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Alternaria solani is the second most devastating foliar pathogen of potato crops

worldwide, causing premature defoliation of the plants. This disease is currently

prevented through the regular application of detrimental crop protection

products and is guided by early warnings based on weather predictions and

visual observations by farmers. To reduce the use of crop protection products,

without additional production losses, it would be beneficial to be able to

automatically detect Alternaria solani in potato fields. In recent years, the

potential of deep learning in precision agriculture is receiving increasing

research attention. Convolutional Neural Networks (CNNs) are currently the

state of the art, but also come with challenges, especially regarding in-field

robustness. This stems from the fact that they are often trained on datasets that

are limited in size or have been recorded in controlled environments, not

necessarily representative of real-world settings. We collected a dataset

consisting of ultra-high-resolution modified RGB UAV-imagery of both

symptomatic and non-symptomatic potato crops in the field during various

years and disease stages to cover the great variability in agricultural data. We

developed a convolutional neural network to perform in-field detection of

Alternaria, defined as a binary classification problem. Our model achieves a

similar accuracy as several state-of-the-art models for disease detection, but has

a much lower inference time, which enhances its practical applicability. By using

training data of three consecutive growing seasons (2019, 2020 and 2021) and

test data of an independent fourth year (2022), an F1 score of 0.93 is achieved.

Furthermore, we evaluate how different properties of the dataset such as its size

and class imbalance impact the obtained accuracy.
KEYWORDS

Alternaria solani, potato fields, supervised deep learning, UAV, sub-mm resolution,
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1 Introduction

The global annual production of potato surpassed 375 million

tons in 2021 (FAO, 2023), making it the third most important food

crop in terms of global consumption. However, a multitude of stress

factors make potato production highly variable and unpredictable,

which could result in lower yield. The control of these stresses

requires significant amounts of plant protection products at regular

intervals, with high economic and environmental impact as a result

Afzaal et al. (2021). The application of these products is usually

uniformly throughout the complete field, regardless of any spatial

variation of possible in-field infestations Afzaal et al. (2021).

Alternaria solani is the second most destructive foliar pathogen

in potato production and therefore an important stress factor in

potato cultivation. It causes early blight, leading to premature crop

dieback and hence crop yield reduction. Currently, a preventive,

uniform application with agrochemicals is used to avoid these

Alternaria infections. The application schedule follows the

treatment scheme for Phytophtora infestans, which is mostly

guided by early warning based on local and visual observations in

the area, as well as on weather forecast systems Van De Vijver et al.

(2020); Meno et al. (2021); Chakraborty et al. (2022). However,

public awareness about the impact of both the uniform and frequent

application of protection products is increasing, creating an

imminent demand for more efficient use. The European

Commission also targets a reduced use of agrochemicals in their

Farm to Fork strategy European commission (2022) to stimulate the

development of new agricultural management practices. As

application timing is crucial for controlling Alternaria solani,

automatic detection of early symptoms will be beneficial to

enhance early warning systems. If early symptoms can be

identified and mapped, task maps can be created for variable

spraying. Early warning systems and variable spraying can reduce

the consumption of protection products while minimizing both

production losses and the economic and environmental impact Van

De Vijver et al. (2020); Afzaal et al. (2021); Anim-Ayeko

et al. (2023).

Detection of disease symptoms using computer vision has been

extensively studied, traditionally using classical image processing

and machine learning and more recently also using deep learning

algorithms Thakur et al. (2022); Kamilaris and Prenafeta-Boldú

(2018). Deep learning surpasses traditional methods by

automatically learning features from large datasets, instead of

relying on manual feature engineering. It thus allows the

variability in e.g., growth stages, shape, color, size, cultivar,

growth and capture conditions to be captured Barbedo (2016).

Deep learning is also gaining attention in potato cultivation. In

recent literature, a wide diversity of applications can be found, both

in terms of the application itself and in terms of data collection and

spectral characteristics. The automated detection of disease

symptoms on leaves, plants or tubers, including blight detection,

is a frequently recurring application in literature. Where Van De

Vijver et al. (2020); Iqbal and Talukder (2020) and Hou et al. (2021)

mainly used traditional machine learning techniques, CNNs are

addressed in Sholihati et al. (2020); Tiwari et al. (2020); Afzaal et al.

(2021); Johnson et al. (2021); Khalifa et al. (2021); Rashid et al.
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(2021); Chakraborty et al. (2022); Chen et al. (2018); Van De Vijver

et al. (2022); Anim-Ayeko et al. (2023); Mzoughi and Yahiaoui

(2023); Xia et al. (2023). Remarkably, all of these studies - except

Van De Vijver et al. (2022) - focused on images of single leaves,

presumably as a result of the publicly available PlantVillage dataset

Hughes and Salathé (2015). This public dataset consists of leaves on

a neutral background and is used in the majority of the studies.

Only Afzaal et al. (2021); Johnson et al. (2021) and Xia et al. (2023)

trained CNNs utilizing datasets focusing on a more complex field-

level background, acquired using, respectively, digital hand-held

cameras, smartphones, and a combination of smartphone and

Internet data.

Despite this academic interest, the number of operational

applications of deep learning in potato cultivation is still limited.

Most of the studies are a proof of concept rather than an operational

method directly applicable in practice Kamilaris and Prenafeta-

Boldú (2018). Supervised models currently provide the best results

in various sectors and are the standard in agriculture as well, but

they come with a series of disadvantages that make real-time in-field

disease detection difficult. The quality of supervised models heavily

depends on the quantity and quality - and thus also the variability -

of the dataset on which the model is trained. Quite often, datasets

with insufficient size and variation are used Liu and Wang (2021).

As Thakur et al. (2022) concluded in their review, most studies are

performed on datasets in controlled conditions but fail generalize

enough to be usable in the field. Gathering a qualitative dataset to

develop a robust deep learning model is a relevant and challenging

bottleneck that still hinders the effective dissemination of these

models Barbedo (2018); Lu et al. (2021).

There are often practical reasons for this lack of application.

First, the dataset needs to accurately reflect how the model will be

used in practice. Since most models work on leaf-level images

captured from a perpendicular angle with uniform backgrounds,

applying them to field-level data becomes challenging Afonso et al.

(2019). Abade et al. (2021) noticed that more than 65% of the

reviewed studies were working in controlled environments [e.g.

PlantVillage dataset Hughes and Salathé (2015)]. Hence, there is a

need to move beyond these controlled environments, which

indicates that data should be acquired in the field, without

harming the crops.

In recent times, rapid and non-intrusive collection of field data

has been facilitated through the use of smartphones Johnson et al.

(2021); Xia et al. (2023). Yet, the downside is that this does not scale

to larger fields. In addition, potato plants are sensitive to

disturbances after crop closure, so tractor-mounted sensors are

not always convenient either. Satellite data can provide a solution to

easily monitor large fields without crop disturbance, but have

limited resolution and often experience cloud inference. However,

in early stages of infection, damage is often only visible as small

spots on the leaves, and detection therefore requires ultra-high

resolution data. Van De Vijver et al. (2020) concluded that, for the

detection of Alternaria lesions, spatial context is essential and

possibly more important than the combination of multiple

wavebands in the visible and near-infrared (NIR) range Van De

Vijver et al. (2022). In contrast to smartphones, tractor-mounted

sensors, or satellites, Unmanned aerial vehicles (UAVs) provide a
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highly flexible means of scanning fields without disturbance, as they

can be applied at the desired resolution and at the desired time,

independent of the application of crop protection products. Such

technology has only recently become available Maes and

Steppe (2019).

Second, there is a need for sufficiently large datasets to cover the

large variability (e.g., growth stages, cultivars, soil types) in

agricultural data and the disease progression with deep learning

Shorten and Khoshgoftaar (2019); Liu and Wang (2021). Thakur

et al. (2022) provided an overview of frequently used publicly

available datasets in the context of disease detection, including the

type of image background. As mentioned before, PlantVillage

[Hughes and Salathé (2015)] is the most widespread. Rashid et al.

(2021) showed the limiting variation in PlantVillage for potato

disease detection by testing a model, trained on PlantVillage, on

their own Potato Leaf Dataset (PLD). Results showed that the

overall accuracy was limited to 48.89%, compared to 86.38% in

the inverse situation. This insufficient variation in the training set is

also demonstrated by Mohanty et al. (2016): while reaching an

overall accuracy up to 99.34% on the PlantVillage dataset [Hughes

and Salathé (2015)], the accuracy reduced to 31.4% when testing on

a dataset under different conditions. It can be concluded that no in-

field dataset is readily available for early blight detection.

With limited publicly available datasets, most studies rely on a

single dataset for both training and testing Lu et al. (2021). When

the test set is extracted from the same database as the training set,

even though no overlap exists, the high similarity between them can

lead to decreased model accuracy when classifying entirely new data

with more diverse characteristics Barbedo (2018). Lu et al. (2021)

described this phenomenon as nonideal robustness, where it is

assumed that training and test sets have the same distribution.

However, this is not controllable in an in-field application caused

by, for example, varying weather conditions or cultivars, and

therefore is often associated with overfitting. Consequently, those

models are often not robust enough to apply in different situations.

Finally, larger datasets from different fields imply more

experimental and measurement efforts as well as an increase in

labeling effort. Labeling is a time-consuming, tedious and laborious

task. In some studies, models are trained to segment the images,

requiring individual labeling for each lesion or even pixel in the image

[Hou et al. (2021); Iqbal and Talukder (2020); Mzoughi and Yahiaoui

(2023); Xia et al. (2023)]. Object detection requires slightly less

labeling effort, although individual labeling for each lesion remains

necessary [Johnson et al. (2021); Oishi et al. (2021); Van De Vijver

et al. (2022)]. In classification, labeling involves assigning a class

name to each input sample, a less specific but also less time-

consuming task [Sholihati et al. (2020); Tiwari et al. (2020); Afzaal

et al. (2021); Khalifa et al. (2021); Rashid et al. (2021); Chakraborty

et al. (2022); Chen et al. (2018); Anim-Ayeko et al. (2023)]. A trade-

off must therefore be made between the desired output detail and the

labeling effort, with consideration for field-level implementation.

In previous work, we already demonstrated the feasibility of

using deep learning models for Alternaria detection with modified

ultra-high-resolution UAV data Wieme et al. (2022); Van De Vijver

et al. (2022). In this study, we include a much larger dataset and

propose a different, faster model dubbed AlternarAI. We compare
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its results on the collected dataset with those achieved by state-of-

the-art CNNs and address the following research questions:
1. How does the AlternarAI model generalize over

different years?

2. What is the impact of dataset characteristics such as size

and class imbalance on the results of the AlternarAI model?

3. How does the model perform when used at field-level on a

completely independent dataset?
2 Materials and methods

2.1 Field trial and data acquisition

Data were collected from both symptomatic and non-

symptomatic plants during four consecutive growing seasons,

2019, 2020, 2021 and 2022, on 40×20 m experimental fields with

sandy loam soil in Lemberge (Merelbeke), Belgium. The

experimental field was yearly located within the same larger

agricultural parcel (50.986544°N, 3.774066°E), although year by

year on a different section of it. The field trial is conducted in

analogy to the method described by Van De Vijver et al. (2020,

2022). Potato seedlings of different cultivars in the different growing

seasons (Table 1) were planted with a distance of 0.4 m between

tubers in the row, and 0.75 m between rows. To obtain a dataset

with sufficient variation, and hence construct a robust model,

different cultivars were used during different years. The choice

was made by a plant pathologist, focusing on varieties with medium

to high susceptibility to Alternaria solani, namely Spunta Nassar

and Adss (2016), Bintje Van De Vijver et al. (2020) and Fontane

Duarte et al. (2014).

Every year, four to eight plots with sizes between 3×2m and

4×3m were inoculated, after crop closure, with concentrations of

Alternaria solani spores varying between 0.5×103 and 2×103 per ml,

as shown in Table 1. The plots were randomly distributed across the

field to randomize effects of various field characteristics. On the one

hand, sufficient distance between the various plots was taken into

account to avoid spreading infection. On the other hand, the plots

were placed at a sufficient distance from the tractor tracks to avoid

previous and further related damage. For the reference point of each

plot, a row number was predetermined within the field, as well as a

preliminary choice of distance from the edge of the field within that

row. The exact placement within the defined row was adjusted

based on visual evaluation of the crop, to limit damaged plants (e.g.

due to presence of Colorado potato beetles) within the plot as much

as possible.

The inoculum was obtained by growing local field isolates under

near-UV light on V8 agar plates. In the evening of the inoculation

day, 14 days after the last field treatment, all plants in the predefined

plots were homogeneously sprayed with 400 mL of inoculum using

a backpack sprayer (Birchmeier, Stetten, CHE). To obtain leaf

wetness for a sufficient long period and promote infection, the

plants were covered at night with a tent structure of plastic tubes

and clear film. The morning after inoculation, the uncovered part of
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the field received an extra treatment against Alternaria solani. An

overview of the varieties, inoculation dates, concentration of spores

and number of plots per year is given in Table 1A. In Figure 1, on

the left top row, an overview image (modified RGB) of the field trial

of 2020 is shown. In 2019 and 2020, in addition to the infected plots,

four control plots were selected within the field as baseline for the

visual monitoring. These were not sprayed with Alternaria spores or

covered with a tent construction, and treated against Alternaria the

morning after inoculation like the rest of the field. These control

plots were defined analogously, taking into account sufficient

distance from the infected plots and tractor tracks, and spread

over the entire field. In 2021 and 2022 it was decided not to lay out

these control plots explicitly anymore, as the remainder of the field

was treated and monitored in the same way.

Starting the day after inoculation, plots were monitored visually on

a daily basis by a trained plant pathologist. At the time of the first small

symptoms, at the underside of the lower leaves Van De Vijver et al.

(2020), although not yet visible from the top viewpoint in the visual

spectrum, the first flight was performed. Based on this visual ground
Frontiers in Plant Science 04
truthing, subsequent flights were scheduled at 2-3 days intervals,

depending on weather conditions, resulting in measurements of

twelve different days (three or four per growing season, details in

Table 1). A DJI M600 PRO (DJI, Shenzhen, CHN) unmanned aerial

vehicle (UAV) was equipped with a modified Sony Alpha 7III camera

(42.4 MP) (Sony, Tokyo, JPN) with a 135 mm lens, (Batis 135 mm f2.8,

Carl Zeiss AG, Oberkochen, DEU) for data acquisition. To allow the

red channel of the camera to capture photons in the NIR range as well,

the near-infrared (NIR) blocking filter in the RGB version of the

camera was replaced by LifePixel (LifePixel, Seattle, USA) Maes and

Steppe (2019). The choice to use a modified RGB camera, thus sensitive

in the NIR, was based on previous work by Van De Vijver et al. (2020).

This work showed that, although lesions were noticeable in the visual

spectral region, the distinction between the healthy and infected pixels

was more prominent and showed earlier in the near-infrared spectrum

due to the disrupted leaf structure. To stabilize the camera and keep it

in nadir-looking position, a gimbal, type DJI Ronin-MX (DJI,

Shenzhen, CHN) was used. The flights took place at an altitude of

10 m to obtain the ultra-high resolution [0.3 mm/pixel Van De Vijver
TABLE 1 Overview parameters field trial.

(A): Field experiment

Year Variety Inoculation date
Concentration spores
(per ml)

Number (size) of plots

2019 Spunta 07/30/2019 3×103 4 (3×2m)

2020 Bintje 07/06/2020
2×103

0.5×103
4 (4×3m)
4 (4×3m)

2021 Bintje 06/28/2021 1.7×103 4 (4×3m)

2022 Fontane 06/29/2022 1×102 4 (4×3m)

(B): Flight measurements

Year Flight date
Days after inoculation

(DAI) Weather conditions
Total number of images
(Other + Alternaria plots)

2019

08/02/2019 3 Cloudy, rain showers 564 (393 + 171)

08/05/2019 6 Partly cloudy, warm 262 (168 + 94)

08/08/2019 9 Cloudy, warm 670 (473 + 197)

2020

07/11/2020 5 Sunny, variable cloudy 732 (458 + 274)

07/13/2020 7 Sunny, warm 964 (567 + 397)

07/15/2020 9 Cloudy, light rain showers 562 (335 + 227)

2021

07/02/2021 4 Sunny, warm 484 (438 + 46)

07/05/2021 7 Partly cloudy 506 (449 + 57)

07/07/2021 9 Partly cloudy 493 (430 + 63)

07/09/2021 11 Cloudy 266 (234 + 32)

2022

07/04/2022 5 Sunny, warm, dry 592 (545 + 47)

07/06/2022 7 Sunny, warm, dry 619 (571 + 48)

07/08/2022 9 Sunny, warm, dry 621 (564 + 57)

07/12/2022 13 Sunny, warm, dry 621 (568 + 53)
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et al. (2022)], without UAV-downwash affecting the crops. The camera

acquired top-view images of the crops with a field of view of about 2.5

m × 1.5 m, as shown in the middle of the top row of Figure 1. In 2019,

2020 and 2021, coordinates were assigned to all images based on the

UAV logs. In 2022, the UAV was equipped with an extra RTK (Real

Time Kinematic) module immediately adding the coordinates to the

metadata of the images. More details about the flight measurements are

given in Table 1B. In total, 7956 images were captured over the four

consecutive years.
2.2 Alternaria Dataset

The total dataset comprises data from fourteen different flights. As

the goal is to create a supervised classification model with a binary

output (Alternaria or not), binary labeled data is needed. The ultra-

high-resolution images were first divided into non-overlapping patches

of 256×256 pixels to serve as input for the model. Therefore, a

preprocessing pipeline was created to select a subset of image patches

in order to obtain a subset with sufficient variation. Subsequently, the

selected subset was labeled, from which the final dataset was then

created for further processing. These two steps, and the resulting

experimental dataset, are described in the following three subsections

and shown in the left half of Figure 2. The bottom row of Figure 1

illustrates the evolution of the Alternaria symptoms in patches on the

different measurement days in the campaign of 2022.

2.2.1 Preprocessing pipeline
The first step in the preprocessing pipeline consisted of making

a random selection from the images per measurement day. In this

selection, attention was paid to the ratio of number of images from

Alternaria plots to the total number of selected images per day to

avoid an unbalance between both categories. In addition, an equal
Frontiers in Plant Science 05
number of images from each Alternaria plot were selected per

measurement day.

To perform this selection, all images were categorized based on

their coordinates, compared to the coordinates of the vertices of the

plots measured with an RTK-GPS (S10 GNSS Receiver) (Stonex,

Milan, ITA), in QGIS QGIS.org (2020). For the data of 2019 and

2020, a ratio of 75/25% Alternaria/other was used, in 2021 50/50%

and in 2022 62/38%, always with equal amounts of each

measurement day. The reason for the slight oversampling of

Alternaria plots is because Alternaria plots often still have non-

symptomatic parts present. This resulted in 1525 selected images.

Next, four blocks of 512×512 pixels were selected from each selected

image. To avoid the selection of irrelevant blocks, a three-step selection

process was performed to evaluate the sharpness, illumination and

presence of vegetation pixels, analogous as the flow described by Wieme

et al. (2022). Each image (7952×5304 pixels) was split up into blocks of

512×512 pixels. The sharpness of each block was calculated using the

perceptual-based no-reference objective image sharpness metric (CPBD)

Bhor et al. (2013) and only blocks with sufficiently high CPBD-value

(threshold value of 0.55) were processed further. Then, an illumination

thresholdwas set to avoid lots of shadow areas, based on the lightness value

in Hue, Saturation and Lightness (HSL). Last, to stimulate the selection of

blocks containing plants, the green leaf index (GLI) Louhaichi et al. (2001)

was adapted to the modified RGB images by swapping the green and red

band in the Equation 1 and executed on all remaining blocks. The four

blocks with the highestmodifiedGLI-value, being at least 0.5, were selected

for further processing. If fewer than four blocks met the selection criteria,

fewer blocks of that image were included.

Modified GLI =
2R − G − B
2R + G + B

(1)

In the third step, the selected blocks of each image were raster-

clipped into four patches of 256×256 pixels (shown in Figure 1),
FIGURE 1

Dataset overview and examples. Top row: left: overview image of the field trial in July 2020 with 8 plots of 4 m × 3 m; middle: example of modified
RGB image; right: Alternaria (bottom) and other patch (top). Bottom row: example patch per measurement day in 2022, showing the evolution of
the Alternaria symptoms, starting from the day of the inoculation (control data) until 13 Days After Inoculation (DAI).
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resulting in, in case all criteria were met, sixteen patches per selected

image. As an addition to this preprocessing pipeline, to increase the

variation and usability of the dataset, another 480 random patches

were manually added, from the total set that had not been touched

by the previously predetermined selection criteria. The complete

preprocessing pipeline resulted in a selection of 22,722 patches for

the labeling campaign.
2.2.2 Labeling workflow
All 22,722 selected patches of 256 × 256 pixels were

uploaded to the Labelbox platform Labelbox, Inc (2020). The

patches were labeled into four different classes: “Alternaria”,

“Healthy”, “Dubious” or “Background”. Afterwards, these
Frontiers in Plant Science 06
four different classes were reduced to two categories for

performing binary classification; “Alternaria” (category 1) or
FIGURE 2

Visualization of the entire workflow. First step is in-field data acquisition. Left: training process; Right: model inference toward application.
TABLE 2 Size of labeled dataset by year and category.

Year Other Alternaria Total

2019 1708 2795 4503

2020 2732 1739 4471

2021 1337 585 1922

2022 2130 1027 3157

Total 7909 6148 14 057
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“Other” (category 0), covering both “Background” and

“Healthy” patches.

Each patch undergoes labeling by three different annotators,

resulting in three assigned labels. Only patches exhibiting sufficient

consensus were considered, leading to the definition of four distinct

situations. The initial scenario pertains to patches that received an

identical label from all three annotators, achieving 100% consensus.

The remaining three scenarios encompass patches with two

instances of one label and one instance of a different label. In the

first scenario, if a patch was labeled “Alternaria” twice and

“Dubious” once, the consensus label assigned was “Alternaria”. In

the second scenario, patches labeled twice as “Healthy” and once as

“Dubious” or “Background” were categorized as “Healthy”. In the

third scenario, a patch labeled twice as “Background” and once as

“Healthy” was designated as “Healthy”. Patches not falling into

these four scenarios were excluded from further consideration.

After processing the various labels and scores, a final dataset of

14,057 patches was extracted, consisting of 7909 patches of category

“Other” and 6148 patches of category “Alternaria”, as shown in

Table 2. From the 7909 patches of category 0, and 6148 patches of

category 1, respectively 4225 and 4388 were labeled with

100% consensus.
2.3 Supervised classification

We compared several models for the task of supervised

Alternaria detection. All models were implemented using the

Pytorch library Paszke et al. (2019) using Python 3.9 and trained

using an NVIDIA GeForce RTX 3090 GPUs with CUDA 11

Nickolls et al. (2008).

2.3.1 Experimental datasets
In all experiments, data augmentation in the form of random

horizontal and vertical flipping of the training images was used to

create additional variation in the dataset and to reduce the problem

of overfitting Shorten and Khoshgoftaar (2019). Additionally, all

data was normalized - per channel - by subtracting the average

value and then dividing by the standard deviation, as determined in

the specific data (sub)set. Different subsets of the data were created

for the different experiments of Section 3. More details are provided

in the respective subsections of Section 3.

2.3.2 Model architectures
Over the last decade, various novel CNN architectures have

been proposed, each with their own advantages and applicability

scenarios Kamilaris and Prenafeta-Boldú (2018). In previous works

on blight detection, different architectures have been used, such as

VGG [Sholihati et al. (2020); Tiwari et al. (2020); Afzaal et al.

(2021); Chakraborty et al. (2022); Anim-Ayeko et al. (2023), ResNet

(Chakraborty et al. (2022); Anim-Ayeko et al. (2023), Inception

(Tiwari et al. (2020)] and EfficientNet [Afzaal et al. (2021)]. Taking

these into account, and to add more variation in older and newer

models, as well as in size of the architecture, five state-of-the-art

architectures, pretrained on ImageNet are compared: VGG11

Simonyan and Zisserman (2015), ResNet50 He et al. (2015),
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InceptionV3 Szegedy et al. (2015), DenseNet161 Huang et al.

(2016) and EfficientNetV2 Tan and Le (2021), all available in the

Pytorch library Paszke et al. (2019).

For each network, two different approaches of transfer learning

are compared where either the full model is finetuned using our

own dataset (deep transfer learning) or where all layers are kept

fixed except for the last layer (shallow transfer learning). In the deep

transfer learning approach, we trained the entire network by

updating all layers, on our dataset with batch size 128. For all

models except VGG11, we used 0.001 as initial learning rate in

combination with Adam Kingma and Ba (2014) together with an L2

regularization of 0.0001. We trained for 100 epochs. This

configuration of hyperparameters proved to function optimal for

these models. For VGG11, we used an initial learning rate of 0.0001,

as the model was - presumably due to the large amount of

parameters - unable to deal with the smaller and unbalanced

subdatasets in the other configuration. In the shallow transfer

learning approach with freezing, we kept the convolutional layers

of the pre-trained network frozen and only trained a new classifier

on top of them using the same settings.

2.3.3 AlternarAI model
In addition to the existing deep neural network architectures,

we developed a custom CNN for binary classification of Alternaria

solani, called AlternarAI. The AlternarAI model includes five

convolutional layers, with filter size 3×3 and the number of

channels ranging from 3 to 256, to capture different levels of

detail in the input patches. To improve the training and

generalization performance, a batch normalization layer is added

after each convolutional layer, followed by a leaky rectified linear

unit activation layer Xu et al. (2015).

The architecture also includes pooling layers. After the first four

convolutional layers, max pooling is used with filter size 2×2, and

after the fifth convolutional layer, average pooling with filter

size 4×4.

The final layers of the architecture are two fully connected layers,

which take the high-level features extracted by the convolutional

layers and use them to classify the input data. The number of neurons

in these layers is determined by the size of the input data after the last

convolutional layer (3×3×256) and the number of classes to be

classified, in our case 1 for binary classification. Right before each

fully connected layer, a dropout layer with a probability of 0.3 is

included, again to counteract overfitting and improve the

generalization performance. The first fully connected layer is

followed by a leaky rectified linear activation, the last one by a

sigmoid activation to produce the binary output value.

The AlternarAI model is trained with a batch size of 128, with

an initial learning rate of 0.001 and multistep approach, reducing

the learning rate after 30 and 80 epochs by factor 0.1. Adam Kingma

and Ba (2014) is used to update the parameters during training,

with L2 regularization of 0.0001.

2.3.4 Model evaluation
In this study, we employed a variety of evaluation metrics to

quantitatively evaluate and compare the performance of our

models. Specifically, we utilized accuracy, precision, recall, and F1
frontiersin.org

https://doi.org/10.3389/fpls.2024.1206998
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wieme et al. 10.3389/fpls.2024.1206998
score metrics to assess the performance of our classification model.

The formulas of these metrics are shown in Equations 2–5

respectively. When comparing various deep learning models, the

evaluation metrics were calculated using a 5-fold cross-validation

approach. For all other experiments, they were averaged over 10

runs and reported as mean ± standard deviation.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score =
TP

TP + 0:5� (FP + FN)
(4)
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Accuracy =
TP + TN

TP + FP + TN + FN
(5)
3 Results

We experimentally evaluate different aspects of the task of

supervised Alternaria detection. In Subsection 3.1, we compare

different model architectures to find a suitable model that provides a

favorable trade-off between accuracy and computational cost.

Taking the best-performing model based on this trade-off, we

then evaluate its generalization capability by training and testing

the model on data from different years in Subsection 3.2. In

addition, in Subsection 3.3, we also evaluate the impact of the

dataset size, class imbalance, and label quality on the final obtained

accuracy. This provides useful guidelines to practitioners who are
TABLE 3 Results of different architectures on various datasets using 5-fold cross-validation.

(A): F1 score

Architecture 2019 2020 2021 2022 19-20-21 19-20-21-22

ResNet50 (STL) 0.73 0.77 0.65 0.77 0.80 0.80

VGG11 (STL) 0.86 0.69 0.62 0.73 0.77 0.75

InceptionV3 (STL) 0.84 0.60 0.54 0.62 0.72 0.69

DenseNet161 (STL) 0.88 0.76 0.62 0.79 0.81 0.82

EfficientNetV2 (STL) 0.83 0.67 0.64 0.64 0.76 0.76

ResNet50 (DTL) 0.91 0.88 0.90 0.91 0.91 0.91

VGG11 (DTL) 0.93 0.91 0.94 0.92 0.93 0.93

InceptionV3 (DTL) 0.93 0.90 0.87 0.90 0.92 0.91

DenseNet161 (DTL) 0.92 0.89 0.88 0.89 0.92 0.92

EfficientNetV2 (DTL) 0.93 0.90 0.89 0.92 0.92 0.92

AlternarAI 0.91 0.87 0.79 0.88 0.92 0.91

(B): Accuracy

Architecture 2019 2020 2021 2022 19-20-21 19-20-21-22

ResNet50 (STL) 0.70 0.82 0.81 0.85 0.82 0.83

VGG11 (STL) 0.82 0.79 0.81 0.84 0.80 0.80

InceptionV3 (STL) 0.80 0.76 0.80 0.84 0.80 0.77

DenseNet161 (STL) 0.85 0.82 0.80 0.87 0.81 0.85

EfficientNetV2 (STL) 0.79 0.75 0.81 0.79 0.79 0.79

ResNet50 (DTL) 0.89 0.91 0.94 0.94 0.92 0.93

VGG11 (DTL) 0.92 0.93 0.97 0.95 0.93 0.94

InceptionV3 (DTL) 0.91 0.92 0.91 0.94 0.92 0.92

DenseNet161 (DTL) 0.91 0.92 0.93 0.93 0.92 0.93

EfficientNetV2 (DTL) 0.91 0.92 0.93 0.95 0.93 0.93

AlternarAI 0.89 0.90 0.89 0.92 0.92 0.93
STL, Shallow Transfer Learning; DTL, Deep Transfer Learning; 19-20-21, combined dataset of 2019, 2020 and 2021; 19-20-21-22, complete dataset of all years (2019, 2020, 2021, 2022).
The best score per year or combination of years is underlined in both subtables.
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interested in collecting datasets for similar purposes. Finally, we

show that the predictions of our model can be used to generate an

overview heatmap of Alternaria infections that can then be used as a

guide for the more precise application of plant protection products

(Section 3.4).
3.1 Comparison of various deep
learning models

We first compare our AlternarAI model with five other popular

CNN architectures: ResNet50 He et al. (2015), VGG11 Simonyan

and Zisserman (2015), InceptionV3 Szegedy et al. (2015),

DenseNet161 Huang et al. (2016) and EfficientNetV2 Tan and Le

(2021). For each model, we compare two strategies where either
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only the last layer was retrained (Shallow Transfer Learning: STL)

or all layers were retrained (Deep Transfer Learning: DTL). The

results are shown in Tables 3 and 4. These differ in the performance

metric being used, respectively F1 score and accuracy, Precision and

recall. We used 5-fold cross-validation to obtain all these results.

The columns correspond to different subsets of the entire dataset

being used for training and evaluation. These can either correspond

to just a single year (2019, 2020, 2021, 2022) or a combination of

multiple years (19-20-20 and 19-20-21-22). In all cases, the models

are trained and evaluated on data from the same period. We found

that finetuning all layers (DTL) typically outperforms the shallow

transfer learning, presumably due to the low degree of similarity

between ImageNet Fei-Fei et al. (2009) and the Alternaria dataset.

As shown in Table 3, the F1 scores of the deep transfer learned

models and AlternarAI fluctuate among the different datasets and
TABLE 4 Extra metrics of results of different architectures on various datasets using 5-fold cross-validation.

(A): Precision

Architecture 2019 2020 2021 2022 19-20-21 19-20-21-22

ResNet50 (STL) 0.82 0.76 0.75 0.79 0.84 0.84

VGG11 (STL) 0.84 0.80 0.78 0.78 0.82 0.80

InceptionV3 (STL) 0.82 0.82 0.85 0.80 0.81 0.82

DenseNet161 (STL) 0.87 0.80 0.80 0.86 0.81 0.86

EfficientNetV2 (STL) 0.32 0.70 0.74 0.74 0.79 0.80

ResNet50 (DTL) 0.93 0.93 0.94 0.93 0.94 0.95

VGG11 (DTL) 0.94 0.92 0.94 0.93 0.92 0.93

InceptionV3 (DTL) 0.94 0.91 0.82 0.94 0.93 0.97

DenseNet161 (DTL) 0.93 0.90 0.91 0.90 0.92 0.93

EfficientNetV2 (DTL) 0.93 0.91 0.93 0.96 0.94 0.93

AlternarAI 0.92 0.89 0.91 0.91 0.93 0.92

(B): Recall

Architecture 2019 2020 2021 2022 19-20-21 19-20-21-22

ResNet50 (STL) 0.71 0.78 0.59 0.76 0.79 0.78

VGG11 (STL) 0.89 0.61 0.51 0.69 0.73 0.73

InceptionV3 (STL) 0.86 0.48 0.40 0.51 0.66 0.61

DenseNet161 (STL) 0.89 0.73 0.55 0.74 0.82 0.78

EfficientNetV2 (STL) 0.82 0.64 0.58 0.56 0.73 0.73

ResNet50 (DTL) 0.89 0.85 0.86 0.89 0.88 0.87

VGG11 (DTL) 0.93 0.90 0.95 0.92 0.93 0.94

InceptionV3 (DTL) 0.92 0.89 0.93 0.87 0.90 0.85

DenseNet161 (DTL) 0.92 0.89 0.87 0.90 0.92 0.91

EfficientNetV2 (DTL) 0.93 0.88 0.85 0.88 0.90 0.91

AlternarAI 0.90 0.85 0.71 0.85 0.91 0.91
STL, Shallow Transfer Learning; DTL, Deep Transfer Learning; 19-20-21, combined dataset of 2019, 2020 and 2021; 19-20-21-22, complete dataset of all years (2019, 2020, 2021, 2022).
The best score per year or combination of years is underlined in both subtables.
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models. However, similar values of F1 score were observed for the

different deep transfer learned models. When using datasets

combining different years (19-20-21 and 19-20-21-22), the F1

scores vary between 0.91 and 0.93 when performing 5-fold cross-

validation. The F1 scores of the AlternarAI model are 0.92 and 0.91,

for 19-20-21 and 19-20-21-22 respectively, and thus comparable to

the F1 scores of the other deep transfer learned models. The results

in terms of precision and recall are also very similar for the

complete dataset, as well as for the combination of 2019, 2020

and 2021, which will be used as a training set in further

experiments. For the individual years, AlternarAI scores were

slightly lower than ResNet50 (DTL), EfficentNetV2 (DTL),

InceptionV3 (DTL) and VGG11 (DTL). Furthermore, it can be

seen that VGG11 consistently demonstrates slightly better results

than the other models in terms of F1 score, accuracy, and recall.

While the obtained F1 score is of course important for the

practical applicability of the model, it is not the only concern, most

models obtain a similar performance hence other elements such as

the inference time or the memory required to evaluate the model

might be crucial to select the best model. Table 5 shows the difference

in trainable parameters and inference time between all models. Most

state-of-the-art architectures have a very large number of trainable

parameters, whereas the AlternarAI model has at least fifteen times

fewer parameters. In addition, the AlternarAI had a lower inference

time (1.49 ms) compared to the state-of-the-art architectures,

particularly to DenseNet161 (DTL) and EfficentNetV2 (DTL),

models with only slightly higher F1 scores than AlternarAI. The

difference in inference time with VGG11 is limited, however, VGG11

has more than 80 times the total number of parameters compared to

the AlternarAI model, making it less suitable for memory-
TABLE 5 Amount of parameters in the model, mean inference time (ms)
of 5 folds per image patch of 256×256 pixels and total processing time
on field set, based on an average of 528 images per flight.

Architecture Parameters
(Trainable

subset)

Mean
inference

time
(ms)

Total
processing

time
on field
set (min)

ResNet50 (STL)
23.77×106

(0.26×106)
9.35 ± 1.28 51.01

VGG11 (STL)
128.77×106

(4.10×103)
1.79 ± 0.10 9.77

InceptionV3
(STL)

24.35×106

(2.82×103)
18.10 ± 2.15 98.75

DenseNet161
(STL)

26.75×106

(0.28×106)
28.89 ± 1.50 157.62

EfficientNetV2
(STL)

20.34×106

(0.16×106)
22.12 ± 0.61 120.69

ResNet50 (DTL) 23.77×106 9.34 ± 0.36 50.96

VGG11 (DTL) 128.77×106 1.91 ± 0.44 10.42

InceptionV3
(DTL)

24.35×106 18.16 ± 0.98 99.08

DenseNet161
(DTL)

26.75×106 28.86 ± 0.53 157.46

EfficientNetV2
(DTL)

20.34×106
22.29 ± 0.28 121.61

AlternarAI 1.57×106 1.49 ± 0.09 8.13
TABLE 6 Results of testing a trained model on a completely independent dataset (averaged over 10 runs).

(A): Accuracy

Tested on…

2019 2020 2021 2022 19-20-21

Trained on…

2019 / 0.77±.0.03 0.73±0.05 0.87±0.02 /

2020 0.80±0.02 / 0.88±0.12 0.84±0.03 /

2021 0.79±0.01 0.81±0.01 / 0.84±0.02 /

2022 0.91±0.03 0.79±0.08 0.69±0.08 / 0.78±0.05

19-20-21 / / / 0.93±0.01 /

(B): F1 score

Tested on…

2019 2020 2021 2022 19-20-21

Trained on…

2019 / 0.75±0.02 0.68±0.04 0.82±0.02 /

2020 0.83±0.01 / 0.82±0.02 0.74±0.05 /

2021 0.81±0.01 0.70±0.03 / 0.71±0.04 /

2022 0.83±0.03 0.76±0.08 0.65±0.06 / 0.77±0.05

19-20-21 / / / 0.89±0.01 /
The bold values show the result of the model trained on the data of 2019, 2020 and 2021 together, tested on the independent set of 2022.
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constrained devices. Thanks to its excellent trade-off between

accuracy, inference time and memory consumption, the AlternarAI

model was selected for all subsequent experiments.
3.2 Generalization over different years

In the previous Section, we evaluated the model on data from a

single growing season, as is common in existing work. In this

Section, we however want to evaluate how well the model

generalizes to data from unseen years. A model that is robust

against the differences in environmental factors between different

years is much easier to use in practice. To evaluate this, we trained

the AlternarAI model on subsets of the data of a single year and

tested it on the completely independent subsets of all other years.

We report both the accuracy and F1 score, averaged over 10 runs in

Table 6. The F1 score varies between 0.65 and 0.83 on the individual

years, but reaches 0.89 when trained on a combined dataset of 2019,

2020, and 2021 and tested on the set of 2022. For the remainder of

the experiments, we use this best-performing model. Table 7 is the

normalized confusion matrix for this model, showing that indeed,

the model is making accurate predictions. For completeness, we also

include some qualitative results in Figure 3 where we show two
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example patches of each category (i.e., true negatives, false

negatives, false positives and true positives).
3.3 Impact of dataset characteristics

As is common in machine learning applications, the

performance of the model heavily depends on the training data

being used. In this section, we investigate the influence of three

main properties of a dataset: (i) the size, (ii) the balance between

both classes and (iii) the correctness of the labels. We hope that

these findings will serve as a guideline for practitioners who are

interested in collecting their dataset for a similar task.

Since deep learning is known for its demand for large datasets,

we first evaluated the impact of the amount of patches in the

training set. As can be observed in Figure 4A, the model accuracy

increases with an increase in the number of patches in the training

set. However, a stagnation of the curve occurs, at about 4200

patches where the model obtains an accuracy of 0.90. Slightly

lower than the final accuracy after 10,000 patches (0.92). While

this difference in accuracy is most likely not critical, it can

significantly reduce the data labeling cost.

In addition to the size of the training set, the imbalance between

the classes might also be significant for the accuracy of the model.

To investigate this, we created imbalanced versions of the training

dataset and retrained the model. We varied the number of

Alternaria patches between 0% and 100% of the total training

dataset and show the resulting accuracy in Figure 4B. The class

imbalance has a particularly negative effect when it is below 20% or

above 75%. So, an extremely skewed dataset will influence the

results, but there is margin for a reasonably large imbalance in

the set.
FIGURE 3

Example patches of True Negatives (top left), False Negatives (bottom left), False Positives (top right) and True positives (bottom right).
TABLE 7 Resulting normalized confusion matrix, trained on 2019, 2020
and 2021 data, tested on 2022 data, averaged over 10 runs.

Predicted

Other Alternaria

True

Other 0.93 0.07

Alternaria 0.09 0.91
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Finally, we investigate the robustness of the model to the quality

of the labels. Data labeling is largely a human effort and is thus

prone to human errors. In this paper, we addressed this by having

each sample labeled multiple times by independent labelers. This

results in high quality labels but is of course very expensive. If the

model is robust against a significant number of labeling errors, it

might suffice to have a single label for each sample, resulting in a

much more inexpensive labeling campaign. To investigate the

robustness, we created corrupted subsets of the training data

where we inversed the label. Figure 4C shows the accuracy of the
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model for different corruption rates. As expected, the performance

of the model degrades significantly for increasing corruption rates

but even at a rate of 30% mislabeled inputs, the model is still able to

achieve an accuracy of 80%.
3.4 Field-level detection

In all previous sections, we limited ourselves to small individual

patches. In this section, we combine all individual predictions into a
B

C

A

FIGURE 4

Graphical representation of different dataset characteristics and their effect on the accuracy with 95% confidence intervals over 10 runs. (A) Size.
(B) Balance. (C) Sensitivity.
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large-scale overview of the entire field. This allows us to quickly

identify regions of the field that are potentially infected and that

might warrant further inspection or treatment. Figure 5 shows the

results for four different days after inoculation (DAI). For each

individual patch in the image, the model predicts a score between 0

and 1. We then average out these predictions of nearby patches to

obtain an overview heatmap. Regions that are indicated in red have

a higher number of patches that are predicted to contain Alternaria.

We can clearly see the four infected regions on each image,

annotated with a black rectangle. For these patches, the model

accurately predicts a much higher Alternaria rate, even only five

days after inoculation. Interestingly, the model also detected

Alternaria outside these zones on data of the last day. Upon

further inspection, we found that these plants were indeed infected.

As can be seen in Figure 5, the model is able to distinguish the

images captured above Alternaria plots from the other regions in

and around the field, even five days after inoculation. Figure 6

shows a small part of an image taken at 07/04/2022 (5 DAI) in the

upper rightmost Alternaria plot, both the RGB version as well as the

Modified RGB version. The model classified this image as

Alternaria, although it is almost invisible to see the Alternaria

lesions in the normal RGB image.
4 Discussion

In recent years, interest in the use of deep learning for disease

detection in the precision agriculture context increased

dramatically. Unfortunately, most of these studies are limited in
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the variability of the data used. They typically train and test their

models on data from the same field recorded during the same year.

Hence, they must be considered as a proof of concept rather than as

operational methods directly applicable in practice. After all, robust

supervised models require a sufficiently large, diverse,

representative and labeled dataset Lu et al. (2021). Only when a

model performs well on a completely independent dataset, it can be

considered robust. Image data in field conditions can differ

significantly due to variations in plants (e.g., size, shape, cultivar),

variations in disease progress, as well as variations in measurement

conditions (e.g., illumination and weather conditions).

This study aims to provide a more realistic exploration of using

deep learning models in the context of early blight detection in

potato fields. We used UAVs to collect a very large dataset, covering

a wide variety of measurement conditions and spanning

multiple years.

Our large, labeled dataset of 14,057 image patches allows us to

quantitatively compare different state-of-the-art neural network

models. For this experiment, we combined data from all four

years and evaluated the performance of different models using 5-

fold cross validation. Similar accuracies (0.92-0.93) and F1 scores

(0.91-0.92) were observed for all models. We then developed our

own AlternarAI architecture, based on the best performing VGG11

model. Our model obtains a similar performance, yet is much

smaller compared to the other models (Table 5), reducing the

computational cost and training time. In addition, we also

compare the inference time of the different models since this is

an important constraint in practical applications Johnson et al.

(2021). We found that our AlternarAI model is significantly faster
FIGURE 5

Overview maps of the predicted Alternaria score at different days after inoculation (DAI) in 2022. These predictions were made by the AlternarAI
model trained on data from previous years (2019, 2020 and 2021). The black rectangles indicate zones that were infected manually. Regions with a
red color indicate higher predicted Alternaria rates.
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than most baseline approaches. Only VGG11 has a similar inference

time. While the processing time for a single patch is relatively low

(1-30 ms), the overall compute time to process all data from an

entire flight quickly adds up. It would for example take 43 minutes

longer to process one flight using ResNet50 than using AlternarAI.

We found that our AlternarAI model provides the best trade-off

between accuracy, computational cost and memory consumption.

Our large dataset, spanning multiple years also allows us to

investigate other properties of these deep learning models that are

typically not addressed in similar works. We analyzed how well

models are able to generalize to data of other years and other

cultivars. While we did obtain fluctuating F1 scores for different

years, as presented in Table 6, we also found that a model trained on

combined data of 2019, 2020 and 2021 performed very well on data

from 2022. We attribute this to the wide variety of different cultivars,

weather and capturing conditions present in the training data.

In a next series of experiments, we assessed the influence of

three different dataset characteristics on the final accuracy of the
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model, as an extension of what we described in a preliminary study

[Wieme et al. (2022)]. We first measured the impact of the amount

of training data. Figure 4A clearly shows that up to a certain

threshold point, additional data directly improves accuracy. The

threshold amount here is slightly higher than observed in our

previous work [Wieme et al. (2022)]. This is possibly because of

the fact that in previous work the test and training set were both

selected from the data of 2019 and 2020, and thus had a more equal

distribution, whereas in this paper a total new test set of 2022

is used.

A second aspect to take into account when training supervised

models is the balance between different classes. In Figure 4B, the

same trend as observed in our previous work Wieme et al. (2022)

with data from 2019 and 2020 can be seen: a perfect balance in the

training dataset is not required. Here, we see that ratios between

20% and 70% of Alternaria patches deliver comparable results in

overall accuracy. In previous experiments, we saw that models

trained and tested on the datasets of 2021 and 2022 experience
FIGURE 7

Evolution of the mean field disease score for different years on all images of each measurement day.
FIGURE 6

Close-up from both RGB (left) and Modified RGB (right) image in the upper rightmost Alternaria plot of the 4th of July 2022 (5 DAI).
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more difficulties than with 2019 and 2020 sets. Besides the fact that

these two are the smallest, the balance is 70-30% in 2021 and 67-

32% in 2022, which already appears to be on the edge of what

is acceptable.

Finally, we analyzed the sensitivity of the model to incorrect

labeling (3c). In agreement with previous findings [Wieme et al.

(2022)], the accuracy initially decreases steadily as the amount of

wrongly labeled data points increases. Once past 30% corrupt labels,

a steeper drop can be noticed. After 50%, we see a symmetric

pattern in the reverse direction, since the model receives more

incorrect than correct information, leading the model to learn to

make exactly opposite predictions.

These results about dataset characteristics are in accordance with

what Johnson et al. (2021) discussed: the foundation of a successful

model is the quality and quantity of the training data. Collecting a

large, high-quality dataset is a time- and cost-consuming process,

especially when experts must apply manual labeling. Thus, our results

provide worthwhile advice for acquiring similar datasets, which is to

collect a sufficiently large dataset, with a ratio of at least 25% between

both classes and with careful focus on labeling.

We also performed qualitative experiments where we further

evaluated the performance of the trained model (trained on the

patches of 2019, 2020 and 2021) on the full images of 2022. By using

this varied dataset rather than a single time point dataset, the model

became more robust. This is illustrated in Figure 5, where images in/

around the infected plots are clearly classified as Alternaria, in

contrast with images in the rest of the field, on different

measurement days of an independent set. These maps can form

the baseline for task maps for variable spraying. The whole

inference workflow is shown in the right half of Figure 2.

As a final experiment, we average out all predictions of the

entire field to obtain a single value indicating to what level

Alternaria is present in the field (Figure 7). This metric also

depends on how the data was collected in that year, which means

that the absolute score across years should not be compared.

However, we clearly observe a similar disease progression each year.
5 Conclusion and future work

The challenges of creating a model applicable in practice start

with the collection of a representative and extensive data set.

Therefore, we collected a very large dataset of in-field modified

RGB, ultra-high-resolution UAV-images of both healthy and

diseased potato plants at different times in the disease progress

during multiple growing seasons. Based on this dataset, we

developed a robust convolutional neural network (CNN),

AlternarAI, to perform a binary classification for the detection of

Alternaria solani. Four state-of-the-art CNNs were trained for the

binary classification of early blight. ResNet50, InceptionV3 and

DenseNet161 were able to distinguish between diseased and healthy

images with sufficient accuracy. However, the results also

demonstrated that the AlternarAI model achieves similar

accuracy and becomes the best performing model in conjunction

with lower inference time. Both quantitative and qualitative

experiments showed that the model is able to generalize well on
Frontiers in Plant Science 15
independent test sets of other growing seasons. Furthermore, we

assessed the importance of three dataset characteristics. The

experiments showed that the amount and quality of labeled

patches have a direct impact on the accuracy, and a reasonable

balance, although not a perfect one, is preferred. In conclusion, the

addition of variability in data results in more robust disease

detection, which is desired for in-field application. The complete

workflow of both training and testing is visually represented in

Figure 2. Therefore, this method can be perceived as a basis for

decision support systems, as an aid for farmers to monitor their

field, and as input for a variable spraying system to lower the use of

crop protection products. In future work, we will focus on reducing

the labeling effort using active learning or semi-supervised models.
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