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Real-time and lightweight
detection of grape diseases
based on Fusion
Transformer YOLO
Yifan Liu, Qiudong Yu* and Shuze Geng

College of Information Technology Engineering, Tianjin University of Technology and Education,
Tianjin, China
Introduction: Grapes are prone to various diseases throughout their growth

cycle, and the failure to promptly control these diseases can result in reduced

production and even complete crop failure. Therefore, effective disease control

is essential for maximizing grape yield. Accurate disease identification plays a

crucial role in this process. In this paper, we proposed a real-time and lightweight

detection model called Fusion Transformer YOLO for 4 grape diseases detection.

The primary source of the dataset comprises RGB images acquired from

plantations situated in North China.

Methods: Firstly, we introduce a lightweight high-performance VoVNet, which

utilizes ghost convolutions and learnable downsampling layer. This backbone is

further improved by integrating effective squeeze and excitation blocks and

residual connections to the OSA module. These enhancements contribute to

improved detection accuracy while maintaining a lightweight network. Secondly,

an improved dual-flow PAN+FPN structure with Real-time Transformer is

adopted in the neck component, by incorporating 2D position embedding and

a single-scale Transformer Encoder into the last feature map. This modification

enables real-time performance and improved accuracy in detecting small

targets. Finally, we adopt the Decoupled Head based on the improved Task

Aligned Predictor in the head component, which balances accuracy and speed.

Results: Experimental results demonstrate that FTR-YOLO achieves the high

performance across various evaluation metrics, with a mean Average Precision

(mAP) of 90.67%, a Frames Per Second (FPS) of 44, and a parameter size of 24.5M.

Conclusion: The FTR-YOLO presented in this paper provides a real-time and

lightweight solution for the detection of grape diseases. This model effectively

assists farmers in detecting grape diseases.
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1 Introduction

China’s extensive agricultural heritage, spanning over 2000

years, encompasses grape cultivation. Not only it is a significant

grape-producing nation but it also stands as the largest exporter of

grapes worldwide. Grapes are not only consumed directly but are

also processed into various products such as grape juice, raisins,

wine, and other valuable commodities, thus holding substantial

commercial value (El-Saadony et al., 2022). However, during the

grape growth process, susceptibility to diseases can lead to reduced

grape yield and significant economic losses (Elnahal et al., 2022).

Hence, the timely and effective detection of grape diseases is crucial

for ensuring healthy grape growth. Conventionally, the diagnosis of

grape diseases predominantly relies on field inspections by

agricultural experts (Liu et al., 2022; Ahmad et al., 2023). This

approach incurs high costs, has a lengthy cycle, and lacks

operational efficiency.

The development of computer vision and machine learning

technology provides a new solution for real-time automatic

detection of crop diseases (Fuentes et al., 2018, 2019). Traditional

machine learning methods in crop diseases identification and

positioning have made some valuable experience, such as image

segmentation [such as K-means clustering (Trivedi et al., 2022) and

threshold method (Singh and Misra, 2017)], feature detection [such

as SURF (Hameed and Üstündağ, 2020), KAZE (Rathor, 2021), and

MSER blob (Lee et al., 2023)], and pattern recognition [such as

KNN (Balakrishna and Rao, 2019), SVM, and bp neural network

(Hatuwal et al., 2021; Kaur and Singh, 2021)]. Due to the

complexity of image preprocessing and feature extraction, these

methods are still ineffective in detection.

Deep learning can automatically learn the hierarchical features

of different disease regions without manual design of feature

extraction and classifier, with excellent generalization ability and

robustness. The detection of crop diseases through CNN has

become a new hotspot in intelligent agriculture research. Jiang

et al. (2019) proposed a novel network architecture invar-SSD based

on VGG-Net and inception to the detection of apple leaf diseases,

mAP reached 78.8%. Yang et al. (2023) proposed a SE-VGG16

model uses VGG16 as the basis and adds the SE attention, which

classified corn weeds with an average accuracy of 99.67%. Guan

et al. (2023) proposed a dise efficient based on the EfficientNetV2

model, achieved an accuracy of 99.80% on the plant disease and pest

dataset. The above three methods are merely applicable for simple

classification tasks. However, when it comes to detection tasks, the

prevailing approach currently in use is YOLO. Liu andWang (2020)

proposed an improved YOLOv3 algorithm to detect tomato

diseases and insect pests. Results show that the detection accuracy

is 92.39%, and the detection time is 20.39 ms. Wang et al. (2022)

proposed a lightweight model based on the improved YOLOv4 to

detect dense plums in orchards. Compared with YOLOv4 model,

the model size is compressed by 77.85%, the parameters are only

17.92%, and the speed is accelerated by 112%. Kuznetsova et al.

(2020) designed harvesting robots based on a YOLOv3 algorithm,

apple detection time averaged 19 ms with 90.8% recall, and 7.8%

False Positive Rate (FPR). Qi et al. (2021) proposed a highly fused,

lightweight detection model named the Fusion-YOLO model to
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detect the early flowering stage of tea chrysanthemum. Huang et al.

(2021) used the YOLOv5 algorithm to detect the citrus collected by

UAV, the detection accuracy rate was 93.32%. Qiu et al. (2022) used

YOLOv5 for detecting citrus greening disease. The F1 scores for

recognizing five symptoms achieved 85.19%. Zhou et al. (2022)

proposed an improved YOLOX-s algorithm. Compared with the

original YOLOX-s, the model improved the detection Average

precision (AP) of kiwifruit by 6.52%, reduced the number of

parameters by 44.8% and upgraded the model detection speed by

63.9%. Soeb et al. (2023) used YOLOv7 for five tea leaf diseases in

natural scene, which validated by detection accuracy 97.3%,

precision 96.7%, recall 96.4%, mAP 98.2%, and F1-score

0.965, respectively.

The application of machine learning and deep learning in crop

disease detection in recent years is summarized. Deep learning,

especially CNN, has also made some contributions to grape disease

detection. Ji et al. (2020) designed the United Model and selected

1,619 images of healthy and three kinds of diseased grape leaves in

Plant village, with detection accuracy up to 98.57%. However, it

should be noted that all the data were obtained from laboratory

samples, and no comparative experiments were conducted in a

natural environment. Sanath Rao et al. (2021) used a pre-trained

AlexNet to classify grapes and mango leaf diseases, achieved

accuracy of 99% and 89% for grape leaves and mango leaves,

respectively. Ji et al. (2020) proposed a united CNN architecture

based on InceptionV3 and ResNet50 and can be used to classify

grape images into four classes, achieved average validation accuracy

of 99.17% and test accuracy of 98.57%. Adeel et al. (2022) proposed

a entropy-controlled CNN to identify grape leaf diseases at the early

stages, achieved an accuracy of 99%. Lu et al. (2022) proposed a

Ghost-conv. and Transformer networks for diagnosing 11 classes

grape leaf and pest, reached 180 frames per second (FPS), 1.16 M

weights and 98.14% accuracy. After adding Transformer and

Ghost-conv., the performance is improved significantly, but only

the identification work is done. Xie et al. (2020) presented a Faster

DR-IACNN model with higher feature extraction capability,

achieved a precision of 81.1% mAP, and the detection speed

reaches 15.01 FPS. The above two methods only detect grape leaf

diseases. Sozzi et al. (2022) evaluated six versions of the YOLO

(YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOv5x, and

YOLOv5s) for real-time bunch detection and counting in grapes.

Pinheiro et al. (2023) presented three pre-trained YOLO models

(YOLOv5x6, YOLOv7-E6E, and YOLOR-CSP-X) to detect and

classify grape bunches as healthy or damaged by the number of

berries with biophysical lesions, highlighting YOLOv7 with 77% of

mAP and 94% of the F1-score. Both of the aforementioned methods

solely utilized YOLO for grape bunch detection and did not involve

disease detection. Zhu et al. (2021) proposed YOLOv3-SPP network

for detection of black rot on grape leaves, applied in field

environment with 86.69% precision and 82.27% recall. Zhang Z.

et al. (2022) proposed a YOLOv5-CA, which highlights the downy

mildew disease–related visual features to achieve an mAP of

89.55%. Both methods employed YOLO for the detection of a

single disease in grapes. We have listed the advantages and

disadvantages of different methods for plant disease detection

in Table 1.
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There are also several challenges in grape disease detection: (1)

grape fruits and inflorescence are small and dense, making it difficult to

detect the incidence area, which can be very small. (2) Photos taken in

natural scenes are susceptible to external interference. (3) The model

needs to balance detection accuracy with lightweight requirements for

deployment and real-time performance. To address these challenges,

this paper proposes a real-time detection model based on Fusion

Transformer YOLO (FTR-YOLO) for grape diseases. The main

contributions of this paper are summarized as follows:
Fron
• Regarding the issue of limited detection of disease types in

other models and the detection under non-natural

environments, we have collected four grape diseases

(anthracnose, grapevine white rot, gray mold, and

powdery mildew) datasets in natural environments,

covered different parts such as leaves, fruits, and flower

inflorescence. The primary source of the dataset comprises

RGB images acquired from plantations situated in

North China.

• In backbone, we integrate learnable downsampling layer

(LDS), effective squeeze and excitation (eSE) blocks, and

residual connections based on VoVnet, effectively

improving the ability of network to extract feature

information. In neck component, an improved real-time

Transformer with two-dimensional (2D) position

embedding and single-scale Transformer encoder (SSTE)

are incorporated to the last feature map to accurate

detection of small targets. In head component, the

Decoupled Head based on the improved Task-Aligned

Predictor (ITAP) is adopted to optimize detection accuracy.

• To address the challenges with deploying application using

models that have a large capacity and slow inference speed,

we replace the convolution with ghost module in the model,

abandon Transformer decoder, and adopt more efficient

SSTE with VoVnet-39 of fewer layers to ensure the

lightweight and detection speed.
The rest of the article is organized as follows: Section 2

explicates the datasets and experimental settings and the network
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architecture and improvement of FTR-YOLO. Section 3 presents

the evaluation of the experimental performance and analyses.

Discussions of the performance are presented in Section 4. Last,

Section 5 offers conclusions and suggestions for future work.
2 Materials and methods

2.1 Experimental dataset building

In the process of building grape diseases detection dataset,

smartphone is used to collect photos in the local orchard. The

photos are taken in different time periods, weather conditions, and

scenes. The labeling tool is used to mark the images, the region of

interest by manually marking the rectangle, and then generated the

configuration file automatically.

Data augmentation is employed to expand the number of

images within the training dataset. The methods include random

flipping, Gaussian blur, affine transformation, image interception,

filling, and so forth. The network model is designed to enhance

randomly selected images by one or several operations.

The number of samples for each category is shown in Table 2.

Through data enhancement, the dataset is expanded to 4,800

images. The ratio of training set and test set is 8:2.

The overall structure of FTR-YOLO is shown in Figure 1. The

primary innovations of the model are represented by streamlined

modules. For comprehensive details, please consult the detailed

illustrations provided in Sections 2.2–2.4.
2.2 Backbone of FTR-YOLO

In backbone component, a lightweight high-performance

VoVnet (LH-VoVNet) (Zhao et al., 2022) network is used. The

proposed net adds the LDS Layer, eSE attention module (Long et al.,

2020) and residual connection on the basis of One-Shot

Aggregation (OSA) module. Also, the Conv. layer is replaced with

Ghost Module (Zhang B. et al., 2022) to further lightweight the

network. The LH-VoVNet has shorter computation time and

higher detection accuracy compared with other common

backbone, which is more suitable for grape disease detection tasks.
TABLE 2 The number of samples for each disease type.

Disease Sample
size

Number of
labeled samples
(bounding box)

Percent of
bounding

box samples

Anthracnose 1200 4587 20.53%

White rot 1200 6025 26.97%

Gray moid 1200 5160 23.09%

Powdery
mildew

1200 6571 29.41%

Total 4800 22343 100%
TABLE 1 Comparison of the advantages and disadvantages of
different methods.

Method Advantage Disadvantage

Machine
learning

- Less data and computing
resources.

- High interpretability.

- Difficult to handle complex
problems.

- Poor detection accuracy.

Deep learning
(classification)

- The model can
automatically learn image
feature representations.

- High detection accuracy.

- More data and computing
resources.

- The task is relatively simple;
the practical value is limited.

Deep learning
(detection)

- Higher accuracy and
generalization hold

significant practical value.
- End-to-end, one-stage
models (YOLO) are easy

to implement.

- Additional data,
annotations, and computing
resources are necessary.
- Balancing detection
accuracy and speed is a

challenging task.
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2.2.1 VoVNet
One of the challenges with DenseNet (Jianming et al., 2019) is

that the dense connections can become overly cumbersome. Each

layer aggregates the features from the preceding layers, leading to

feature redundancy. Furthermore, based on the L1 norm of the

model weights, it is evident that the middle layer has minimal

impact on the final classification layer, as shown in Figure 2A.

Instead, this information redundancy is a direction that can be

optimized, so the OSA module is adopted, as shown in Figure 2B.

Simply put, the OSA aggregates all the layers up to the final one,

effectively addressing the prior issue encountered with DenseNet.

Since the number of input channels per layer is fixed, the number of

output channels can be consistent with the input to achieve the
Frontiers in Plant Science 04
minimum MAC, and the 1 × 1 Conv. layer is no longer required to

compress features, the OSA module is computationally efficient.

2.2.2 LDS layer
At present, in common networks, the steps of downsampling

feature maps are usually completed at the first Conv. of each stage.

Figure 3A shows the general Residual block. In Path A, once the

input data are received, it undergoes a 1 × 1 Conv. with a stride of 2.

This operation leads to a loss of 3/4 of the information in the input

feature maps.

To solve this problem, the LDS layer is adopted. The

downsampling is moved to the following 3 × 3 Conv. in Path A,

and the identity part (Path B) downsampling is done by the added
FIGURE 1

The architecture of FTR-YOLO.
A

B

FIGURE 2

The architecture of DenseNet and VoVNet. (A) Dense aggregation (DenseNet) and (B) One-shot aggregation (VoVNet).
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avg-pool, so as to avoid the loss of information caused by the

simultaneous appearance of 1 × 1 Conv. and stride. Details are

shown in Figure 3B.
2.2.3 RE-OSA module
The pivotal element of the VoVnet lies in the OSA module as

described in Section 2.2.1. While the performance of the OSA

module is not enhanced, it offers lower MAC and improved

computational efficiency. Therefore, this paper adds eSE block

and residual connection in OSA module to further enhance

features and improve detection accuracy, called RE-OSA module.

The core idea of SE Block is to learn the feature weight

according to loss through the network (Hu et al., 2018), so that

the effective feature map has a larger weight and the rest of the

feature map has a smaller weight to train the model to achieve better

results. The SE module squeezes the entire spatial features on a

channel into a global feature by global average pooling, then two

fully connected (FC) layers are used to concat the feature map

information of each channel. Assume that the input feature map

Xi ∈ RC�W�H , the channel attention map Ach(Xi) ∈ RC�1�1 is

computed in Equations 1, 2.

Ach(Xi) = sðWc(dðWc=r(F gap(Xi ÞÞÞÞÞ (1)

F gap(X) =
1

WHo
W,H
i,j=1 Xi,j (2)

Where F gap is channel-wise global average pooling,Wc=r ,Wc ∈
RC�1�1 are weights of two FC layers, s denotes ReLU activation

function, d denotes sigmoid activation function.

In SE block, to avoid the computational burden of such a large

model, reduction ratio r is used in the first FC layer to reduce the

input feature channels from c to c/r. The second FC layer needs to

expand the reduced number of channels to the original channel c. In
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this process, the reduction of channel dimensions leads to the loss of

channel information.

Therefore, we adopt eSE that uses only one FC layer with c

channels instead of two FC layers without channel dimension

reduction, which rather maintains channel information and in

turn improves performance. In this paper, the ReLU/sigmoid

activation function in the module is replaced by the SiLU

function with better performance in YOLOv7 (Wang et al., 2023).

The eSE is computed in Equations 3, 4:

AeSE = ϑ(Wc(F gap(Xi))) (3)

Xrefine = AeSE ⊗Xi (4)

where ϑ denotes SiLU activation function. As a channel

attentive feature descriptor, the AeSE ∈ RC�1�1 is applied to the

diversified feature map Xi to make the diversified feature more

informative. Finally, the refined feature map Xrefine is obtained by

channel-wise multiplication AeSE and Xi.

2.2.4 Lightweight with ghost convolution
It can be seen from Section 2.2.3 that Conv. layer appears most

frequently in VoVNet. As a result, the whole network has a large

amount of computation and parameter volume, which is not

conducive to lightweight deployment.

To solve this problem, this paper adopts a structure—Ghost

Module, which can generate a large number of feature graphs with

cheap operations. This method can reduce the amount of

computation and parameter volume on the basis of ensuring the

performance ability of the algorithm.

In the feature map extracted by the mainstream deep neural

networks, the rich and even redundant information usually ensures

a comprehensive understanding of the input data. These

redundancies are called ghost maps.
A B

FIGURE 3

Two different methods of downsampling. (A) Conv. downsampling and (B) LDS downsampling.
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The ghost module consists of two parts. One part is the feature

map generated by the ordinary Conv. The other part is the ghost

maps generated by simple linear operation F. It is assumed that the

input feature map of size h×w×c is convolved with n sets of kernels

of size k×k, and the output feature map of size h'×w'×n. In the ghost

model, m groups of k×k kernels are convolved with input to

generate the identity maps of size h'×w'×m, after which the

identity maps are linearly transformed by depth-wise convolution

(k=5) to produce ghost maps. Finally, identity maps are concated

with ghost maps to generate ghost convolution. The ghost

convolution acceleration ratio rs and compression ratio rc are

calculated compared with ordinary convolution, as shown in

Equations 5, 6.

rs =
n · h0 · w0 · c · k · k

n
s · h0 · w0 · c · k · k + (s − 1) · ns · h0 · w0 · c · d · d

≈ s (5)

rc =
n · c · k · k

n
s · c · k · k + (s − 1) · ns · c · d · d

≈ s (6)

where the numerator is the complexity of ordinary convolution.

The denominator is the complexity of ghost module. s is the total

mapping generated by each channel (one identity map and s-1

ghost maps), c is the number of input feature maps, generally s ≪ c;

n/s refers to the identity map output by general convolution; d×d is

the average kernel size of depth-wise Conv. and has a similar size

to k×k.

Equations 5, 6 show that, compared with ordinary Conv.,

Ghost-conv. greatly reduces the amount of computation and the

number of parameters.

Finally, GC-RE-OSA module replaced 3 × 3 Conv. in RE-OSA

module (Section 2.2.3) with Ghost-conv. The structure of GC-RE-

OSA is shown in Figure 4.

The specific structure of LH-VoVnet can be found in Table 3.

LH-VoVNet comprises a stem block that consists of three 3 × 3

Conv. layers, followed by GC-RE-OSA modules implemented in

four stages. At the start of each stage, an LDS with a stride of 2 is
Frontiers in Plant Science 06
utilized (Section 2.2.2). The model achieves a final output stride of

32. For more details, please refer to Sections 2.2.3 and 2.2.4.
2.3 Neck of FTR-YOLO

Indeed, the Transformer model relies on a global attention

mechanism that requires substantial computational resources for

optimal performance (Carion et al., 2020). Consequently, it

becomes crucial to address this issue effectively. To mitigate this

concern, we eschew the initial image or multi-layer feature maps as

input and instead incorporate only the final feature map obtained

from the backbone. This is then directly connected to the neck.

Additionally, we select only two improved modules of Position

Embedding and Encoder.

Within the neck component, we utilize the current optimal

dual-flow PAN + FPN structure and enhance it through integration

with the GC-RE-OSA module introduced in this paper.
2.3.1 Real-time transformer
To enhance the detection accuracy, an enhanced global

attention mechanism based on the Vision Transformer (ViT) is

introduced. This modification takes into consideration that some

grape diseases may share similarities, while others have limited

occurrence areas. By incorporating this improved global attention

mechanism, the detection accuracy can be further improved in

detecting different grape diseases.

The current common detection transformer (DETR) algorithms

extract the last three layers of feature maps (C3, C4, and C5) from

the backbone network as the input. However, this approach usually

has two problems:
1. Previous DETRs, such as deformable DETR (Zhu et al.,

2020), flatten multi-scale features, and concatenate them

into a single long-sequence vector. This approach not only

enables effective interaction between the different scale
FIGURE 4

The structure of GC-RE-OSA module.
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features but it also introduces significant computational

complexity and increases the time required for processing.

2. Compared to the shallower C3 and C4 features, the deepest

layer C5 feature has deeper, higher level, and richer

semantic features. These semantic features are more

useful for distinguishing different objects and are more

desirable for Transformer. Shallow features do not play

much of a role due to the lack of better semantic features.
To address these issues, we only select the C5 feature map output

by the backbone network as the input for the Transformer. To retain

key feature information as much as possible, we replaced the simple

flattening of feature maps into a vector with a 2D encoding in the

Position Embedding module (Wu et al., 2021). Additionally, a

lightweight single-scale Transformer encoder is adopted.

The Multi-Head Self-Attention (MHSA) aggregation in

Transformer combines input elements without differentiating their
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positions; thus, Transformer possess permutation invariance. To

alleviate this issue, we need to embed spatial information into the

feature map, which requires adding 2D position encoding to the final

layer feature map. Specifically, the original sine and cosine positional

encodings in Position Embedding are respectively extended to column

and row positional encodings, and concatenated with them finally.

After the feature map is processed by 2D position embedding,

we use a single-scale Transformer Encoder, which only contains one

Encoder layer (MHSA + Feed Forward network) to process the

output of Q, K, and V at three scales. Note that the three scales share

one SSTE and, through this shared operation, the information of the

three scales can interact to some extent. Finally, the processing

results are concatenated together to form a vector, which is then

adjusted back to a 2D feature map, denoted as F5. In the neck part,

C3, C4, and F5 are sent to dual-flow PAN + FPN for multi-scale

feature fusion. See Figure 1 for details.

2.3.2 Dual-flow PAN + FPN
In order to achieve better information fusion of the three-layer

feature maps (C3, C4, and F5), our enhanced neck implements a

dual-stream PAN + FPN architecture, which is featured in the latest

YOLO series. In addition to this, we have introduced GC-RE-OSA

module to ensure faster detection speed while preserving accuracy.

A comparison between YOLOv5 (Jocher et al., 2021) (Figure 5A)

and our enhanced neck structure (Figure 5B) is provided. Our

improved architecture substitutes the C3 module with the GC-RE-

OSA module and eliminates the Conv. prior to upsampling. This

enables direct utilization of features output from diverse stages of

the backbone.
2.4 Head of FTR-YOLO

For the Head component, we have employed Decoupled Head

to perform separate classification and regression tasks via two
A B

FIGURE 5

Two different neck structures. (A) YOLOv5 neck and (B) ours.
TABLE 3 The specific structure of LH-VoVnet.

Type Output
stride

Stage Output
channel

Stem

2

2

2

3×3 Ghost-conv., 64,
Stride = 2

3×3 Ghost-conv., 64,
Stride = 1

3×3 Ghost-conv., 128,
Stride = 1

64

Stage 1 4 LDS Layer ×1, GC-
RE-OSA×1

128

Stage 2 8 LDS Layer ×1, GC-
RE-OSA×1

256

Stage 3 12 LDS Layer ×1, GC-
RE-OSA×2

512

Stage 4 32 LDS Layer ×1, GC-
RE-OSA×2

1024
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distinct convolutional channels. Furthermore, our architecture

includes the ITAP within each branch, which enhances the

interaction between the two tasks.

Object detection commonly faces a task conflict between

classification and localization. While decoupled head is

successfully applied to SOTA YOLO model in YOLOX (Ge et al.,

2021), v6 (Li et al., 2023), v7 (Wang et al., 2023), and v8 (Terven and

Cordova-Esparza, 2023), drawing lessons from most of the one-

stage and two-stage detectors, single-stage detectors perform

classification and localization tasks in parallel using two

independently functioning branches. However, this dual-branch

approach may lack interaction, resulting in inconsistent

predictions during execution.

To address this issue, we drew inspiration from the TAP in

TOOD (Feng et al., 2021) and made some improvements to

maintain accuracy while improving speed. As shown in Figure 6,

the ITAP uses eSE to replace the layer attention in TOOD. To

further enhance efficiency, we incorporated a more efficient

Convolution+BN layer+Silu (CBS) module before the shortcut.

Moreover, during the training phase, we utilized different loss for

the two branches.
2.5 Label assignment and loss

The loss calculation in our study employed the label assignment

strategy. SimOTA is employed in YOLOX, v6 and v7 to enhance

their performance. Task alignment learning (TAL) proposed in

TOOD is used in YOLOv8. This strategy entails selecting positive

samples based on the weighted scores of the classification and

regression branches within the loss function. For the classification

branch, we utilize the varifocal loss (VFL) (Zhang et al., 2021), while

for the regression branch, the distribution focal loss (DFL) (Li et al.,

2020) is employed. Furthermore, we incorporate the Complete-IoU

(CIoU) Loss. The combination of these three losses is achieved

through weighted proportions.

VFL utilizes the target score to assign weight to the loss of

positive samples. This implementation significantly amplifies the
Frontiers in Plant Science 08
impact of positive samples with high IoU on the loss function.

Consequently, the model prioritizes high-quality samples during

the training phase while de-emphasizing the low-quality ones.

Similarly, both approaches utilize IoU-aware classification score

(IACS) as the target for prediction. This enables effective learning of

a combined representation that includes both classification score

and localization quality estimation. By employing DFL to tackle the

uncertainty associated with bounding boxes, the network gains the

ability to swiftly concentrate on the distribution of neighboring

regions surrounding the target location. See Equation 7 for details.

Loss =
a · lossVFL + b · lossCIoU + g lossDFL

oNpos

i t̂
(7)

where t̂ denotes the normalized score used in TOOD, a, b, and
g represent different weights.
3 Experimental results

The experimental hardware environment is configured with

INTEL I7-13700 CPU, 32GB RAM, and GEFORCE RTX3090

graphics. The operating system is Windows10 professional

edition, the programming language is Python 3.8, and the

acceleration environment is CUDA 11.1 and CUDNN 8.2.0. The

training parameters of the training process used in the experiment

are shown in Table 4.
3.1 Ablation study on backbone

The improved network is composed of backbone, neck, and

head, so the influence of the improvement of each part on the model

performance should be verified respectively.

In this paper, the LH-VoVNet is verified through experiment.

The improvements include (1) the LDS layer is used for

downsampling. (2) By adding eSE block and RE-OSA module. (3)

The Conv. is replaced with Ghost Module to further lightweight the

network. The results of the ablation study are shown in Table 5.
FIGURE 6

ITAP decoupled head structures.
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On the basis of VoVnet, compared by adding LDS layer/RE-

OSAmodule improves accuracy by 1.06%/1.42%mAP. By replacing

Ghost-conv., the number of parameters in the network is greatly

reduced (−62.7%), the FPS is significantly improved (+78.9%), and

the detection performance is also slightly improved (+0.31%).

Finally, the integration of these three components shows that

mAP 86.79% (+2.17%) is optimal, Params 24.7MB (−50.1%) and

FPS 56 (+47.4%), achieve lightweight and real-time in backbone.
3.2 Ablation study on neck

To verify the effectiveness of the proposed neck, we evaluate the

indicators of the set of variants designed in Section 2.3, including

mAP, number of parameters, latency and FPS. The backbone used

in the ablation experiment is LH-VoVNet. The improvements

include the following: (1) Only the C5 feature map output by the

backbone as the input is selected for the Transformer. (2) The real-

time Transformer only includes 2D position embedding and SSTE

to further lightweight the network. (3) The C3 module is replaced

with GC-RE-OSA module. The parameters for the Transformer

Encoder are as follows: num of head = 8, num of encoder layers = 1,

hidden dim = 256, dropout = 0.1, activation = relu.

The experimental results are shown in Table 6. On the basis of

YOLOv5 neck, by adding real-time Transformer delivers 1.41% AP

improvement, while increasing the number of parameters by 4.5%,

the latency by 47.2%, decreasing the FPS by 17.9%. This

demonstrates the effective enhancement of detection accuracy by

Transformer while maintaining a high degree of lightweight and

real-time performance. By adding GC-RE-OSA module delivers

0.45% AP improvement, the number of parameters experienced a

slight increase of 4.5%, the latency decreases by 25.0%, and the FPS

increase by 8.9%. This shows that the module not only enables

lightweight networking but also enhances performance. Finally, the
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integration of these two components shows that mAP 88.85%

(+2.06%) is optimal, Params 22.5MB (−8.9%), Latency 56.3ms

(+7.2%), and FPS 49 (−12.5%). The improved neck further

enhances network detection performance and lightweight, albeit

with a slight fluctuation in FPS and Latency that has negligible

impact on real-time detection.
3.3 Ablation study on head and loss

To verify the effectiveness of the proposed head, we evaluate the

indicators of the set of variants designed in Sections 2.4 and 2.5,

including mAP, number of parameters, latency, and FPS. We

conduct this experiment on above-modified model, which uses

LH-VoVNet, improved neck, and YOLOv5 head as the baseline.

The parameters for the TAL are as follows: topk = 13, alpha = 1.0,

and beta = 6.0. Similarly, for the SimOTA Assigner, the parameters

are center_radius = 2.5 and topk = 10. In Equation 7, the weights

assigned to the three losses are as follows: VFL (a = 1.0), CIoU (b =

2.5), and DFL (g = 0.5). The experimental results are shown

in Table 7.

On the basis of YOLOv5 head, by adding ITAP Decoupled

Head delivers 0.61% AP improvement, while increasing the number

of parameters by 6.2%, the latency by 6.6%, decreasing the FPS by

8.2%. This indicates that the improved head has minimal impact on

parameter and computational speed, while simultaneously

enhancing detection accuracy. By adding SimOTA delivers 0.27%

AP improvement, the number of parameters/Latency/FPS

experience a slight fluctuation by +2.2%/+1.4%/−2.0%. By adding

TAL delivers 1.06% AP improvement, the number of parameters/

Latency/FPS experience a slight fluctuation by +2.7%/+1.8%/−2.0%.
TABLE 5 The results of the ablation study of backbone components.

Methods mAP@0.5 Params(M) FPS

VoVnet 84.62 49.0 38

+LDS layer 85.68 49.4 37

+RE-OSA module 86.04 53.5 24

+Ghost-conv. 84.93 18.3 68

LH-VoVNet 86.79 24.7 56
Bold values represents the optimal values.
TABLE 4 The implementation details of training parameters.

Parameter Value Parameter Value

Optimizer AdamW Weight decay 0.0005

Learning rate 0.001 Momentum 0.937

Batch size 8 warmup steps 300

Image size 640*640 Epochs 200

NMS threshold 0.7 EMA decay 0.9998
TABLE 6 The results of the ablation study of neck components.

Methods
mAP@0.5

Params
(M)

Latency
(ms)

FPS

YOLOv5 neck 86.79 24.7 52.5 56

+Real
time Transformer

88.20 25.8 77.3 46

+GC-RE-
OSA module

87.22 20.3 39.4 61

Ours neck 88.85 22.5 56.3 49
frontier
Bold values represents the optimal values.
TABLE 7 The results of the ablation study of head & loss components.

Methods
mAP@0.5

Params
(M)

Latency
(ms)

FPS

YOLOv5 head 88.85 22.5 56.3 49

+ITAP
decoupled head

89.46 23.9 60.0 45

+SimOTA 89.12 23.0 57.1 48

+TAL 89.91 23.1 57.3 48

Ours head 90.67 24.5 61.5 44
Bold values represents the optimal values.
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After comparing the label assignments of SimOTA and TAL, it was

found that TAL exhibited superior performance, thus making it the

preferred choice for our paper. Finally, we adopted a hybrid

methodology comprising ITAP Decoupled Head+TAL, resulting

in an optimized mAP of 90.67% (+1.82%). Additionally, there was

an augmentation in the model’s parameters and Latency to 24.5MB

(+8.9%) and 61.5 (+9.2%), respectively, while the FPS decreased to

44 (−10.2%).
3.4 Comparison with other detectors

Table 8 compares FTR-YOLO with other real-time detectors

(YOLOv5, YOLOv6, YOLOv7, YOLOv8, and PP-YOLOE) and

Vision Transformer detector (DINO-DETR).

Compared to real-time detectors YOLOv5/YOLOv6/YOLOv7/

YOLOv8/PP-YOLOE, FTR-YOLO significantly improves accuracy

by 6.44%/3.13%/1.81%/1.75%/4.92% mAP, increases FPS by 10.0%/

18.9%/7.3%/0.0%/7.3%, and reduces the number of parameters by

47.1%/58.5%/33.1%/43.4%/53.1%. Even among the AP metrics for the

four categories, the FTR-YOLO algorithm consistently demonstrates

the best performance. Additionally, the differences in AP values among

the four disease categories are relatively small, indicating that the FTR-

YOLO algorithm exhibits good robustness. This demonstrates the

superior performance of FTR-YOLO compared to the state-of-the-

art YOLO detectors in terms of accuracy, speed, and lightweight.

In order to determine the statistical significance of the

differences between various algorithms, we performed four

independent repeated experiments for each algorithm. A t test

was employed, and the p-values for mAP among different

algorithms were computed. Due to substantial variations in

parameters, including image input size and training epochs,

between the DINO-DETR algorithm and other detection

algorithms, it was excluded from the statistical analysis. The

experimental results reveal that the p-values comparing different

algorithms are considerably small, all well below 0.01, signifying

noteworthy variances between the algorithms.

Compared to DINO-DETR, the number of parameters/mAP/

FPS experience a fluctuation by −48.3%/−0.45%/+2100.0%. This

observation highlights that, while DINO achieves a slightly higher

mAP of 0.45% compared to FTR-YOLO, it fails to meet real-time
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requirements due to its significantly lower FPS (2). Furthermore,

there is no discernible advantage in terms of model lightweight.
3.5 Object size sensitivity analysis

Different disease types, periods, and locations result in different

characteristics and sizes. The improved network proposed in this

paper effectively enhances the detection accuracy in small object

scenario. In order to verify the detection effect of the small object

detection performance, the test dataset is divided into five groups

based on the size of the disease area. The, 0%–10%, 10%–20%, 20%–

40%, 40%–60%, and 60%–90%, five groups are named with different

labels: XS, S, M, L, and XL, which represent the size of different

objects. The comparison of the detection accuracy of six common

algorithms with FTR-YOLO for five different sizes.

As shown in Figure 7, The YOLOv5 and PP-YOLOE perform

well in large target region (XL and L), but the detection effect of

small target decreases sharply (XS and S). YOLOv6, v7, and v8 have

shown slight improvements in detection accuracy compared to

YOLOv5. Among them, v8 performs better on smaller scales (XS

and S) while demonstrating similar detection effectiveness on M, L,

and XL scales. The DINO-DETR is optimal in the detection

accuracy on smaller scales (XS and S). FTR-YOLO demonstrates

superior performance on M (90.43%), L (95.30%), and XL (98.73%)

scales. The mAP values show a significant improvement when

compared to the other five YOLO algorithms on both XS and S

scales. Specifically, it shows improvements of 7.81%/6.71%/4.69%/

3.31%/6.58% on XS scale, and improvements of 10.65%/8.01%/

5.67%/4.82%/7.24% on S scale. These improvements highlight the

effectiveness of the system in achieving higher mAP values

compared to its counterparts. While it may have slightly lower

performance than DINO-DETR, FTR-YOLO is still the optimal

choice due to its lightweight and real-time capabilities.
3.6 Image size sensitivity analysis

The Batch Random Resize is applied to a batch of images, which

helps increase the diversity and randomness of the data. By

introducing such variations during training, the model becomes
TABLE 8 The comparison results of different methods.

Method Size Params(M)
AP for each category*

mAP@0.5 FPS p-value
1 2 3 4

Yolo V5 640*640 46.3 87.42 76.03 85.29 88.18 84.23 40 < 0.01

Yolo V6 640*640 59.0 90.70 88.59 80.37 90.14 87.54 37 < 0.01

Yolo V7 640*640 36.6 89.51 90.44 84.23 91.26 88.86 41 < 0.01

Yolo V8 640*640 43.3 89.83 88.47 85.30 92.08 88.92 44 < 0.01

PP-YOLOE 640*640 52.2 88.15 78.59 84.42 91.84 85.75 41 < 0.01

DINO-DETR 800*1333 47.4 91.79 90.58 88.76 93.35 91.12 2 ——

FTR-YOLO 640*640 24.5 90.73 90.67 88.54 92.74 90.67 44 < 0.01
fro
*In Table 8, 1, 2, 3, and 4 represent the four types of detected diseases: 1, anthracnose; 2, grapevine white rot; 3, gray mold; 4, powdery mildew.
Bold values represents the optimal values.
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more robust and better able to generalize to unseen examples. This

technique can contribute to improving the overall performance and

generalization ability of the model in tasks such as object detection

or image classification. In our experiment, the data were randomly

resized into the following 10 different sizes: [320, 384, 448, 480, 512,

544, 576, 640, 672, 704, 736, and 768].

To further validate the detection performance on images of

varying sizes, we categorized the dataset into three groups based on

different sizes: (1) small size, less than or equal to 480; (2) medium

size, ranging from 480 to 768; (3) large size, greater than 768. Figure 8

shows the detection performance of seven different algorithms.

The detection accuracy among samples of different sizes does

not show significant variation, as illustrated in Figure 8. However, it

should be noted that the detection accuracy is affected by the

distortion introduced when resizing small-sized images to 640.

Among the various algorithms, the DINO-DETR algorithm is

particularly sensitive to this impact. On the other hand, FTR-

YOLO demonstrates superior performance on small-sized images
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(87.34%) and medium-sized images (90.80%). Additionally, FTR-

YOLO significantly improves mAP values compared to the other

five YOLO algorithms on small-sized images by 4.73%, 3.31%,

2.02%, 1.49%, and 3.85%. It also improves mAP values on

medium-sized images by 5.07%, 3.55%, 2.20%, 2.24%, and 4.78%.

Furthermore, it improves mAP values on large-sized images by

5.41%, 2.92%, 1.46%, 1.34%, and 4.85%. Although FTR-YOLO may

have slightly lower performance than DINO-DETR on large-sized

images, it is still considered the optimal choice due to its lightweight

design and real-time capabilities.

Based on the comparative evaluation in Sections 3.4–3.6, LH-

VoVnet-39 outperforms YOLO’s backbone CSPDarknet-53 or

CSPResnet-50, which replaced the convolution downsampling

operation with LDS, enabling the model to better preserve

important features. Additionally, the GC-RE-OSA module, along

with residual connections and eSE attention mechanism, further

improves feature extraction. Furthermore, we have made

improvements to the TAP and loss selection based on YOLOv7
FIGURE 7

Object size sensitivity analysis.
FIGURE 8

Image size sensitivity analysis.
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and v8 decoupled heads. As a result, FTR-YOLO demonstrates

superior performance in terms of mAP and AP values for each

category, with minimal numerical differences and strong

generalization capabilities (Table 8).

Due to VoVnet-39 having fewer layers and the utilization of

lightweight ghost modules instead of convolutions, in addition to a

real-time transformer that consists of 2D position embedding and a

single-scale Transformer encoder, but does not include decoder,

FTR-YOLO achieves comparable FPS performance to YOLOv8

while delivering optimal results (Table 8).

On the other hand, DINO-DETR, with its multi-scale

Transformer encoder and decoder, possesses more input feature

maps and layers, resulting in better performance for object

detection. It outperforms FTR-YOLO in specific metrics such as

mAP in Table 8, mAP for XS and S object scales in Figure 7, andmAP

for large-sized inputs in Figure 8. However, this improvement comes

at the cost of significantly increased computational complexity,

leading to an FPS of only 2, which limits its practical applications.
FIGURE 9

The p–r curve of FTR-YOLO.
A B

D E F

G H

C

FIGURE 10

The detection results of FTR-YOLO. (A) diseased leaves of anthracnose, (B) diseased leaves of grapevine white rot, (C) diseased leaves of gray mold,
(D) diseased leaves of powdery mildew, (E) diseased fruits of gray mold, (F) diseased fruits of grapevine white rot, (G) diseased fruits of anthracnose,
and (H) diseased inflorescence of gray mold.
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3.7 Performance visualization on
FTR-YOLO

The precision–recall curves of each disease are provided in

Figure 9, which intuitively shows the detailed relationship between

precision and recall. It has been observed that as recall increases, the

rate of change in precision also increases. When the graph’s curve is

closer to the upper right corner, it indicates that the drop in

precision as recall increases is less noticeable, indicating improved

overall performance of FTR-YOLO.

The detection results of four diseases of grape are shown in

Figure 10. Figures 10A–D show the detection results of diseased

leaves of anthracnose, grapevine white rot, gray mold, powdery

mildew, respectively, while Figures 10E–G show the detection

results of diseased fruits of gray mold, grapevine white rot and

anthracnose respectively. Figure 10H shows the diseased

inflorescence of gray mold. The results indicate that the FTR-

YOLO model exhibits precise detection of diverse symptoms in

different parts of the vine within natural scenes. This underscores

the model’s remarkable generalization and robustness. It is evident

that the majority of detection boxes have scores exceeding 0.8.

Additionally, a substantial portion of the diseased areas have been

accurately detected, highlighting the exceptional precision and

precise localization capabilities of the proposed model. We also

compared the detection performance of different algorithms. For

details, please see Figure 11.

The experimental results in Figure 11 show that YOLOv5

missed some small objects, while the PPYOLOE and DINO-

DETR algorithms detected additional object areas. There are

slight differences in the detected bounding boxes and confidence

levels among the different algorithms, which overall align with the

experimental results obtained in the paper. The proposed FTR-
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YOLO (Figure 10A) performs well in terms of detection accuracy

and confidence levels.

4 Discussions

Based on the information provided, the FTR-YOLO model is

proposed in this paper to achieve accurate, real-time, and

lightweight intelligent detection of four common grape diseases in

natural environments. The model incorporates several

improvements in its components. In backbone, the LH-VoVNet

is introduced, which includes LDS layer and Ghost-conv.

Additionally, eSE blocks and residual connections are added to

the OSA module (GC-RE-OSA module). Experimental results

presented in Table 5 demonstrate that the LH-VoVNet achieves

optimal performance in terms of detection (mAP 86.79%),

lightweight design (Params 24.7MB), and real-time capabilities

(FPS 56). The neck component also undergoes improvements.

Only the C5 feature map output by the backbone is selected as

the input for the real-time Transformer, includes 2D position

embedding and SSTE. Additionally, the C3 module is replaced

with the GC-RE-OSA module in PAN + FPN. Experimental results

presented in Table 6 show that the improved neck further enhances

performance in detection (mAP 88.85%) and lightweight design

(Params 22.5MB). In the head and loss component, the ITAP is

proposed, and TAL is used with VFL and DFL. Experimental results

presented in Table 7 demonstrate that the ITAP Decoupled Head +

TAL achieves an optimized mAP of 90.67%. Moreover, Table 8;

Figures 7, 8 show the superior performance of FTR-YOLO

compared to state-of-the-art YOLO detectors in terms of accuracy

(mAP 90.67%), speed (FPS 44), and lightweight design (Params

24.5MB), particularly improved accuracy on smaller scales (XS and

S) and different sample sizes.
A B

D E F
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FIGURE 11

The detection results of different methods. (A) YOLOv5, (B) YOLOv6, (C) YOLOv7, (D) YOLOv8, (E) PPYOLO-E, and (F) DINO-DETR.
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5 Conclusion and future works

In this paper, we propose a real-time and lightweight detection

model, called Fusion Transformer YOLO, for grape disease detection.

In backbone, we integrate GC-RE-OSA module based on VoVnet,

effectively improving the ability of network to extract feature

information while keeping the network lightweight. In neck

component, an improved Real-Time Transformer with 2D position

embedding and SSTE are incorporated to the last feature map to

accurate detection of small targets in natural environments. In head

component, the Decoupled Head based on the ITAP is adopted to

optimize detection strategy. Our proposed FTR-YOLO achieved

24.5MB Params, 90.67% mAP@0.5 with 44 FPS, which

outperformed YOLOv5-v8 and PP-YOLOE. Although FTR-YOLO

uses a real-time Transformer to improve model performance, it still

falls behind DETR in terms of performance due to DETR’s multi-

scale and multi-layer global transformer architecture.

Future studies plan to explore the fusion of CNN and transformer

models, as well as the integration of multimodal features, to further

enhance the model’s performance. Additionally, this paper focuses on

disease detection in grapes, theoretically, the FTR-YOLO algorithm

has the potential to achieve good performance when retrained on

other datasets. It can be applied to tasks such as the detection of plant

traits and pest diseases in other plants.
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