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Glyceollins, a family of phytoalexins elicited in legume species, play crucial roles

in environmental stress response (e.g., defending against pathogens) and

human health. However, little is known about the genetic basis of glyceollin

elicitation. In the present study, we employed a metabolite-based genome-

wide association (mGWA) approach to identify candidate genes involved in

glyceollin elicitation in genetically diverse and understudied wild soybeans

subjected to soybean cyst nematode. In total, eight SNPs on chromosomes

3, 9, 13, 15, and 20 showed significant associations with glyceollin elicitation. Six

genes fell into two gene clusters that encode glycosyltransferases in the

phenylpropanoid pathway and were physically close to one of the significant

SNPs (ss715603454) on chromosome 9. Additionally, transcription factors (TFs)

genes such as MYB and WRKY were also found as promising candidate genes

within close linkage to significant SNPs on chromosome 9. Notably, four

significant SNPs on chromosome 9 show epistasis and a strong signal for

selection. The findings describe the genetic foundation of glyceollin

biosynthesis in wild soybeans; the identified genes are predicted to play a

significant role in glyceollin elicitation regulation in wild soybeans. Additionally,

how the epistatic interactions and selection influence glyceollin variation in

natural populations deserves further investigation to elucidate the molecular

mechanism of glyceollin biosynthesis.
KEYWORDS

epistasis, mGWAS, phytoalexin, candidate gene, gene cluster, Glycine soja
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1240981/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1240981/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1240981/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1240981&domain=pdf&date_stamp=2024-02-28
mailto:bsong5@charlotte.edu
mailto:zhanghengyou@iga.ac.cn
https://doi.org/10.3389/fpls.2024.1240981
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1240981
https://www.frontiersin.org/journals/plant-science


Yasmin et al. 10.3389/fpls.2024.1240981
1 Introduction

Plants synthesize a wide array of specialized metabolites, also

referred to as secondary metabolites or phytochemicals. These

compounds play crucial roles in facilitating plant adaptation to

dynamic environments, ensuring survival, and presenting potential

applications for human use (Ahmed and Kovinich, 2021).

Phytoalexins are specialized metabolites synthesized de novo in

response to various biotic and abiotic stresses. Examples include

indole alkaloid camalexin in Arabidopsis, phenolic aldehyde

gossypol in cotton, phenylpropanoid stilbenes in grapevines,

isoflavonoid-derived glyceollins in legume, and momilactones and

phytocassanes terpenoids in rice (Jeandet et al., 2002; Wang et al.,

2009; Donnez et al., 2011; Saga et al., 2012; Yamamura et al., 2015;

Jahan et al., 2019; Jeandet et al., 2020). Among these phytoalexins,

isoflavonoids have been of research interest due to the various

pharmacological properties and essential roles in plant defense

(Dixon and Steele, 1999). The major isoflavones identified in

soybeans are comprised of genistein, daidzein, and glycitein

(Murphy et al., 2002). It has been reported that trace amounts of

glyceollins are produced transiently from daidzein under the

influence of both abiotic and biotic stresses. This observation

suggests that the production of glyceollins, to a significant extent,

is contingent upon external stress factors (Subramanian et al., 2006;

Aisyah et al., 2013; Lygin et al., 2013; Bamji and Corbitt, 2017; Jahan

and Kovinich, 2019; Jahan et al., 2019). In this regard, producing

glyceollins contributes to multiple beneficial effects, such as

fostering symbiosis between soybean and Bradyrhizobium

japonicum and inhibiting the growth of various microbes

(Graham and Graham, 1996; Subramanian et al., 2006).

Moreover, they have properties that are beneficial to human

health, such as anti-cancer, antioxidant, and neuroprotective

(Kim et al., 2012; Nwachukwu et al., 2013; Bamji & Corbitt, 2017;

Seo et al., 2018; Pham et al., 2019). However, studies on glyceollins

are mainly focused on their medicinal properties, and to the best of

our knowledge, little is known about how their elicitation

is regulated.

To date, few genes have been identified associated with

glyceollin biosynthesis. For example, two key transcription

factors, known as GmNAC42-1 and GmMYB29A2, were identified

play a crucial role in the biosynthesis of glyceollin I in soybeans, and

they contribute to resistance against Phytophthora sojae (Jahan

et al., 2019; Jahan et al., 2020). In a study conducted by Jahan

and colleagues in 2019, acidity stress was employed to elicit the

biosynthesis of glyceollin. They observed that the overexpression of

GmNAC42-1 in hairy roots resulted in a remarkable increase of over

10-fold in glyceollin production. The NAC-family transcription

factor GmNAC42-1 plays a crucial role in regulating certain

glyceollin biosynthesis genes, though not all. This suggests that

there is still unidentified essential transcription factor(s) within the

glyceollin gene regulatory network (Jahan et al., 2019). In a separate

investigation conducted by Jahan and colleagues in 2020, it was

revealed that upon stimulation with wall glucan from P. sojae,

GmMYB29A2 interacted with the promoters of two glyceollin I

biosynthesis genes in vitro and in vivo. This interaction led to the

accumulation of glyceollin I and the expression of resistance against
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Phytophthora (Jahan et al., 2020). Given that glyceollins are

produced in trace amounts and transiently under stress

conditions, finely adjusting these transcription factors emerges as

a promising strategy to enhance their production efficiently.

Phytoalexins have been considered the target of natural

selection due to their activities in biotic and abiotic stress

responses in natural environments (Pichersky and Gang, 2000; Qi

et al., 2004; Miyamoto et al., 2016). Research has shown that

genomic approaches in crop wild relatives can reveal genes

responsible for target metabolites (Zhang et al., 2017b).

Improvements can be achieved by manipulating the metabolic

pathway in crops. Examples of this phenomenon include 7-

epizingiberene synthase (ShZIS), a sesquiterpene synthase specific

to trichomes that is involved in the naturally optimized

sesquiterpene biosynthetic pathway in wild tomatoes. This

enzyme enhances cultivated tomato resistance against various

herbivores when subjected to genetic engineering (Bleeker et al.,

2012). Mipeshwaree Devi et al. (2023) have comprehensively

summarized recent advancements in the realm of metabolic

engineering, specifically focusing on plant-specialized metabolites.

Notably, Zhang and colleagues (2022) employed CRISPR/Cas9 for

targeted mutagenesis inGmUGT, a UDP-glycosyltransferase pivotal

in flavonoid biosynthesis. This targeted mutagenesis resulted in

enhanced resistance against leaf-chewing insects (Zhang et al.,

2022). Therefore, understanding the metabolic pathways and their

regulatory mechanisms is essential for targeted metabolite

engineering to achieve crop improvement. However, there is

limited reported progress in the field of metabolic engineering

(Mipeshwaree Devi et al., 2023).

Furthermore, the study of metabolic gene clusters, which are

groups of co-localized and potentially coregulated non-homologous

genes involved in specific metabolic pathways, has gained attention

(Nützmann et al., 2016; Töpfer et al., 2017). While these clusters

have long been observed in microbial genetics, their existence in

plant metabolic pathways has only recently been explored (Zheng

et al., 2002; Rocha, 2008; Koonin, 2009). A study by Chae et al.

(2014) focusing on metabolic gene clusters in Arabidopsis, soybean,

sorghum, and rice suggested that approximately one-third of all the

metabolic genes in Arabidopsis, soybean, and sorghum, and one-

fifth in rice were rich in gene clusters across primary and specialized

metabolic pathways (Chae et al., 2014). There is compelling

evidence indicating that the highly plastic plant genome itself

generates metabolic gene clusters via gene duplication,

neofunctionalization, divergence, and genome reorganization

instead of horizontal gene transfer from microbes (Osbourn and

Field, 2009). This suggests that plants rewire their genome to gain

new adaptive functions driven by the need to survive in distinct

environments. Mining and functional validation of the candidate

genes in such clusters will facilitate the discovery of new enzymes

and chemistries that render pathway prediction. Moreover,

metabolic gene clusters are likely to be located within dynamic

chromosomal regions, and thus, many identified so far may be due

to recent evolution (Qi et al., 2004; Field et al., 2011; Matsuba et al.,

2013). If so, investigation of these clusters can provide insights into

their evolutionary history. The vast and diverse array of specialized

metabolites produced through multi-step metabolic pathways plays
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an essential role in plant adaptation to various ecological niches.

However, the occurrence, prevalence, and evolution of such gene

clusters in plants are largely unknown. Thus, the study of plant

metabolic gene clusters has implications for molecular biology and

evolutionary genomics (Yeaman and Whitlock, 2011; Takos and

Rook, 2012; Nützmann et al., 2016; Chavali and Rhee, 2018).

To the best of our knowledge, due to the extraordinary

metabolic diversity, less than 50 plant-specialized metabolic

pathways have been biochemically and genetically identified to

date (Nützmann et al., 2016). Metabolomic GWAS (mGWAS)

offers an effective approach to understanding the genetic basis of

metabolites and their associated traits (Chan et al., 2010; Chan et al.,

2011; Riedelsheimer et al., 2012; Luo, 2015). mGWAS allows the

identification of common polymorphic regions controlling complex

metabolic traits by substantially increasing association panel and

genome-wide molecular markers. Besides elucidating genetic

architecture, mGWAS can also be used to infer gene functions

(Luo, 2015). Hence, mGWAS provides a comprehensive approach

to discovering candidate genes. Thus far, it has been used to

uncover the genetic basis of variations of a number of different

metabolites. For example, Chen et al. (2014) carried out a rice

mGWAS study that identified 36 candidate genes influencing the

variation of metabolites with physiological and nutritional

importance (Chen et al., 2014). Additionally, Petersen et al.

(2012) illustrated that in an association study (i.e., mGWAS), a

ratio between two metabolite concentrations provides more

insightful information than the concentrations of the two

metabolites individually. Implementing this innovative approach

in mGWAS proves to be valuable for revealing novel and

biologically significant associations. They emphasized several

studies in which the incorporation of metabolite ratios in both

genome-wide and metabolite-wide association studies significantly

strengthened the associations (Petersen et al., 2012). For instance,

Gieger et al. (2008); Illig et al. (2010), and Suhre et al. (2011)

illustrated that the utilization of metabolite ratios in GWAS studies

resulted in a substantial increase in the power of association,

reaching tens of orders of magnitude (Gieger et al., 2008; Illig

et al., 2010; Suhre et al., 2011).

The isoflavonoid pathway has been relatively well studied

(Yoneyama et al., 2016; Sukumaran et al., 2018). However, a gap

in our understanding of the genetic basis of glyceollin elicitation

remains. As of now, researchers have identified transcription factors

crucial for the regulation of glyceollin biosynthesis, such as

GmNAC42-1 and GmMYB29A2 (Jahan et al., 2019; Jahan et al.,

2020). In the present study, we selected wild soybean (Glycine soja),

a wild relative of soybean (Glycine max), to delineate the genetic

basis and evolution of glyceollin accumulation resulting from biotic

stress, i.e., soybean cyst nematode (SCN), the most devastating

soybean pest worldwide (Tylka and Marett, 2021). Wild soybeans

thrive in diverse habitats and harbor much higher, underexplored

genetic diversity than cultivated soybeans (Zhang et al., 2019).

Hence, it is an ideal system to understand the genetic basis and

evolution of glyceollin variation. Eventually, the essential genes

identified in wild soybeans can be used for metabolic engineering or

in a breeding program to develop nutrition-rich biofortified

soybean cultivars as they exhibit similar genome size and content
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with no reproductive barriers (Singh and Hymowitz, 1999). In this

study, we aim to address these three questions: (1) What is the

genetic basis of variation in glyceollin elicitation by SCN? (2) Are

there any gene clusters and transcription factors involved in

glyceollin variation? (3) Are epistatic interactions and natural

selection important evolutionary factors influencing the variation

of glyceollin elicitation in natural populations? Our study is the first

to employ genomic and evolutionary approaches to understand the

genetic basis and selection of glyceollin elicitation. The results

provide a fundamental basis for the long-term goal of developing

glyceollin-fortified soybean cultivars.
2 Materials and methods

2.1 Plant materials

A total of 265 accessions of wild soybean, Glycine soja, from a

wide geographic range, originally collected from China, Japan,

Russia, and South Korea, were utilized (Supplementary Table 1).

The seeds of these ecotypes were obtained from the USDA National

Germplasm resources laboratory (https://www.ars-grin.gov/).
2.2 Plant preparation, SCN inoculation, and
sample collection

Seed preparation, germination, transplanting, and soybean cyst

nematode (SCN, Heterodera glycines Ichinohe, HG type 1.2.5.7)

inoculation were performed following a previously developed

protocol (Zhang and Song, 2017; Zhang et al., 2017a). Specifically,

each wild soybean ecotype seed underwent surface sterilization

using a 0.5% sodium hypochlorite solution for one minute,

followed by thorough rinsing. These sterilized seeds were then

germinated on sterile filter paper in petri dishes containing an

appropriate amount of sterile water for a duration of 3 to 4 d. Once

germinated, it was transplanted into a cone-tainer (Greenhouse

Megastore, Danville, IL, USA), utilizing sterile sand as the growth

medium. The arrangement of cone-tainers in a cone-tainer tray

(Greenhouse Megastore, Danville, IL, USA) followed a randomized

complete block design. To ensure optimal growth conditions, all the

plants were kept within a growth chamber maintained at a

temperature of 27°C, with a relative humidity of 50%, and

subjected to a long-day photoperiod of 16 h of light followed by

8 h of darkness. The seedlings received regular daily watering to

maintain adequate moisture levels for healthy growth.

For SCN inoculation, the HG type 1.2.5.7 nematodes stocks

were maintained in a controlled greenhouse environment, with a

consistent temperature of 27°C and a photoperiod of 16 h of light

followed by 8 hof darkness, spanning over 30 generations. To isolate

female nematodes, they were carefully extracted from the roots of

soybean cv. Hutcheson by gently massaging the roots in water and

then filtering the solution through nested sieves with mesh sizes of

850 and 250 micrometers. The collected female nematodes were

then crushed using a rubber stopper in an 8-inch diameter sieve

with a 250-micrometer mesh, releasing the eggs, which were
frontiersin.org
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subsequently collected using a 25-micrometer mesh sieve. For

further purification, the eggs underwent a modified sucrose

flotation method (Matthews et al., 2003).

Following purification, the eggs were placed on moist paper

tissues and placed in a plastic tray filled with 1 centimeter of water.

The tray was covered with aluminum foil and maintained at a

temperature of 27°C. Three days after hatching, the second-stage

juvenile nematodes (referred to as J2) were harvested and

concentrated to achieve a final concentration of 1,800 J2 per

milliliter in a 0.09% agarose suspension. After three days of

transplantation, when the seedlings were healthy and displayed

uniform growth, they were inoculated with 1 milliliter of the J2

nematode inoculum. Concurrently, seedlings inoculated with a

0.09% agarose solution served as the control group.

Whole root tissues were collected and weighed five days post-

infection (dpi). The 5 dpi time point was chosen because our

previous study suggested a significant inhibition in SCN

development in a resistant genotype compared to normal growth

in a susceptible genotype (Zhang et al., 2017a). All samples were

flash-frozen in liquid nitrogen and stored at -80°C. Four biological

replicates per wild soybean genotype were used, eventually a total of

1,020 samples.
2.3 Metabolite extraction
and quantification

We employed the extraction method of metabolites from root

tissue described in Strauch et al. (2015) (Strauch et al., 2015). The

soybean root samples underwent homogenization within a ball mill

homogenizer, utilizing an extraction solvent that featured daidzein-

d6 (Biotek, catalog#BT-387818) as an internal standard. The

metabolite profiling was provided by the service from David H.

Murdock Research Institute at the North Carolina Research

Campus employing UPLC-MS/MS (ultraperformance liquid

chromatography-tandem mass spectrometry) . Method

development and analysis were conducted using a Waters

ACQUITY UPLC-Quattro Premier XE MS. The UPLC and MS/

MS parameters were established through experimentation with test

samples and analytical standards of glyceollin (chemically

synthesized by Dr. P. Erhardt at University of Toledo), daidzein

(Sigma Aldrich, catalog#D7802), and daidzein-d6 (LGCstandards).

The MS/MS acquisition parameters were optimized based on the

analytical standards. Additionally, optimized UPLC gradient

conditions were determined to effectively separate the glyceollin

and daidzein peaks. Peaks that were consistently detected in at least

three biological replicates within each genotype were used for

downstream analyses. Each metabolite was confirmed using pure

standard compounds, including daidzein, daidzein-d6, and

glyceollin. Due to the low concentrations of these compounds

and the small sample masses of the wild soybean root samples

that had been collected, we used a signal-to-noise ratio of ≥10 for

the measurement of the peaks for glyceollin and daidzein. Our

method successfully measured daidzein (mg/g root) and glyceollin

(unitless) in 264 accessions of wild soybean G. soja roots

quantitatively and semi-quantitatively, respectively. Following
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method development, optimization, and analyses of the test

samples, calibration curves were designed using at least six

different concentrations of daidzein, created in triplicate to

quantify known concentrations of daidzein and glyceollin. A

second-degree polynomial was derived from the known

concentrations of the standard curve samples and the mass

spectrometer response (daidzein/internal standard) from the

standard curve data. The resulting polynomial was used to

calculate the concentrations of daidzein in the experimental

samples. Low, medium, and high QC (quality control) samples

were created to assess the accuracy of the calculations. We used

the ratio of glyceollin (unitless, a semi-quantitative measurement

of glyceollin) to daidzein (mg/g root) (GVSD) as our phenotypic

trait (Supplementary Table 1 and Supplementary Figure 2).

This phenotype henceforth is denoted GVSD. The justification

for employing the ratio is to enhance statistical power by

minimizing variability in the metabolomic data and mitigating

experimental errors associated with data noise (Petersen

et al., 2012).
2.4 Genotypic data

Genotype data for the 264 accessions were obtained from

SoySNP50K (Song et al., 2013), which was downloaded from

SoyBase (SoyBase.org). After the filter, the genotype included

32,976 genome-wide single nucleotide polymorphic markers

(SNPs) with a minor allele frequency (MAF) of at least 5% and a

missingness rate of less than 10%.
2.5 Metabolite-based genome-wide
association study and linkage
disequilibrium estimation

Our genome-wide association analysis was conducted on GVSD

(a ratio of glyceollin mean to daidzein mean) in response to SCN

infection on all 264 ecotypes using the GAPIT R package (2.0)

(Tang et al., 2016). To minimize false-positive associations, we

controlled population structure among genotypes with four

principal components as calculated with the GAPIT. Heritability

estimate and SNP effect were calculated by running GWAS applying

CMLM and MLM methods, respectively, implemented in the

GAPIT R package (2.0) (Tang et al., 2016).

The Manhattan plot was generated using the R package qqman

(Turner, 2018). In addition to the genome-wide significant

threshold, we also calculated the chromosome-wide Bonferroni

thresholds using independent SNPs estimated on each

chromosome following the method of Li and Ji (2005) (Li and Ji,

2005). Linkage disequilibrium (LD) was calculated across the panel

with the TASSEL program, version 5 (Bradbury et al., 2007), for the

significant SNPs identified from the GWAS analysis. LD was

measured using squared correlation R-squared (r2) of 0.2 (upper

right in the LD plot) and p-value < 0.05 (the lower left in the LD

plot). A pairwise LD was generated following the R function

described by Shin et al. (2006) (Shin et al., 2006). Genes within
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LD blocks containing significant SNPs were identified as potential

sources of candidates for further analyses.
2.6 Identification of candidate genes

For extensive gene mining, a pairwise linkage disequilibrium

(LD) analysis was initially used for potential candidate gene

identification. Then, genes in each LD block were examined as

potential candidate genes, and their annotations were obtained

from the Phytozome v13 database (Goodstein et al., 2011).

Afterward, a GO enrichment analysis of the identified candidate

genes was performed using ShinyGO v0.66: Gene Ontology

Enrichment Analysis (p-value cutoff (FDR, false discovery rate) =

0.05) (Ge et al., 2020), SoyBase GO Enrichment Data (Grant et al.,

2010). To investigate the involvement of these potential candidate

genes in metabolic pathways, a database search was performed

through an annotation file from Phytozome v13 (Goodstein et al.,

2011), SoyBase (Grant et al., 2010), SoyCyc 10.0 Soybean Metabolic

Pathway (Hawkins et al., 2021), and Pathview databases (Luo et al.,

2017). Finally, a PMN plant metabolic cluster viewer was applied to

categorize enzymes into classes (signature or tailoring) and

metabolic domains (Hawkins et al., 2021).
2.7 Analysis of epistatic interactions

For any significant SNPs uncovered in the GWAS analysis, it is

useful to test whether, beyond their direct effects, they also exhibited

interactive effects on GVSD. To accomplish this, we first produced

numerically formatted genotypes, in which the homozygous

genotype index value is 1 and -1 and the heterozygous 0. This

allows us to test for epistasis for each pairwise combination in a

simple general linear model with 1 degree of freedom for the

additive effects of each of the two SNPs and their interaction. We

included the first four principal components from the GAPIT

analysis in the model to be consistent with the GWAS scan,

where these components were used to adjust for structural

relatedness (see below). The significance of all interactions was

evaluated with the sequential Bonferroni procedure. To illustrate

the interactions of SNP pairs, we also calculated regressions of

GVSD on each SNP, but at each of the three genotypes (using the -1,

0, and 1 index values) of the second SNP involved in the

significant interaction.
2.8 Extended haplotype
homozygosity analysis

To test allele-specific selection patterns of the identified

significant SNPs, we analyzed extended haplotype homozygosity

(EHH, (Sabeti et al., 2002)) for each significant SNP. The EHH

analysis was conducted in SELSCAN v.1.2.0a (Szpiech and

Hernandez, 2014) with default parameters, and only SNPs with

MAF > 0.05 was used in this analysis.
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3 Results

3.1 Genomic dissection of glyceollin
accumulation upon biotic elicitation

To investigate the genetic basis of glyceollin elicitation, we

performed a metabolite-based genome-wide association study

(mGWAS) of glyceollin content in wild soybean roots infected

with soybean cyst nematode (SCN). The mGWAS identified a total

of eight significant SNPs, with four (ss715603454, ss715603455,

ss715603462, and ss715603471) located on chromosome 9 and

ss715585948, ss715615975, ss715620269 and ss715636844 on

chromosomes 3, 13, 15, and 20, respectively (Figure 1A; Table 1).

These significant SNPs were identified based on both genome-wide

Bonferroni threshold of 5.104 and chromosome-wide Bonferroni

thresholds that varied narrowly from 3.79 to 3.82 among the 20

chromosomes (3.803 on chromosome 9) (Figures 1A, B;

Supplementary Table 2). The mGWAS are visualized with the

Manhattan and Q-Q (quantile-quantile) plots as shown in

Figure 1. The four significant SNPs ss715603454, ss715603455,

ss715603462, and ss715603471 on chromosome 9 at positions

30262482, 30191235, 30393285, and 30725658, respectively, are

located closely to each other within a 535-kb genomic region

(Supplementary Table 2). The heritability for glyceollin was

estimated at 35%, suggesting that glyceollin elicitation was

genetically controlled (Supplementary Table 2).
3.2 Candidate gene identification

We employed a pairwise linkage disequilibrium (LD) analysis to

identify potential candidate genes. For candidate gene

determination, we considered r2>0.2 as a cutoff for our LD

analysis, where r2 is the extent of allelic association between a

pair of sites (Weir, 1990). Figure 2A shows the LD decay plot in the

studied panel. We identified a total of 666 possible candidate genes

within either side of 200 kb covering linkage disequilibrium (LD)

blocks of the eight significant SNPs (soybean reference genome

Glycine max Wm82.a2.v1) (Goodstein et al., 2011; Zhou et al.,

2015). Further refining our selection, we narrowed the list to 51

candidate genes, focusing on the eight significant SNPs within the

mentioned LD block region. Another criterion for this selection was

the alignment with our pathway of interest, demonstrating a strong

correlation with the target metabolites (Supplementary Table 3).

The LD block within either side of the 200 kb region on

chromosome 9 showed the strongest LD compared to the LD

blocks for other significant SNPs identified on chromosomes 3,

13, 15 and 20 (Figure 2B; Supplementary Figure 1). Specifically, the

candidate gene Glyma.09G128200 exhibits the highest level of

linkage disequilibrium (LD) near the significant SNP ss715603454

on chromosome 9 in comparison to the LD block associated with

the remaining significant SNPs on this chromosome (Figure 2B).

The functional annotation of the candidate genes on chromosome 9

(i.e., Glyma.09G127700, Glyma.09G128200, Glyma.09G128300, and

Glyma.09G128400) within this block is biosynthetic enzymes,
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mainly glycosyltransferase involved in isoflavonoid pathway, as well

as regulatory genes such as WRKY and MYB transcription factors

(Table 1; Supplementary Tables 3-5). Their likely role as regulatory

genes suggests their potential involvement at the transcriptional

level in glyceollin elicitation in response to SCN stress (Colinas and

Goossens, 2018).

We also found putative genes encoding enzymes involved in the

specialized metabolic pathways within the LD blocks of the

significant SNPs on chromosomes 3, 13, 15, and 20. The enriched

GO category includes the phenylpropanoid metabolic process

(GO:0055085,GO:0016021,GO:0008308,GO:0006873), linamarin

b iosyn thes i s (GO:0055114 ,GO:0020037 ,GO:0016705 ,

GO:0005506), and terpenoid biosynthesis (GO:0016829,

GO:0010333,GO:0008152,GO:0000287) (Supplementary Table 3).

Apart from the biosynthetic enzymes on these chromosomes, we

also found transcription factor genes, such as WRKY, MYB, and

NAC on chromosomes 3, 9, 13, and 15. For instance, candidate

genes within the WRKY family transcription factor group include

Glyma.03G176600 , Glyma.09G129100 , Glyma.09G127100 ,

Glyma.15G139000 , and Glyma.15G135600 . In the MYB

transcription factor category, promising candidate genes include

Glyma.09G113000, Glyma.09G113100, and Glyma.15G134100.

Addit ional ly , the NAC t ranscr ipt ion factors inc lude
Frontiers in Plant Science 06
Glyma.13G274300, Glyma.13G279900, and Glyma.13G280000 as

potential candidate genes (Table 1, Supplementary Table 3).
3.3 Metabolic gene clusters identification

We were particularly interested in the candidate genes in the

branch from daidzein to glyceollin in the isoflavonoid biosynthesis

pathway (Lozovaya et al., 2007). We found that the identified

candidate genes on chromosome 9 are clustered together based

on our analysis using the PMN plant metabolic cluster viewer, and

they fall into two clusters. These two clusters belong to the tailoring

enzyme glycosyltransferase within the phenylpropanoid specialized

metabolic domain (Supplementary Table 4) (Hawkins et al., 2021).

Six genes that belong to these two clusters are within the branch of

the isoflavonoid biosynthesis pathway. Two of these six genes,

Glyma.09G127200 and Glyma.09G127300, are called cluster 1,

while the other four (Glyma.09G127700, Glyma.09G128200,

Glyma.09G128300, and Glyma.09G128400) are called cluster 2

(Supplementary Table 4).

Through further investigation of annotation of these candidate

genes within the gene clusters (Supplementary Table 5), we found

the candidate gene Glyma.09G127200 encodes a glucosyltransferase.
B C

A

FIGURE 1

GWAS of Glyceollin elicitation with SCN stress: A genome-wide (A) and chromosome-wide (B) Manhattan plots, with thresholds of 5.104 and 3.803,
respectively; (C) quantile-quantile (QQ) plot. Significant SNPs are found on chromosomes 3, 9, 13, 15 and 20 at a 5% genome-wide threshold, the
probability of 7.86×10-6 resulted in a threshold of 5.01 (solid red line in the genome-wide Manhattan plot) (A). The 5% chromosome-wide LOD
threshold resulted in significant p-values of 1.57×10-4 (threshold 3.803, solid blue line) (B).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1240981
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yasmin et al. 10.3389/fpls.2024.1240981
Interestingly, the four genes within cluster 2 have a similar

f u n c t i o n a l a n n o t a t i o n a s G l yma . 0 9G 1 2 7 2 0 0 a n d

Glyma.09G127300 in cluster 1, and all these four genes could be

isogenes suggesting their origin from genome duplication events

(Supplementary Table 5) (Bharadwaj et al., 2021).
3.4 Epistatic interactions among all
significant SNPs

The results of the epistasis tests for each of the 28 pairwise

combinations of the eight significant SNPs are shown in Table 2.

Three probabilities, all associated with the SNP on chromosome 20,

were not estimable (Table 2). Among the remaining 25 SNP pairs,

20 show statistical significance. Particularly noticeable is the high

significance for all interactions of the SNPs on chromosomes 3, 13,
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and 15. Three of the six pairs among the four SNPs on chromosome

9, all involving ss715603462, are also statistically significant. In

general, therefore, this is evidence for substantial epistasis among

these SNPs affecting GVSD.

These epistatic interactions of the SNP pairs are illustrated in

Figure 3 for each of the four chosen combinations. For example, in

panel A (Figure 3A), it can be seen that regression slopes of GVSD

on ss715603454 are close to 0 for ss71585948 CC genotype but are

positive for TC and especially TT genotypes. In panel D

(Figure 3D), regression slopes of GVSD on ss715603471 are

negative for ss715603462 AA and GA genotypes but positive for

GG genotypes. With no epistasis, these slopes would be expected to

be roughly parallel, but in fact, they diverge considerably from

parallelism in these four examples, indicating epistasis.
3.5 Significant SNPs exhibited extended
haplotype homozygosity

To examine allele-specific selection patterns associated with the

identified significant SNPs, we conducted an analysis of extended

haplotype homozygosity (EHH) for each of these SNPs, as proposed

by Sabeti et al. (2002) (Sabeti et al., 2002). The extended

homozygosity analysis (EHH) analyses revealed allele specific

EHH values of the significant SNPs (ss715603454, ss715603455,

ss715603462, and ss715603471) on chromosomes 9 (Figure 4). For

example, the T allele of ss715603454 showed a much higher EHH

value than the G allele. Alleles of significant SNPs on the other

chromosomes showed compatible EHH values (Figure 4).
4 Discussion

4.1 Metabolic gene clusters in
glyceollin elicitation

Gene clusters have been reported to play important roles in

phytochemical diversity in Arabidopsis, sorghum, soybean, tomato

and rice (Chae et al., 2014; Fan et al., 2020), as well as their roles in

important ecological functions in plants i.e., antibacterial, anti-

herbivore, antifungal, and insecticidal activities (Polturak and

Osbourn, 2021; Polturak et al., 2022). However, their roles in

regulating metabolic variation in wild species are relatively less

investigated. Even though the isoflavonoid biosynthesis pathway is

relatively well studied, the genetic basis of glyceollin elicitation is

unclear. Particularly, the contribution, prevalence, and occurrence

of gene clusters in plant metabolic diversity are largely unclear. Our

mGWAS results suggest there are two probable gene clusters with

functionally related but non-homologous genes, which may involve

glyceollin elicitation in wild soybean. Thus far, to the best of our

knowledge, the genes within these plausible clusters are the first

reported candidate genes located on chromosome 9 involved in

glyceollin accumulation induced by biotic stimuli in wild soybean.

To date, the reported glyceollin biosynthesis genes are located on

chromosomes 1, 2, 3, 4, 6, 7, 10, 11, 13, 15, 19 and 20 (Akashi et al.,
TABLE 1 Identification of significant SNPs and functional annotation of
the plausible candidate genes.

Significant
SNP

Chromosome Functional annotation of
associated genes

ss715585948 Gm03 WRKY family transcription factor
family protein
Zinc fingers superfamily protein

ss715603454 Gm09 UDP-glucosyl transferase 88A1
RING/U-box superfamily protein,
RING/FYVE/PHD zinc finger
superfamily protein
WRKY family transcription factor
family protein
MYB domain
Zinc fingers superfamily protein
Cytochrome P450 enzyme family
Zinc finger, RING-type;
Transcription factor jumonji/aspartyl
beta-hydroxylase

ss715603455 Gm09

ss715603462 Gm09

ss715603471 Gm09

ss715615975 Gm13 bZIP transcription factor
RING/U-box superfamily protein,
RING/FYVE/PHD zinc finger
superfamily protein
Zinc fingers superfamily protein
NAC transcription factors
Cytochrome P450 enzyme family

ss715620269 Gm15 RING/U-box superfamily protein,
RING/FYVE/PHD zinc finger
superfamily protein
WRKY family transcription factor
family protein
MYB domain

ss715636844 Gm20 UDP-Glycosyltransferase superfamily
protein
UDP-glucosyl transferase 85A2
hydroxy methylglutaryl CoA
reductase 1
Cytochrome P450, family 71,
subfamily B, polypeptide 34
cytochrome p450 79a2
RING/U-box superfamily protein,
RING/FYVE/PHD zinc finger
superfamily protein
Zinc fingers superfamily protein
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2009; Yoneyama et al., 2016; Sukumaran et al., 2018; Jahan et al.,

2020). Our predicted gene clusters suggest that glyceollin may be

synthesized where the enzyme-encoding genes are adjacent to each

other on the same chromosome (Chavali and Rhee, 2018). Physical

clustering of genes with similar functions can facilitate co-

inheritance of alleles with favorable combinations and their

coordinated regulations at chromatin level (Osbourn, 2010a; Chu

et al., 2011). Besides, such clusters incline to locate in the sub-

telomeric regions (Gierl and Frey, 2001; Qi et al., 2004; Sakamoto

et al., 2004), near the ends of chromosomes that are known to

harbor mutations. For example, an examination of the complete

genome sequence revealed that the maize DIMBOA cluster is

located close to the end of chromosome 4 (Farman, 2007; Jonczyk

et al., 2008). Thus, identifying the positions of the genes can
Frontiers in Plant Science 08
contribute to inferences of possible mechanisms underlying

chemical diversity in natural populations.

Beyond gene clusters playing critical roles in phytochemical

diversity, tailoring enzymes, such as methyltransferases,

glycosyltransferases, CYPs, dehydrogenases/reductases, and

acyltransferases, are reported to be responsible for modifying the

chemical backbone of specialized metabolites (Osbourn, 2010b).

The genes in these two plausible clusters are annotated with

tailoring or regulating glycosyltransferase enzymes. One of the

common plant defense mechanisms involves glycosylation of

secondary metabolites with these enzymes (Mylona et al., 2008).

Therefore, the clustering of the genes encoding glycosyltransferase

on chromosome 9 might be very critical in the formation of

glyceollin, the stress-induced (i.e., SCN stress in our study)
TABLE 2 Epistasis for the eight significant SNPs.

Ch9a Ch9b Ch9c Ch9d Ch13 Ch15 Ch20

Ch3 <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 0.002*

Ch9a 0.10 0.053 0.007* <0.001* <0.001* 0.907

Ch9b 0.012* 0.006* <0.001* <0.001* 0.835

Ch9c <0.000* <0.001* <0.001* n.e.

Ch9d <0.001* <0.001* n.e.

Ch13 <0.001* n.e.

Ch15 0.001*
Shown are the probabilities for each pairwise interaction of SNPs. * = P < 0.05 from sequential Bonferroni tests. n.e. = not estimable. Ch3 = ss715585948, Ch9a = ss715603454, Ch9b =
ss715603455, Ch9c = ss715603462, Ch9d = ss715603471, Ch13 = ss715615975, Ch15 = ss715620269, Ch20 = ss715636844.
B

C D

A

FIGURE 2

Linkage disequilibrium (LD) decay measured as R2 as a function of marker distance in the studied panel (A) and LD plot for chromosome 9 for
significant SNPs. The black diagonal denotes LD between each site and itself (B). Geographic range of the alleles of significant SNPs close to the
gene clusters on chromosome 9 (C). Allele frequency in each population. Allele frequency in different geographic regions for a significant SNP was
generated using JMP®, Version 15. SAS Institute Inc., Cary, NC, 1989–2021. (D).
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FIGURE 4

Allele-specific Extended Haplotype Homozygosity (EHH) for the four significant SNPs on chromosome 9. Haplotype lengths are shown flanking the
T (red) and G (grey) allele.
B

C D

A

FIGURE 3

Epistatic interactions of the SNP pairs for each of four chosen combinations. Regression slopes of GVSD on ss715603454 are close to 0 for
ss715603454 CC genotypes but are positive for TC and especially TT genotypes (A). Regression slopes of GVSD on ss715603462 are close to 0
for ss715585948 CC genotypes but are negative for TC and especially TT genotypes (B). Regression slopes of GVSD on ss715615975 are close to
0 for ss715585948 TT genotypes but are negative for TC and especially CC genotypes (C). Regression slopes of GVSD on ss715603471 are negative
in sign for ss715603462 AA and GA genotypes, but positive in sign for GG genotypes (D).
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protective compounds in legumes. For example, the cyclic

hydroxamic acid (DIBOA) in maize (Frey et al., 1997; Gierl and

Frey, 2001), the triterpene avenacin in oat (Qi et al., 2004; Qi et al.,

2006; Field and Osbourn, 2008; Mugford et al., 2009), and two gene

clusters associated with diterpene (momilactone and phytocassane)

synthesis in rice, which may be pre-formed or synthesized after

stress elicitation for plant defense. Disruption of such gene clusters

may compromise pest and disease resistance and lead to the

accumulation of toxic pathway intermediates (Chu et al., 2011).

In the multi-step plant specialized metabolic pathways, rapid

adaptation to a particular environmental niche could result in

highly diverse and rapidly evolving metabolic gene clusters

(Osbourn and Field, 2009). Hence, the level of conservation of

the identified gene clusters across different legume species may shed

light on the evolutionary insight of these clusters (Field and

Osbourn, 2008). Synthetic biology and functional genetics can

further help investigate the organization and contribution of these

clusters in metabolite diversity, as well as decipher the mechanism

of adaptive evolution and genome plasticity (Osbourn, 2010b; Chu

et al., 2011).
4.2 Plausible transcriptional factors in
glyceollin elicitation

Advancement of genetics, genomics, and bioinformatic

approaches facilitate the prediction and identification of a large

number of genes, including transcription factors associated with

plant-specialized metabolic pathways (Anarat-Cappillino and

Sattely, 2014; Moore et al., 2019). However, the transcriptional

regulators of specialized metabolism are less well characterized

(Shoji and Yuan, 2021). The regulation of plant-specialized

metabolic pathways is dynamic, reflecting the inherent

adaptability of these pathways to the ever-changing environment.

Such regulation generally occurs at transcription level, and thus, it

requires coordinated regulation mediated by transcription factors

(TFs) (Colinas and Goossens, 2018; Shoji, 2019). For instance,MYB

and basic helix-loop-helix (bHLH) TF family genes were reported to

regulate anthocyanin and related flavonoid biosynthetic pathways

in a wide range of species (Chezem and Clay, 2016). Moreover,

significant modifications of these regulatory genes give rise to the

vast diversity in plant specialized metabolism (Huang et al., 2018;

Springer et al., 2019).

It is possible that transcription factors, such asMYB andWRKY

TFs on chromosome 9, may influence glyceollin elicitation. The

regulation of glyceollin elicitation with SCN stress may involve a

highly complex interplay among multiple genes and pathways.

Previous studies reported that gene families of transcription

factors, such as NAC, MYB, bHLH, and WRKY, exhibited

conservative patterns among Arabidopsis, cotton, grapevine,

maize, and rice (Xu et al., 2004; Zheng et al., 2006; Saga et al.,

2012; Ibraheem et al., 2015; Yamamura et al., 2015; Ogawa et al.,

2017). These plant species produce various phytoalexins, such as

indo l e a lka lo id s , t e rpeno id a ldehydes , s t i l b eno id s ,

deoxyanthocyanidins, and momilactones/phytocassanes,
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respectively. The investigation of TFs binding promoter regions

can give insights if the pathways are co-opted into stress-inducible

regulation by the respective TFs such as NAC TF gene GmNAC42–1

and MYB TF gene GmMYB29A2 regulates glyceollin biosynthesis

(Jahan et al., 2019; Jahan et al., 2020). The transcription factor gene

GmNAC42-1 plays a crucial role as a positive regulator in glyceollin

biosynthesis. Jahan and colleagues (Jahan et al., 2019) showed that

elevating the expression of GmNAC42-1 in hairy roots has the

potential to amplify glyceollin yields by more than tenfold when

elicited. Furthermore, the TF gene GmMYB29A2, as identified by

Jahan et al. (2020) (Jahan et al., 2020), plays a crucial role in both

the accumulation of glyceollin I and the expression of resistance

against Phytophthora. It would be intriguing to explore whether the

transcription factor genes we’ve identified exhibit homology across

different plant species. The homology of TFs among different plant

species can facilitate metabolic engineering of a wide variety of crop

plants to produce phytoalexins in greater amounts (Ahmed and

Kovinich, 2021).

In addition to enzyme-encoding genes, TF genes can also be

found as gene clusters. For example, the gene cluster of TF ERF

(jasmonate (JA)- responsive ethylene response factor) consists of

five ERF genes in tomato (Cárdenas et al., 2016; Thagun et al.,

2016), eight in potato (Cárdenas et al., 2016), five in tobacco

(Kajikawa et al., 2017), five in C. roseus (Singh et al., 2020), four

in Calotropis gigantea (Singh et al., 2020), and four in Glesemium

sempervirens (Singh et al., 2020). Besides, TFs involved in plant

specialized metabolism can be found in arrays (Zhou et al., 2016;

Shoji and Yuan, 2021). Thus, it is possible that the TFs we identified

are located in the same genomic neighborhood as arrays or

biosynthetic gene clusters (BGCs). The co-regulation hypothesis

of gene clusters poses that clustering of TFs can co-regulate genes in

a pathway. Although co-regulation of metabolic pathways also

occurs un-clustered, clustering may accelerate the recruitment of

genes into a regulon (Wisecaver et al., 2017; Smit and

Lichman, 2022).
4.3 Epistasis and plausible selection on
glyceollin elicitation

Metabolic traits have been reported with low heritability due to

environmental effects on their accumulations (Rowe et al., 2008).

Recent studies have shown strong epistatic interactions of genes

influencing variation of plant specialized metabolites, which may

impact fitness in the field (Brachi et al., 2015; Kerwin et al., 2015;

Kerwin et al., 2017). For example, numerous epistatic interactions

influence the highly complex genetic architecture responsible for

Arabidopsis metabolism (Kliebenstein, 2001; Kliebenstein et al.,

2001). Moreover, a mixture of positive and negative epistatic

interactions can assist identifying significant QTLs located within

a biosynthetic pathway (Rowe et al., 2008). Compared to expression

regulations, the power of epistasis in metabolomics is that they can

better indicate the interconnectedness of metabolites within

the metabolic pathway (Fell and Wagner, 2000; Jeong et al., 2000;

Arita, 2004). The widespread interactive effects found among
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our identified significant SNPs affecting targeted metabolic

traits may be a consequence of the interconvertibility between

daidzein and glyceollin. As an example, the study conducted by

Farrell et al. (2017) demonstrated that there is an augmentation in

the biosynthesis of glyceollin I from daidzein when there is an

elevation in the degradation of 6”-O-malonyldaidzin, an isoflavone

conjugate produced from daidzein (Farrell et al., 2017).

Genes containing causal variation for plant defensive compounds

may influence field fitness and thus are likely under natural selection

(Kroymann, 2011). For example, Benderoth et al. (2006) detected

positive selection in glucosinolate diversification in Arabidopsis

thaliana and its relatives (Benderoth et al., 2006). Prasad et al.

(2012) showed positive selection for a mutation on a metabolic

pathway gene could enhance resistance to herbivory in natural

populations of a rocky mountain cress species (Prasad et al., 2012).

We detected strong signals of selection on the SNPs significantly

associated with glyceollin phenotypes with EHH and LD analyses

(Figure 4; Figure 2B). For example, the LD surrounding the

significant SNP ss715603454 that is next to the identified gene

clusters is more extensive, suggesting strong selection in this region

(Figure 2B). Meanwhile, the two alleles of this significant SNP, G and

T, showed different EHH values, with T exhibiting much longer

haplotype homozygosity. This indicates that this T allele may be

under recent positive selection. Interestingly, the T allele is

significantly associated with higher elicitation of glyceollin and has

a higher frequency in South Korea (Figures 2C, D). The allele specific

EHH pattern and their geographic distribution may be due to

heterogeneous selection pressure in nature.
4.4 Perspectives and future directions of
our study

Plant specialized metabolites exhibit extreme quantitative and

qualitative variation. Therefore, high-throughput metabolite

profiling, such as LC-MS analysis coupled with GWAS (as

applied here) can facilitate understanding the genetic

contributions to metabolic diversity in natural populations. A

common assumption is that biological variables or traits should

show a normal distribution, and skewed data may indicate

measurement error. However, the scenario is different in

metabolomics, especially in secondary metabolism. For instance, a

ratio of two related compounds, rather than their separate values,

may provide a comprehensive understanding of the underlying

enzymatic process (Byrne et al., 1996; McMullen et al., 1998;

Yencho et al., 1998; Kliebenstein, 2001; Kliebenstein et al., 2001;

Kliebenstein, 2007; Chan et al., 2011; Petersen et al., 2012; Prasad

et al., 2012). We used a ratio of glyceollin and daidzein

concentrations as the phenotypic trait for our association study.

The use of a metabolic ratio also may produce: (1) a reduction in the

variability of the data collected for the biological replicates and thus

increase statistical power, and (2) a reduction in overall noise in the

dataset by canceling out systemic experimental errors. Most

importantly for our purposes, the glyceollin to daidzein

metabolite ratio is correlated to the corresponding reaction rate

under optimal steady-state assumptions, as this metabolite pair is
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connected in the phenylpropanoid biosynthetic pathway (Suhre

et al., 2011; Petersen et al., 2012).

The natural world has a lot to offer in tackling diseases and global

food scarcity. There is a need to develop new medicines and future

value-increased food by unlocking the uncharted gene pools of wild

plants. Our chosen study system crop wild relative of soybean poses

much higher and underexplored genetic diversity than its

domesticated descendants. Given that glyceollin is produced in

trace amounts, it is an exciting challenge to define the plant

metabolic gene clusters and transcriptional regulators in the

glyceollin biosynthesis pathway. Besides complex cancer treatment

and therapies, the rise of different types of tumors and tumor

subtypes urges the need for new drugs. Along with glyceollin’s role

in plant defense, it has been well-documented for anti-cancer

activities. Our follow-up studies will apply transcriptomics and

functional validation of the candidate genes, which can expand our

focus to explore associations of genes in clusters to understand their

involvement in regulating glyceollin biosynthesis at the systems level.

As phytochemical variation can be caused by both structural genes

and their expression differences, it will be interesting to explore the

role of pathway-specific regulators (i.e., transcription factors) in

glyceollin elicitation (Osbourn, 2010b). Our results suggest that

improving our fundamental knowledge of plant specialized

metabolic gene clusters and regulators will facilitate metabolic

engineering with improved metabolic traits for sustainable

agriculture and novel pharmaceuticals.
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