficientNet architecture (Tan and Le, 2019) were studied. The

structure of the ResNet-18 neural networks is shown in

Supplementary Figure S1. For the EfficientNet topology, two

implementations were used: EfficientNet-B0 and EfficientNet-B1.

The architecture of the EfficientNet-B1 network is shown in

Figure 4 and that of the EfficientNet-B0 network in

Supplementary Figure S2. Estimates of the number of parameters

and operations for these described networks are given in

Supplementary Table S4. The abovementioned neural network

architectures have previously demonstrated their effectiveness in

solving plant image classification problems (De Camargo et al.,

2021; Dourado-Filho and Calumby, 2021; Kanna et al., 2023).

The network models for image segmentation and classification

were implemented using PyTorch v1.7.1 (Paszke et al., 2019). Initial
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weights for all models used in this work were obtained by training

the network on the ImageNet dataset.

The Gradient-weighted Class Activation Map (Grad-CAM)

algorithm from the TorchCAM package (https://github.com/

frgfm/torch-cam) was used for the visualization of the network

activation map. This technique assigns each neuron a relevance

score for the class prediction in the output layer. GradCAM

backpropagates this information to the last convolutional layer.

2.6.2 Image preprocessing for classification and
neural network parameters

The image preprocessing procedure for further classification is

shown in Figure 5. The original image (Figure 5A) was segmented,

and the spike body was extracted along with the bounding rectangle

using the OpenCV library (Bradski and Kaehler, 2008). In this

rectangle, the background pixels were assigned a black color

(Figure 5B). Several methods were used to yield images of spikelet

fragments of different sizes (Figure 5C): (1) resizing of the full

bounding rectangle to 512 × 512 px, (2) small (128 × 128 px) crops

containing random fragments of the spike body, (3) medium (512 ×

512 px) crop of the spike central fragment, and (4) large (864 × 864

px) crop of the spike central fragment.

In the case of small crops, images in which the proportion of

spike pixels was less than 30% were discarded. In case a medium or

large crop exceeded the width of the bounding rectangle, pixels

outside the bounding rectangle were assigned black color.

Input image preprocessing for the classification neural networks

was implemented by randomly changing the brightness, saturation,

and contrast using the Albumentations library (Buslaev et al., 2020).

The following parameters were used to train the classification

neural networks: learning rate = 1e-7, weight decay = 1e-6, number

of the epochs = 150, and training batch size = 16.

2.6.3 Assessing the accuracy of
spike classification

To assess the accuracy of the spike classification method on a

sample of images, the authors compared the predicted class and its

true value for each image and calculated the true positive (TP)

values and true negative values (TN) as well as the total number of

positive (pubescent, 1, P) and negative (glabrous, 0,N) values. Using
FIGURE 4

EfficientNet-B1 model architecture used to classify wheat spike images by glume pubescence. Rectangles indicate Conv and MBConv layers of
various architectures.
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these values, the accuracy was calculated for the set of images

according to the formula: ACC = (TP + TN)/(P + N); the precision,

PR = TP/(TP + FP); the F1 = 2·TP/(2·TP + FP + FN) (Alzubaidi

et al., 2021); and the area under the curve (AUC) for the receiver

operating characteristic (Huang and Ling, 2005).

The accuracy of glume hairiness detection was evaluated based

on visual image analysis by an expert on a test dataset of the

Str_TrainMaxDiversity stratification and in a holdout image

dataset. In this case, no information about the spike belonging to

a particular wheat variety was used. This analysis was performed to

compare the accuracy of scale pubescence detection by eye and

machine learning.
3 Results

3.1 Generating an image dataset

A total of 9,679 spike images were obtained, including 3,499

with haired glumes and 6,180 with hairless glumes. The histogram

of image distribution by species and by type of glume pubescence is

presented in Figure 6.

The histogram shows that the distribution of spikes by glume

pubescence differs significantly for different wheat species. There are

species in which the samples are homogeneous in terms of glume

pubescence: in T. compactum Host, all accessions in the sample have

glabrous glumes, and in three species T. timopheevii (Zhuk.) Zhuk, T.

vavilovii Jakubz, and T. petropavlovskyi (Udacz. et Migusch.) N.P.

Gontsch., all accessions have pubescent glumes. There are species for

which accessions with hairless glumes prevail: T. monococcum L., T.

urartu Thum. ex Gandil, T. aestivum L., T. spelta L., T. machaDek. et

Men., T. turgidum L., T. dicoccum Schrank. ex Schublel, T.

aethiopicum Jakubz., and T. polonicum L. There are species for
Frontiers in Plant Science 09
which the ratio of accessions with pubescent and glabrous glumes

does not differ much: T. beoticum Boiss., T. yunnanense (King ex S.L.

Chen) N.P. Gontsch., T. sphaerococcum Perciv., T. durum Desf., T.

diccocoides (Körn. ex Aschers. Et Graebn.) Schweinf., and T.

carthlicum Nevski. Thus, the obtained data indicate that, even for a

single species, accessions with both pubescent and glabrous glumes

are quite frequently observed. The results obtained suggest taking

into account both the species diversity of wheat accessions studied

and their differences in the occurrence of pubescent/glabrous glumes

during image dataset stratification.
3.2 Evaluation of the accuracy of
image segmentation

The authors adapted and trained a U-Net architecture network

with an EfficientNet-B2 encoder to segment images into the

background, ColorChecker target, spike body, and awns. Estimates of

the IoU parameter were obtained on a test sample of images. The

ColorChecker target region is identified with the lowest error (IoU =

0.980), which can be explained by its simpler shape, close to a rectangle,

with smooth edges. The spike body is identified with a lower but

comparable accuracy (IoU = 0.947). The lower accuracy can be

explained by the more complex shape of the spike and the presence

of a large number of protrusions. For awns, the recognition

performance is the lowest (IoU = 0.777). The awns occupy a smaller

area in the image, which leads to the fact that errors will have a greater

impact on the IoU score compared to the spike body and ColorChecker

target. On the other hand, awns have a small thickness and a large

boundary relative to the total area. The blurring of the boundary can

introduce a significant uncertainty in the definition of awn contours.

Since the test images were the same as in the previous work

(Genaev et al., 2019), we can directly compare the segmentation
A B

C

FIGURE 5

Main steps of the preparation of spike body image fragments for recognition of the glume pubescence. (A) Original spike image, (B) segmented
spike body image in the bounding rectangle, and (C) images of the spike body or its fragments obtained as a result of resizing small, medium, and
large crops.
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results. In the previous work, the authors obtained IoU (Jaccard’s

coefficient) values for the spike body, 0.925, and for the awns, 0.660.

This is lower by ~2.5% for the spike and by ~10% for the awns

compared to the method from the present work.

Figure 7 shows examples of segmentation of one of the spike

images performed using the WERecognizer program (Genaev et al.,

2019) and using the U-Net model from this paper. The

segmentation using the U-Net model yields smoother contours of

the spike body compared to the WERecognizer method. The

segmented regions are cohesive, while for the WERecognizer

method, some of the pixels of the awns are marked as the spike

body. At the same time, in the U-Net-segmented image (Figure 7C),

one can notice the erosion of the ColorChecker target contour in the

area where the ruler is placed on it. Other examples of segmented

images are shown in Supplementary Figure S3. The results
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presented in these figures are consistent with general estimates of

the accuracy of spike and awns recognition compared to

WERecognizer. They demonstrate the higher accuracy of spike

and especially awn image segmentation using the U-Net model.
3.3 Evaluating the accuracy of
image classification

A preliminary analysis for the EfficientNet-B1 topology network

using Str_TrainMaxDiversity training dataset stratification showed

that the best accuracy on the test images was achieved using

medium-sized spike body crops (Supplementary Table S5). Based

on these results, input images of medium-sized crops were used in

predicting the type of glume pubescence.
FIGURE 7

Example of spike image segmentation by the WERecognizer program and the U-Net model from the current work. (A) Initial spike image. (B) Image
segmentation by the WERecognizer program. (C) Image segmentation by the U-Net. In (B, C), the blue color represents the ColorChecker target,
the green color represents the spike body, the red color represents awns, and the black color represents the background.
FIGURE 6

Distribution of the number of images of wheat spikes by species and glume pubescence.
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The authors trained and tested the accuracy of three neural

network models on test and holdout datasets. The performance of

the models on different stratification methods and on the holdout

sample, respectively, are presented in Table 1. The last row of the

table shows the performance estimates for recognizing glume

pubescence by an expert.

The results presented in the table demonstrate that, for

Str_BalancedByClass stratification (balanced by classes), the

accuracy estimates on the test sample are slightly higher than for

Str_TrainMaxDiversity stratification. At the same time, for the

holdout dataset, no noticeable differences were observed for the

different training samples. Among the models, the EfficientNet-B1

model demonstrates the highest accuracy. Its advantage is observed

both for different stratification methods and for both subsamples.

At the same time, the performance estimates for this network on the

holdout dataset when training on data stratified by different

methods differ only slightly.

The results of the performance estimation for recognizing

pubescence by an expert show that, on the test dataset

(Str_TrainMaxDiversity), the expert classification performance

(F1 = 0.95) is noticeably higher than for the best neural network

model (0.74). On the holdout dataset, the results are quite

comparable: F1 for the expert and the best model are 0.78 and

0.84, respectively.

Examples of the activation map for the spike image fragments

are shown in Figure 8. The figure demonstrates that the network

focuses either at the edges of glumes or at the border between the

spike body and background (Figure 8A), in the central part of the

spike image (Figures 8A, B), or at the central part of glumes

(Figure 8C). The location of the activation regions on the glume

edges is well explained: the hairs at the edges are most clearly visible

in the image.
3.4 Effect of image magnification and
distortion on classification performance

The spike images obtained in this work vary in magnification

due to different distances between the camera and the spike in

various series of images. This distance was the same in one series of
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images. Since the size of the ColorChecker target was the same, the

magnification can be characterized by its area expressed in pixels. It

is, however, necessary to take into account that, in terms of

resolution, the images were of two types: 15 Mp and 18 Mp.

Therefore, for each resolution, the distribution of images was

plotted by the ColorChecker target area expressed in pixels. The

results are summarized in Figure 9. A threshold of 2.25 × 106 px was

chosen for the ColorChecker target area: image magnification was

considered large if the ColorChecker target area was larger than this

threshold and small if smaller.

The accuracy estimates of the EfficientNet-B1 model trained on

the dataset obtained by the Str_TrainMaxDiversity stratification

method were calculated.

It was found that, for images of higher magnification, the

performance estimates were ACC = 0.81, PR = 0.70, and AUC =

0.91. For images of smaller magnification, the values of accuracy

parameters were ACC = 0.80, PR = 0.55, and AUC = 0.80. The

difference in the AUC parameter was 10% in favor of the higher-

magnification images. However, it is important to note that the ratio

of images with pubescent glumes to those with glabrous glumes

differed in these two sets. Specifically, it was 0.14 for the images with

large magnification and 0.86 for the images with small

magnification. This discrepancy might also influence the

performance of glume pubescence recognition in these

two subsamples.

The results show that imaging conditions affect the accuracy of

pubescence detection in the images. This issue was investigated in

more detail. For this purpose, a sample of 35 images of the T.

beoticum/321-329 accession (hairless glumes) and 46 images of the

T. vavilovii/271-280 accession (haired glumes) was generated from

the Str_TrainMaxDiversity stratification test sample. The

EfficientNet-B1 model for these images classified the type of

pubescence without error. Using the Albumentations library,

blurring was applied to these images with kernel sizes of 3, 4, 5,

and 6 pixels. After each transformation, the method was applied to

recognize the pubescence of scales, and its accuracy was evaluated.

The results are summarized in Table 2. It can be seen from the table

that the accuracy of glume pubescence recognition decreases as the

distortion increases, but it is still quite high for the kernel size of 3

and 4 pixels. It can be assumed that a slight blurring of the spike
TABLE 1 Evaluation of the performance of the EfficientNet-B0, EfficientNet-B1, and ResNet18 models and expert classification using test and holdout
image datasets. Best performance metrics for each stratification method shown in bold.

Stratification method Model Test dataset Holdout dataset

ACC PR F1 AUC ACC PR F1 AUC

Str_BalancedByClass EfficientNet-B0 0.79 0.93 0.60 0.87 0.63 0.78 0.55 0.76

EfficientNet-B1 0.89 0.81 0.85 0.96 0.83 0.78 0.84 0.89

ResNet18 0.87 0.88 0.81 0.92 0.73 0.77 0.55 0.77

Str_TrainMaxDiversity EfficientNet-B0 0.73 0.61 0.30 0.72 0.75 0.86 0.71 0.78

EfficientNet-B1 0.85 0.75 0.74 0.86 0.85 0.82 0.84 0.86

ResNet18 0.79 0.63 0.65 0.82 0.83 0.84 0.74 0.87

Expert by an eye 0.92 1.00 0.95 – 0.80 0.88 0.78 –
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image (due to its deviation from the lens focus) does not

significantly affect the accuracy of pubescence recognition. It

should also be noted that the errors in this experiment were

solely due to the misclassification of spikes with pubescent glumes.

Additionally, the effect of changing the image brightness on the

accuracy of spike classification was investigated. For this purpose,

the RGB channel intensities for each pixel were changed upward

and downward by 20%, 40%, and 60% for the abovementioned set

of images. The classification accuracy was evaluated for the

distorted images. The results are summarized in Table 3. The

results appear similar: the greater the image distortion, the lower

the accuracy of the method (due to errors in classifying ears with

haired glumes). Note, however, that the decrease in brightness

affects the accuracy to a lesser extent than its increase.
4 Discussion

This paper proposes an integrated method to assess glume

pubescence in images of wheat spikes obtained under laboratory

conditions. It is suggested that this image format may be typical

when digitizing genetic collections for further phenotyping (Fu,

2017; Nguyen and Norton, 2020). The images (Figure 2) include the
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entire spike body, awns that can occupy a fairly large area, and a

ColorChecker target for scaling and color normalization. For the

optimal processing of a large number of images, the camera and the

spike are at a constant distance in the image series, regardless of the

size of the spikelet. This leads, however, to the fact that, for small-

sized spikes, the quality of its representation in the image may

decrease. Note that obtaining more detailed images required

varying the distance from the camera to the spike depending on

the size of its body and awns. However, this would significantly slow

down the imaging process. The analysis showed that, for these

images, it was possible to determine the pubescence of the glumes

with good accuracy, even without using a magnification that

allowed obtaining images containing fine details of the glume

hairs. Nevertheless, the analysis of the accuracy of pubescence

detection for images at different magnifications showed (10%

difference in AUC parameter) that this was an important factor

affecting the accuracy of the method. A similar conclusion was

obtained earlier in the spike segmentation task (Genaev et al., 2019):

the accuracy of spike body and awn region identification was higher

for images with higher magnification. Note that the analysis of

activation maps demonstrates that the most informative regions in

the image are those in which hairs are most distinguishable (edges

and central regions of scales).
A B

FIGURE 9

Histogram of relative areas of the ColorChecker target in the images of the test subsample (Str_TrainMaxDiversity stratification method) for 15 Mp
(A) and 18 Mp (B) images. The X-axis is the ColorChecker target area size, in px. The Y-axis is the number of images.
FIGURE 8

Activation maps of the EfficientNet-B1 model for classifying spike images by glume pubescence evaluated on the image dataset with
Str_BalancedByClass stratification. (A) Activation regions are located at the boundary between spike and background (top) and at the edges of
glumes in the central part of the spike body. (B) Activation regions are located at the edges of glumes in the central part of the spike. (C) Activation
regions are located in the central part of glumes.
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The first step of the proposed method was to identify the spike

body in the image in order to use only its contour for classification.

This segmentation step was chosen to exclude irrelevant regions in

the image, such as the ColorChecker target, awns, and background.

For this purpose, a network based on the U-Net topology was used.

The results demonstrated high segmentation accuracy. It is

comparable to the performance of other deep learning methods—

for example, Ullah et al. (2021) segmented spikes in the image with

the IoU parameter from 0.610 to 0.922 depending on the

segmentation algorithm, with higher values for CNN methods.

Note that the segmentation based on the neural network

developed in this work can also be used also for spike morphometry.

When training the neural network, two stratifications were used

for image sampling. They differed in the ratio of samples with

haired and hairless glumes in the training/validation/test

subsamples from 1.574 to 1.98. Note that this ratio can vary

greatly in samples of different wheat accessions—for example, in

Börner et al. (2005), the proportion of T. aestivum accessions with

haired glumes varied quite strongly among populations with

different geographical origins—for example, in accessions from

Poland, Kenya, Tunisia, and some others, haired glumes were not

represented at all. In accessions from Turkey, Cyprus, and India,

their fraction reached ~30%. In accessions from Libya, their fraction

was at a maximum, 65%. On average, the proportion of samples

with pubescent glumes for bread wheat representatives was 13%. In

the dataset considered in this study, the fraction of accessions with

pubescent glumes is generally higher (from ~40% to 30%).

However, the considered sample contains different wheat species.

Note that for bread wheat T. aestivum in our dataset (Figure 6), this

ratio is consistent with the data of Börner et al. (2005).
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The conducted analysis demonstrated that the best network

performance was observed for the EfficientNet-B1 architecture,

which is probably due to the optimal ratio between the number

of network parameters and the size of training data in the

considered case. For data in which all three types of subsamples

are balanced equally in terms of the proportion of spikes with

pubescent glumes (Str_BalancedByClass stratification method), the

accuracy is maximized (F1 = 0.85, AUC = 0.96). At the same time,

for the holdout sample, the differences in which stratification was

used for training are small. The obtained estimates are typical in

solving image-based plant classification problems—for example,

Rolland et al. (2022) classified cotton images by the intensity of

pubescence (nine classes) using the ResNet model and obtained

84.85% for the accuracy of all images and 91.36% for leaf accuracy,

which were close to the estimates of the present study (Table 1). The

obtained estimates are typical in solving image-based plant

classification problems.

The most common classification of plants into varieties and

landraces is based on image analysis of grains. In the work of Landa

et al. (2021), grape seeds were classified as belonging to a certain

variety on the basis of image analysis and LDA. Depending on the

type of stratification, the accuracy varied from 79% to 93%.

Artificial neural networks were used to classify grains into bread

or durum wheat based on 21 features obtained from the image

analysis (Sabanci et al., 2020). The classification accuracy was about

99%. The CNN model of wheat grain image classification into 15

varieties was used in Lingwal et al. (2021) and yielded an accuracy of

0.97 on the test dataset.

The proposed method for analyzing spike images operates

relatively quickly. A computer with a GPU Nvidia RTX 2080ti

was used to train and evaluate CNNmodels. On average, processing

one image to predict glume pubescence took 50 s, with

segmentation taking up 25 s of this time. Thus, the proposed

method offers rapid and accurate phenotyping of wheat genetic

collection images, enabling the characterization of glume

pubescence trait diversity.
5 Conclusion

An integrated method based on the use of CNN to classify

wheat spike images by glume pubescence was proposed. The

method includes two stages of analysis: image segmentation based

on the U-Net network with an EfficientNet-B2 encoder and

classification of spike body images by glume pubescence

(pubescent or glabrous). The proposed approach allows

distinguishing spikes in the image with high accuracy and can be

used in various downstream spike analyses.

The classification of images based on glume pubescence

achieved the highest performance using the network featuring the

EfficientNet-B1 architecture. This network proved highly effective

when trained on both balanced and unbalanced image datasets,

demonstrating results comparable to those obtained via expert

classification. The analysis underscores the effectiveness of deep

machine learning networks in extracting crucial classification
TABLE 3 Effect of image brightness on the accuracy of ear classification
by scale pubescence.

R, G, B channel intensity change, % ACC PR AUC

+20 0.91 1 0.97

+40 0.67 1 0.94

+60 0.46 1 0.84

-20 0.93 1 0.99

-40 0.83 1 0.99

-60 0.58 1 0.99
The first column shows the value of the relative change in the intensity of the R, G, B channels
for the image pixels.
TABLE 2 Effect of image blurring on the accuracy of ear classification by
scale pubescence.

Blur kernel size, px ACC PR AUC

3 0.86 1 0.99

4 0.58 1 0.96

5 0.46 1 0.86

6 0.46 1 0.73
The first column shows the size of the blurring kernel, and the following columns show
estimates of the pubescence identification accuracy.
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features from spikes, thereby establishing the utility of these

methods in large-scale phenotyping of wheat genetic collections.
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