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Assessing the stability of indoor
farming systems using data
outlier detection
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Ying Zhang1, Celina Gomez2 and Melanie Correll 1

1Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, United
States, 2Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,
IN, United States
Introduction: This study investigates the quality of air temperature data collected

from a small-scale Controlled Environment Agriculture (CEA) system using low-

cost IoT sensors during lettuce cultivation at four different temperatures.

Ensuring data quality in CEA systems is essential, as it affects system stability

and operational efficiency. This research aims to assess system stability by

analyzing the correlation between cumulative agricultural operations (Agr.Ops)

and air temperature data variability.

Methods: The methodology involved collecting air temperature data from IoT

sensors in the CEA system throughout lettuce cultivation trials. A generalized

linear model regression analysis was conducted to examine the relationship

between cumulative Agr.Ops and the z-scores of air temperature residuals, which

served as an indicator of system stability. Outliers in the sensor data were identified

and analyzed to evaluate their impact on system performance. Residual distribution

and curve fitting techniques were used to determine the best distribution model for

the sensor data, with a log-normal distribution found to be the best fit.

Results: Regression analysis indicated a strong inverse relationship between

cumulative Agr.Ops and residual z-scores, suggesting that increased Agr.Ops

correlated with a higher presence of outliers and a decrease in system stability.

The residual analysis highlighted that outliers could be attributed to potential issues

such as sensor noise, drift, or other sources of uncertainty in data collection. Across

different trials, the system displayed varying degrees of resistance to cumulative

Agr.Ops, with some trials showing increased resilience over time.

Discussion: The alternative decomposition method used effectively identified

outliers and provided valuable insights into the functionality of the system under

different operational loads. This study highlights the importance of addressing

uncertainties in indoor farming systems by improving surrogate data models,

refining sensor selection, and ensuring data redundancy. The proposed method

offers a promising approach for enhancing monitoring and managing uncertainties

in CEA systems, contributing to improved stability and efficiency in indoor farming.
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1 Introduction

By 2050, the world’s population is expected to reach 9.7 billion

(United Nations and Department of Economic and Social Affairs and

Population Division, 2019: Highlights, 2019), and roughly two-thirds

of this population are projected to be living in cities (Ramin Shamshiri

et al., 2018). To meet the food requirements of this increasing

population, the global food system will be forced to increase food

production on a dwindling supply of agricultural land (Plaut, 1980). In

addition to this, extreme and increasingly irregular weather events

(Wehner et al., 2017) and clean water scarcities (Boretti and Rosa,

2019) are expected to further threaten the resilience of traditional

agricultural and food production systems. Although challenging,

innovative approaches to agricultural production are needed to

ensure global food security (Keating et al., 2014; Lipper et al., 2014)

and adequate food supplies under these conditions (Pitesky et al.,

2014). Controlled environment agriculture (CEA) production

methods like greenhouses and vertical farms can help meet the

challenge of more intensive, profitable and sustainable production

(O’Sullivan et al., 2019; Coon et al., 2024). CEA allow for year-round

crop production, including in areas where crops otherwise could not

be grown (Jensen and Malter, 1995). The greenhouse production of

specialty crops (fruits, vegetables, and floriculture) is an important

part of U.S. agriculture, with a $6.9 billion in annual wholesale

farmgate value (USDA et al., 2019). Compared to field production,

greenhouses generate higher yields per unit growing area, all while

using less water, fertilizer and pesticides per unit yield (USDA et al.,

2020). CEA systems are potentially viable strategies for mitigating the

many complex challenges affecting global food production (Ramin

Shamshiri et al., 2018; Iddio et al., 2020; Engler and Krarti, 2021). CEA

systems can improve water and nutrient use efficiencies, provide

healthier and safer foods with little to no chemical pesticide

applications, increase yields per square foot of land, reduce

transportation costs when in urban settings, and provide consistent

high-quality food production year-round despite climatic conditions.

However, some of the main disadvantages of CEA include high capital

investment and operating costs caused by high energy consumption

and labor requirements (Benke and Tomkins, 2017; Engler and Krarti,

2021; Van Delden et al., 2021) which limit their financial profitability

(O’Sullivan et al., 2019). In order to use CEA to improve the

sustainability and resiliency of our food production systems, it is

imperative to improve their economic viability (Hati and Singh, 2021)

and accessibility.

Two of the main types of CEA systems include greenhouses and

vertical farms, each with specific benefits, drawbacks, and optimal use

cases. Greenhouses consist of semi-controlled environments where

plants can be grown in soil or hydroponically, with controlled

irrigation and fertigation, and primarily using sunlight for lighting

and heating requirements. These semi-controlled environments can

improve plant yield and quality, reduce pest and disease pressures,

and extend growing seasons for crops when compared to

conventional production methods. For example, lettuce grown

hydroponically in a greenhouse used 13 ± 2.7 times less water and

yielded 11 ± 1.7 times more than conventionally grown lettuce,

though it did require 82 ± 11 timesmore energy (Barbosa et al., 2015).

Vertical farms grow plants with soilless cultivation methods in air-
Frontiers in Plant Science 02
tight, thermally insulated buildings with controlled lighting and

environmental conditions which can provide great benefits when

compared to greenhouses. A comparison of plant factories (a type of

vertical farm) and greenhouses found that plant factories

outperformed even the most efficient greenhouses, achieving higher

water, carbon dioxide, and land area productivities (Graamans et al.,

2018). One vertical farm in Japan produced 100 times more lettuce

per square foot with 40% less energy, 80% less food waste, and 99%

less water uses than a conventional farm (Hati and Singh, 2021).

In CEA, temperature sensors are used for environmental

monitoring and control systems (heating, ventilation, air

conditioning, shade structures, dehumidifiers, humidifiers, irrigation,

etc.) to achieve precise control of the environment around plants.

Temperature can have a significant impact on the resource use

efficiencies of the system by affecting heating and cooling loads,

water use rates, sensor readings, and even the lifespan and energy

conversion efficiencies of components making up the system. Multiple

plant growth and development factors are affected by temperature,

including photosynthesis, respiration, growth rate, developmental

stage, germination, and plant height (Yang et al., 2014), with optimal

ranges varying between plant species and cultivars. Hot temperatures

above 35°C have been shown to harm the photosynthetic process (He

et al., 2009), and having temperatures that promote plant respiration at

night while reducing photosynthesis rates during the day can reduce

overall plant yield (Yamori et al., 2014). Root-zone temperatures affect

metabolic enzyme activity and the rate of water uptake in plants (He

et al., 2009), with warmer temperatures leading to faster growth rates

and greater water use. Root-zone temperatures also affect the dissolved

oxygen (DO) concentration in water, with warmer temperatures

reducing oxygen concentrations which can lead to plant death when

oxygen concentrations become too low (Brechner et al., 1996). The

electrical conductivity (EC) readings of nutrient solutions used for

hydroponic production need to be compensated for the temperature to

ensure accuracy since EC has a direct relationship with temperature.

LEDs used for artificial lighting become less energy efficient when

temperatures exceed their optimal ranges, eventually leading to a

decrease in optimal efficiency and more heat generation (Peng and

Liu, 2021). Furthermore, external operating temperatures and the

different types of CEA systems used can lead to different optimal

conditions for energy efficiency, with warmer setpoints in hot

conditions and cooler setpoints in cold conditions often being more

efficient (Yang et al., 2014; Zhang and Kacira, 2020). Thus, precise

temperature control is essential for the effective and efficient operation

of CEA production systems.

Sensors are a crucial component for monitoring and controlling

environmental conditions inside CEA systems to ensure accurate

conditions are maintained. Using sensors can optimize resource use

efficiencies, reduce labor requirements, and ensure the production of

high quality crops. Low-cost (LC) sensors provide affordable and

scalable ways of establishing the dense sensor matrices that are

necessary for accurately monitoring and controlling CEA

operations. Internet of Things (IoT) systems use LC sensors in a

variety of ways to improve agricultural activities without the hefty

price tag associated with high quality sensors. IoT devices are

enhanced with computational and networking power often through

open-source software (Charumathi et al., 2017; Tzounis et al., 2017;
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Marques et al., 2019; Montoya et al., 2020; Tatas et al., 2021), and

using multiple devices allows for the collection of large quantities of

data. With larger amount of data, various system operations or

incidences can be interpreted or represented through proper

analysis methods, such as statistics. Some of these operations or

incidences include sensor calibration (Montoya et al., 2020),

intermittent loss of connection, lack of data trustworthiness and

thus poor decision making (Karkouch et al., 2016), unstable and

congested networks, and the exhaustion of power supplies (Teh et al.,

2020). These issues are prone to data quality cases such as outliers,

missing data, bias, drift, noise, and uncertainty (Teh et al., 2020).

Solutions for interpreting data quality information include a

variety of sophisticated data processing techniques such as principal

component analysis (PCA), artificial neural networks (ANN), and

Bayesian Networks, that enhance the functionality and usability of

these systems by addressing those errors (Teh et al., 2020; Samara

et al., 2022). For time series data, statistical and machine learning

methods have been used for detecting anomaly data, such as outliers

(Filimonov et al., 2020; Fawzy et al., 2013). Staged rules (e.g., physical

limitation test, step test, internal identity test, etc.) were developed for

meteorology and weather data monitoring (Tak, 2015; Cella et al.,

2019; Kim et al., 2015; Oh et al., 2013). In agriculture, and especially

controlled environment operations, data quality analysis is critical for

the management of environmental systems related to power

consumption, crop growth, productivity, system stability, etc.

However, related studies in the agriculture field within relevant data

sets are few, if any.

In this study, the quality of air temperature data collected from a

small scale CEA system using low cost IoT sensors is investigated to

assess the stability of the system during the cultivation of lettuce at

four different air temperatures. The system configuration and the

methodology of analysis will be introduced next, followed by the

results of statistical analysis. The findings and insights will be

provided in the discussion, followed by the conclusion.
2 Materials and methods

In this experiment, time series data was collected from various

environmental sensors connected to an Arduino based sensor array

within a vertical farming (VF) system where nutrient film technique

(NFT) hydroponic lettuce was grown under LED lights. The sensor

array output data to a MySQL database and logged data locally to a

computer throughout the experiment as a backup data set (See

details in the Appendix). The controlled nature of this small scale

VF made for regular temporal fluctuations that were easily

detectable and based primarily on the functionality of the system

(equipment, timers, sensors, etc.). External environmental

conditions had negligible effects on the VF since it was insulated

within a building with constant environmental control. The small

size of the VF made the internal environmental conditions prone to

a high degree of fluctuation caused agricultural operations, and thus

a potentially influential factor on the system functionality and

uncertainties in the environmental data. Air temperature data was

used to apply statistical techniques for residual analysis and outlier
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detection of the decomposed time series data as a measure of the

stability of the system. The data analysis method proposed in this

experiment could help to reduce the overall operating costs of

vertical farms by improving energy use efficiencies and reducing

labor requirements.
2.1 Environment overview

An environmental growth chamber was used to house an indoor

farm system for this study with experiments involving lettuce growth.

The chamber’s temperature, humidity, and airflow were controlled,

and CO2 was enriched to a constant level. The experiment involved

four trials with different air temperature set points. Data was collected

using six microcontroller boards connected to sensors for various

parameters such as air temperature, humidity, CO2 concentration,

and nutrient solution conditions. The data was logged online to a

MySQL database and locally as a.txt file. Sensors were placed at

different locations in the chamber to monitor conditions (See details

in the Appendix). The experiment aimed to study the growth and

development of lettuce under different environmental conditions.

The data management system included a database design to store

real-time data and manage sensor devices, as well as a backup file

system for data security. The details information about the system

design can be found in the appendix.
2.2 Data in this study

This study focuses on the air temperature data collected from the

chamber. The air temperature was controlled by the air conditioning

system of the building to ensure it uniformity and monitored at two

plant canopy levels and other locations to record its variations. The

experiment involved four trials labelled: T1, T2, T3, and T4, each with

a different day-time air temperature set point of 30°C, 24°C, 28°C,

and 26°C respectively. Data was collected using five LC air

temperature sensors (Adafruit, SHT30, New York, NY) connected

to microcontroller boards, with readings taken at 10-second intervals,

as well as an independent data-logging reference air temperature

sensor (Hydrofarm, APCEM2, Petaluma, CA) (See details in the

Appendix). The collected data included 302,400 data points per trial.

Sensors were calibrated and placed at various locations to

monitor the air temperature inside the chamber accurately and

understand temperature uniformity at different points. A low-cost

sensor was placed at each of the two plant canopies (LC_Canopy_1,

LC_Canopy_2) to monitor them for uniformity. A LC sensor was

installed next to the reference sensor in an open space in the

chamber to monitor overall environmental conditions in the

chamber and to compare the accuracy of readings between the

two at the same location. Two other temperature sensors were

placed at the intake of the AC to monitor energy use of the unit, and

another outside the chamber to monitor ambient conditions of the

building housing the chamber. Of the six sets of air temperature

data collected, only four were used for analysis: the reference sensor

(Reference), and three LC sensors located at both plant canopies
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and next to the reference sensor (LC_Canopy_1, LC_Canopy_2,

LC_Reference). The other two temperature sensor data were not

considered in our analysis due to time constraints and relevance to

the study. Other environmental data such as relative humidity and

CO2 concentrations were outside the scope of this study due to

budgetary and time constraints, a lack of reference sensor data, and

because these data displayed irregular seasonality that would

require a different analysis method than what was proposed in

this study (see details in the appendix). All sensors were connected

to the same power supply, so electrical fluctuations should have

affected them all similarly.

Agricultural operations were monitored and logged as two

data points, 1) door status, 2) person status. Both were logged as

binary variables indicating open/closed for the door status, and

present/absent for person status. Door status was recorded

automatically using a photocell (Adafruit, CdS photocell, New

York, NY) that was attached to the chamber door which would

detect light when the door was open (1), and no light when the

door was closed (0). Person status was manually recorded using a

switch state, three button-based logging system, where one would

press one of the three buttons to record being in the chamber and

change its state to “present” (1), and then press the button again

when leaving the chamber to change its state to “absent” (0). This

allowed us to record the simultaneous presence of up to three

people in the chamber which would have a three-fold effect on the

environmental conditions as that of a single individual working in

the chamber.
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2.3 Data classification method

All data processing and analysis was performed with R

Statistical Software (RRID:SCR_001905) (R Core Team, 2024).

Multiple libraries were used for data wrangling and processing

including ‘lubridate’ (Grolemund and Wickham, 2011), ‘tidyverse’

(Wickham et al., 2019), ‘plyr’ (Wickham, 2011), ‘dplyr’ (Wickham

et al., 2023), ‘ggplot’ (Wickham, 2016), ‘ggpubr’ (Kassambara,

2023), data.table (Barrett et al., 2024), ‘psych’ (Revelle, 2024),

‘hrbrthemes’ (Rudis, 2024), ‘devtools’ (Wickham et al., 2022),

‘fitdistrplus’. Decomposition was performed using the base R stats

package. Regression analyses were performed with base R stats

package using the generalized linear model (glm) function.

2.3.1 Missing data processing
The data collected throughout the trials had many missing data

points with varied causes such as sensor and microcontroller

malfunctions, power surges, and power outages. The missing

sensor data points were replaced with data from a surrogate data

set that matched the date time timestamp per sensor and per trial

(Figure 1). The resulting data set was free of missing data points and

is referred to as the coalesced data throughout this document. The

surrogate data sets that were used consisted of the median sensor

reading per trial for every unique hour/minute combination during

a 24 hour time span. The median value was selected as it is less

distorted by outliers than the mean and is as such a more

appropriate measure of central tendency (Khorana et al., 2023)
FIGURE 1

Replacing missing data points in the raw sensor data with surrogate data values that match the hour/minute time signatures. The resulting coalesced
data set has no missing data values and is used for decomposition.
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per data point. These median values resulted in complete 24 h data

sets that more accurately identified the temperature seasonality per

sensor and per trial when compared to a standard additive

decomposition function.

2.3.2 Data decomposition
Time series data can be processed in a number of ways in order to

extract more meaningful statistics and other such characteristics of the

data. One such method is decomposition, which is able to separate

time series data into its seasonal and trend pattern. By subtracting the

extracted patterns from the original data set, one can look at the noise,

or residuals, within the data. One type of decomposition, called

additive decomposition, is effective when the peaks present in the

seasonality of the data do not vary much over time (Prema and Rao,

2015), such as the data collected from an indoor farming system where

temperature fluctuations are regular and controlled, and are little

influenced by external conditions. However, this method fails when

there are large amounts of missing data, as was the case during this

experiment. The missing data issue was remedied using the surrogate

data sets to fill in missing values and generate coalesced data sets.

Inputting the coalesced data through a standard decomposition

function yielded seasonality and trend components, which could be

subtracted from the coalesced data to identify the residuals. However,

the surrogate data essentially represented the periodicity of the raw

data, so by subtracting the surrogate from the coalesced data, one could

effectively de-seasonalize it (Prema and Rao, 2015) and output the

residual data used for outlier identification (Figure 2) (Blázquez-Garcıá

et al., 2022). This alternative decomposition method proved more

successful at extracting the residual values than employing a standard

additive decomposition function. Thus, the residual data sets of the

alternative decomposition method were used for residual analysis.

In the air temperature data, visible daily periodicities caused by

day/night setpoints matched the requirements of using an additive
Frontiers in Plant Science 05
decomposition method. These daily temperature fluctuations did

not vary greatly within an individual temperature trial, however the

periodicities differed between the different trials due to the four

distinct day temperature set points used and as such, the air

temperature data from each trial was decomposed separately.

Furthermore, each temperature sensors unique data sets were

decomposed separately to study the performance of the individual

sensors. Cumulative agricultural operations data were used to

identify existing correlations between the number of outliers and

the stability of the system over time.

2.3.3 Residual calculation and outlier detection
The seasonality and trend data of larger and more complete data

sets can be more successfully extracted when compared to smaller

and more flawed data sets. Thus, smaller and more flawed data sets

generally lead to lower quality residual extraction which are then less

usable for analysis or diagnosis. The “surrogate data” as proposed in

this study represents the median daily oscillating pattern of a system,

and can be used to replace missing values in its parent data set.

However, much like with standard decomposition, its uses are limited

by the quantity and quality of data collected since insufficient data or

an unstable sensor would yield surrogate data that cannot effectively

fill missing data or be used for decomposition. As the data set

increases in size, so does the reliability and usability of the

surrogate data for system diagnosis.

Residual distributions were analyzed for spread, central

tendency, and normality as a measure of data and sensor quality

(Montoya et al., 2020). Assuming manufactural calibration of

sensor was successful, the residuals should be normally

distributed with a mean trending towards zero. Statistical analysis

such as z-score tests have been performed on residuals with a

significance level of a = 0.05 (Montoya et al., 2020), however, a

smaller value of a = 0.001 was used in this experiment after testing
FIGURE 2

Standard decomposition method (above), and the alternate decomposition method (below) proposed in this experiment that was used for
decomposition of air temperature data.
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this value with the data from previous trials and finding that it

better demonstrated results. Residual data with z-scores greater

than 3.29 standard deviation from the mean (|z| > 3.29) were

labelled as outliers (Figure 3). By studying the residual data,

changes in the regular oscillations of the system can be analyzed

to identify uncertainties, outliers, sensor errors, and identify which

operations are critical and how they impact the stability of the

indoor farming operation (Table 1). The distribution of the absolute

value of the z-score data was analyzed and to identify the best fit

curve to this distribution and to inform the regression analysis.
2.3.4 Regression analysis
A generalized linear model was used to perform a regression

analysis between the cumulative agriculture operations (Agr.Ops) and

the corresponding z-scores of air temperature residual data to assess the

overall stability of the operating system. Agr.Ops were quantified

cumulatively per trial to account for the progressive effect of the

system stability. If Agr.Ops impacts system stability, as the

cumulative number of Agr.Ops increased over time, we expected to

see an increase in the number of outliers. Our hypothesis was that the

amount and the intensity of data outliers can inform the stability of the

system operation and its correlation with Agr.Ops. However, to study

this correlation, we needed to remove all non-outlier values from the

analysis as they made up more 97% of the data and would have skewed

the results. Thus, finding the best fit curve for the distribution and

regression analysis were both performed with the outlier data only.
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3 Results

3.1 Data summary

A total of 40320 data points were analyzed per air temperature

sensor and per temperature trial, amounting to 645,120 total data

points. Table 2 shows the descriptive statistics for the raw data with

NA count for all four sensors per temperature trial. The proposed

alternative decomposition method achieved similar success at

identifying uncertainty occurrences and deviations as standard

additive decomposition function as shown on Table 3.
3.2 Residual distribution and curve fitting

The distributions of z-scores of all low-cost (LC) sensors was

similar across the four trials, with differences seen only in the

Reference sensor data (Figure 4).

A constant bias or trend in the Reference sensor data away from

the LC sensor data could have been due to differences in sensor

hardware, however these types of discrepancies were not clear in the

data. The Reference and LC_Reference sensor data sets should also

have had similar disparities in quality that differed them from the

remaining LC sensors, but this too was not reflected in the data. From

these results, we concluded that the disparities in data quality must

have been due to any one or a combination of the types of
FIGURE 3

A visualization of the alternate decomposition method for the coalesced data from the LC sensor into residuals with identified outlier (|z| > 3.29) data
points. The identified outlier data are then displayed in the coalesced data to better demonstrate their temporal relevance.
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TABLE 1 Uncertainties of the indoor farming system.

Types of Uncertainties Controllable? Potential Impact Possible Solution

Power Outage No Data collection, system operation, missing data Backup power supply

Power Surge No System operation, sensor damage, data corruption, missing data Surge protectors

Malfunction – AC Condenser No Status of the system Not Applicable

Malfunction – AC Fans No Status of the system Not Applicable

Malfunction – AC Temperature Sensor No Status of the system, sensor damage Not Applicable

Malfunction – AC
Humidity Sensor

No Status of the system, sensor damage Not Applicable

Malfunction – Arduino board No Data collection, sensor damage, data corruption, missing data Check regularly

Malfunction – Python code No Data collection, data corruption, missing data Warning message

Malfunction – Float sensor No Status of system, sensor damage, missing data Check regularly

Human Error Yes Data collection, status of system, sensor damage, missing data Not Applicable

Light Intensity Reduction No Status of system Not Applicable

Chamber door opening/closing Yes Status of system Lock door

Agricultural operation duration Yes Status of system Limit tasks to specific time intervals

Internet Outage No Data collection, missing data Not Applicable

Sensor Drift No Status of system Regular calibration

Biofilm Accumulation No Status of system, sensor damage Regular maintenance and sterilization
F
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TABLE 2 Summaries of raw air temperature data and number of missing values per sensor and per temperature trial.

Sensor Trial

Raw Data

Mean Median Stan. Dev. Min Max NA

(°C) (°C) (°C) (°C) (°C) count

LC_Reference T1 22.677 25.16 3.466 15.75 28.7 19649

T2 26.097 29.84 5.251 16.33 31.71 13837

T3 23.8 27.16 4.56 15.36 30.87 17525

T4 22.202 23.72 2.393 16.2 26.1 666

LC_Canopy_1 T1 23.668 26.21 3.46 17.43 28.95 19649

T2 27.756 31.48 5.279 19.07 33.49 13837

T3 24.787 28.21 4.557 17.09 31.19 17525

T4 24.423 26.16 2.578 20.1 26.75 666

LC_Canopy_2 T1 22.534 24.93 3.503 17.3 27.05 19650

T2 25.734 29.3 5.09 17.37 31.15 13837

T3 23.665 26.76 4.379 17.47 29.03 17525

T4 21.729 23.16 2.328 17.08 25.31 666

Reference T1 23.547 25.5 3.26 16.4 28.8 1182

T2 26.788 30.2 5.068 16.85 31.8 0

T3 24.925 27.5 4.266 15.9 30.88 0

T4 22.515 24.05 2.373 17 26 0
Raw data refers to the unaltered data collected from each sensor. NA = count of missing values. The LC_Canopy_1, and LC_Canopy_2 (SHT30) sensors were placed at the two different plant
canopies, while the LC_Reference and Reference (APCEM2) sensors were adjacent to each other and away from the plant canopies to monitor overall environmental conditions.
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uncertainties listed in Table 1, though which is unclear. The

differences in residual distribution also suggests that comparing

data readings across sensor types may not be an effective means of

studying the differences in data quality. Due to these data

discrepancies, the Reference data was excluded from further curve-

fitting analyses as it would affect the accuracy of our statistical models.
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Goodness-of-fit tests were performed on the combined

residuals of all LC sensor data across the four trials to identify

the best fit distribution model (Table 4). The test results revealed

that the log-normal distribution model provided the best fit for

the data, with parameters estimated as meanlog = 1.7300694

and sdlog = 0.3805325. The log-normal model achieved a log-
TABLE 3 Comparison of residual data mean, standard deviation, and number of outliers identified by the standard and alternative decomposition
methods per sensor and per temperature trial.

Sensor Trial

Standard Additive Decomposition Alternative Decomposition

Mean Stan. Dev. Outlier Mean Stan. Dev. Outlier

LC_Reference T1 -0.012 0.516 105 -0.005 0.394 27

T2 0.007 1.399 1219 0.105 1.516 1286

T3 0.001 0.446 47 -0.025 0.509 51

T4 0.003 0.485 85 0.01 0.527 183

LC_Canopy_1 T1 -0.013 0.469 81 -0.011 0.33 0

T2 0.005 1.341 1191 0.086 1.448 1242

T3 0 0.396 10 -0.029 0.459 4

T4 0.003 0.36 20 0 0.391 66

LC_Canopy_2 T1 -0.017 0.487 80 -0.026 0.377 2

T2 0.005 1.337 1197 0.091 1.446 1272

T3 0.001 0.429 0 -0.043 0.499 15

T4 0.001 0.439 47 0.012 0.482 142

Reference T1 -0.003 0.432 153 0.06 0.204 0

T2 0.009 0.496 18 0.066 0.779 593

T3 0.002 0.188 0 0.064 0.367 0

T4 0 0.056 0 -0.016 0.068 0
The LC_Canopy_1, and LC_Canopy_2 (SHT30) sensors were placed at the two different plant canopies, while the LC_Reference and Reference (APCEM2) sensors were adjacent to each other
and away from the plant canopies to monitor overall environmental conditions. Standard additive decomposition was performed with the base R statistics package decompose() function, and
subtracted the coalesced data from the identified seasonal and trend data. Alternative decomposition method subtracted the coalesced data from the surrogate data. Outlier = count of residual
values with z scores greater than or equal to 3.29 (|z| ≥ 3.29).
FIGURE 4

Histograms of air temperature residual z-scores of all values (left) and of outlier-only (|z| > 3.29) values (right). Residuals were calculated via
alternative decomposition method with data from sensors during all four temperature trials. The LC_Canopy_1, and LC_Canopy_2 (SHT30) sensors
were placed at the two different plant canopies, while LC_Reference and Reference (APCEM2) sensors were placed next to each other away from
the plant canopies to monitor overall environmental conditions.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1270544
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pompeo et al. 10.3389/fpls.2024.1270544
likelihood of -20379.76, an AIC of 40763.52, and a BIC of

40777.82, indicating a better fit when compared to the other

distribution models.

Figure 4 presents two histograms of residual values, the first

shows the distribution of all residuals, while the second shows the

distribution of outlier-only residuals with |z| > 3.29. The

distribution of all LC sensor residual values is extremely skewed

left, with a long thin tail. For the outlier-only values, the LC sensors

demonstrate a spread similar to a gamma or log-normal

distributions, while the Reference sensor data distribution appears

to be slightly bimodal. Density plots of the outlier-only data for each

sensor, and a curve representing the best-fit log-normal curve for

the LC sensor data can be seen in Figure 5.
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3.3 Regression analysis

Regression analysis for a log-normal distribution was

performed on the data of the individual LC sensors per trial and

on a combination of all trial data, with individual analyses

performed per sensor (Figure 6). The regression curve of

LC_Canopy_1 shows some minor positive correlation in trial 3,

but the remaining regression curves for trial 1-4 show slight

negative correlations that reduces as z-scores increase. Similarly,

the analysis of the combined data showed a slightly negative

correlation at lower z-score values that reduced at higher z-score

values. The results of the regression analysis show a strong inverse

relationship between Agr.Ops and the residual z-scores (Table 5).
TABLE 4 Maximum goodness-of-fit estimations for multiple distribution curves over the combined residual distributions of low-cost sensor data.

Distribution Parameter Estimate Loglikelihood AIC BIC

Normal mean: 5.765050 sd: 2.086998 -22251.02 44506.04 44520.34

Log-normal meanlog: 1.7300694 sdlog: 0.3805325 -20379.76 40763.52 40777.82

Gamma shape: 7.291360 rate: 1.224135 -20723.16 41450.32 41464.62

Weibull shape: 3.027225 scale: 6.509577 -22045.32 44094.64 44108.94

Logistic location: 5.753100 scale: 1.266623 -21677.08 43358.17 43372.47

Cauchy location: 5.686519 scale: 1.295663 -22690.9 45385.8 45400.1
Results generated by the fitdist() function with respective distribution types, and method “mge” from the “fitdistrplus” library.
FIGURE 5

Density plots of the absolute value of residual z-scores (|Z-score|) for outlier data (|z| > 3.29) only. Residuals were calculated via alternative
decomposition method with data from sensor during all four temperature trials. The LC_Canopy_1, and LC_Canopy_2 (SHT30) sensors were placed
at the two different plant canopies, while LC_Reference and Reference (APCEM2) sensors were placed next to each other away from the plant
canopies to monitor overall environmental conditions.
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Among the three sensors, LC_Canopy_1 had a significant negative

interaction effect with Agr.Ops, but neither of the other two LC

sensors showed any significant effect. These results suggest that

Agr.Ops could be a contributing factor to the outlier presence in the

data over time, which partially proves our initial hypothesis of the

effect of Agr.Ops on data quality. But the validity of this relationship

need to be judged case by case.
4 Discussion

This study shows a new pathway of assessing the stability of a

controlled environment agriculture system by investigating the
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status of its data quality (e.g., outliers). From the perspective of

system managers, the overall stability of the operating environment

is related to the risk control for avoiding system failure, plant stress,

management difficulties.
4.1 Outlier detection and system stability

Using this alternate decomposition method could provide

insight into the functionality of the indoor farming system by

identifying shifts away from the “ideal” operation represented by

the surrogate data. These outlier data could be indicative of sensor

noise, drift or linearity errors, or one of the many uncertainties that
FIGURE 6

Regression curves for agricultural operations (Agr. Ops) and the absolute value of residual z-scores (|Z-score|) for outlier data (|z| > 3.29) only, per
trail and combined trials. Analysis includes residual data calculated with alternative decomposition method from each sensor throughout all four
temperature trials. The LC_Canopy_1, and LC_Canopy_2 (SHT30) sensors were placed at the two different plant canopies, while the LC_Reference
sensor was placed away from the plant canopies to monitor overall environmental conditions.
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can affect these systems (Table 1), since all of these could be

perceived as significant shifts from the surrogate data. However,

since this method cannot differentiate between these uncertainties

well, it may require smaller alpha values (a < 0.001) to assist in

identifying only the most extreme values as true outliers.

When associating outliers with uncertainties, the magnitude of

the z-score is a critical measure of these uncertainties’ significance.

A large z-score indicates severe deviations from the norm, implying

potential system instability. In our study, Trail 1 exhibited the

largest z-score (>13), indicating significant vulnerabilities and a

high risk of system failure, likely due to initial setup conditions

requiring fine-tuning. The other trails, with maximum z-scores

around 7 or 9, experienced less severe uncertainties, suggesting

better stability. Trail 2, with a maximum z-score around 7, showed

relative stability compared to Trail 1.

The impact of Agr.Ops on outliers can also be informed through

regression analysis. Ideally, if Agr.Ops influenced system stability, a

non-negative regression trend would be observed. However, all trails,

except Trail 3, demonstrated a negative trend, indicating that the

severeness of uncertainties did not increase over time. In Trail 3, a

positive trend was observed for LC_Canopy_1 and LC_Canopy_2,

suggesting that Agr.Ops impacted these specific readings but not the

overall system stability as indicated by the LC_Reference data. This

could be due to poor air circulation and high operating temperatures

(28°C), warranting further investigation.

In Trails 1, 2, and 4, the initial growth stages of lettuce were

associated with significant uncertainties, which could be due to the

young plants being unable to stabilize their microclimate effectively

(Hassanien Emam Hassanien and Ming, 2017). Over time, as plants

grew and the canopy area increased, the system became more

resistant to Agr.Ops influences, resulting in smaller z-scores and

fewer outliers. Trail 2, with a notably steeper negative slope,

demonstrated higher resistance to Agr.Ops influences compared

to Trails 1 and 4. Additionally, Trail 4 had fewer missing data

points, indicating better data reliability, likely due to fewer

power outages.

Overall, while Trail 3 showed increased instability over time due

to Agr.Ops, Trails 1, 2, and 4 generally became more stable as plants

grew. Trail 2 was the most stable, with the steepest negative slope
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and narrowest z-score range. For VF operations, achieving system

stability requires balancing small outlier z-scores, ensuring outlier

occurrences are independent of Agr.Ops, and maintaining reliable

data collection.
4.2 Implications of uncertainties

Other detected outliers however show seemingly no correlation

with agricultural operations, but could be attributed to other

uncertainties or fluctuations in system performance. Some

outliers occurred at the scheduled day/night period temperature

shifts and could be caused by slight delays in the AC unit activation

for cooling/heating the system since a temporal delay could show up

as a significant enough difference in the data to be identified as an

outlier. Other outliers may be indicative of changes in the dynamics

of an indoor farming system and could be attributed to a number of

different uncertainties that if identified would help to better

understand the overall system health. For example, as plants grow

larger they will absorb a greater amount of radiation from a light

source, transpiring more as more photosynthesis reactions occur.

The changes that occur in an indoor farm during plant growth and

development can be non-linear and could even alter the rate of

energy consumption and the amount of time required for the

system to reach equilibrium.

When managing an indoor plant growing system, certain

agricultural operations may only occur at specific stages of plant

growth (Ex: For lettuce, transplanting at week 1, harvesting at week

5), and the effects of these specific operations on the system data can

be easily tracked and understood. Similarly, the regular day/night

temperature fluctuations used for environmental control become a

part of the identified daily periodicity, and should not shift greatly

over time as long as the components used to control these are in

good condition. Thus, if the environmental conditions begin to shift

away from the regular periodicity in the data, these shifts can be

attributed to a change in the system operation or the plant growth

and development and can be flagged for investigation. Whether the

changes are caused by agricultural operation duration, machinery

or sensor failure, biological factors, or some other uncertainty, they
TABLE 5 Summary of regression analysis results for combined goodness-of-fit estimations for multiple distribution curves over the combined residual
distributions of low-cost sensor data. Results generated by the fitdist() function with respective distribution types, and method “mge” from the
“fitdistrplus” library. .

Coefficient Estimate Std. Error t value Pr(>|t|) Significance

(Intercept) 1.8944395 0.0047165 401.661 < 2e-16 ***

Agr_Ops -0.0061776 0.0001468 -42.088 < 2e-16 ***

LC_Canopy_1 -0.0160957 0.0094928 -1.696 0.08998 .

LC_Canopy_2 0.0120864 0.0094614 1.277 0.20146

LC_Reference 0.0078452 0.0093914 0.835 0.40352

Agr_Ops: LC_Canopy_1 0.0002833 0.0002929 0.967 0.33341

Agr_Ops: LC_Canopy_2 -0.0009709 0.0003189 -3.045 0.00233 **

Agr_Ops: LC_Reference 0.0003582 0.0002769 1.293 0.19587
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can be identified if compared to the surrogate data. A large indoor

plant growing system (such as a commercially operating plant

factory with plants at varied growth stages) could generate a large

amount of sensor data that would consequently make for high

quality surrogate data extraction and decomposition. These larger

systems require fine-tuned control for multiple components, and

using this method could shed light on the operational stability of the

system as a whole, or even the status of individual components. For

example, artificial light sources could have their temperature

monitored to identify a gradual decay in their luminous efficacy if

the amount of heat generated increases over time, since this would

mean that more energy is being lost as heat rather than being

converted to light.

Stacking the daily data in this way makes the direct correlations

more difficult to identify, but can better show the frequency of outliers

based on daily operation times. Looking more closely at the outliers

identified during day/night temperature changes, these outliers were

likely identified due to being temporally shifted from the surrogate

data, and since very low intensity or no agricultural operations were

performed during those times, are unlikely to be caused by an

operational uncertainty. Instead, these changes could indicate that

the air temperature sensor for the AC unit is decaying over time and

cooling/heating less effectively, or, the increasing mass of the system

caused by plant growth is requiring more time to cool/heat effectively.

In either case, a potential dynamic of the system is being identified to

be investigated so that we can better understand why the system is

fluctuating as it is.
4.3 Future directions

Existing studies on CEA regarding system stability mostly focus

on control based on system feedback (Ngo et al., 2020), variable

selection (De Goede et al., 2013), or understanding the system’s

response to changes (Urruty et al., 2016). However, the assessment

of overall system stability using environmental or other such

monitoring data in terms of statistical performance is scarce. This

study fills this gap and provides a procedure for others to follow in

addressing problems, such as missing data, outlier detection, and

correlating Agr.Ops with outliers, which can be used to indicate

system stability.

Understanding the sources and impacts of these uncertainties is

crucial for improving system reliability. Future research could focus on

developing more sophisticated models to differentiate between types of

uncertainties. Additionally, implementing predictive maintenance

strategies based on sensor data could help preemptively address

issues like sensor degradation or system inefficiencies.

Utilizing surrogate data for outlier detection proved to be an

effective method for identifying deviations from ideal operation

conditions. This approach could be further enhanced by refining

the surrogate data generation process. For example, incorporating

more complex models that account for plant growth stages and

their impact on environmental conditions could improve accuracy.

Exploring machine learning techniques to create adaptive surrogate

data models that evolve with system changes might also be a

valuable avenue for future research.
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The observed discrepancies in the Reference sensor data

compared to the LC sensors suggest that sensor hardware

differences can impact data quality. This variability underscores

the need for careful sensor selection and calibration in indoor

farming systems. Future studies could compare a broader range

of sensors under different environmental conditions to establish

guidelines for optimal sensor use in various farming scenarios.

The frequent occurrence of missing data in some systems, such

as Trail 1,2,3, highlights the importance of data redundancy.

Implementing multiple sensors and cross-verifying their readings

can mitigate the impact of data gaps and enhance overall data

quality. Exploring sensor network designs that incorporate

redundancy and failover mechanisms could be a promising

direction for future research.
5 Conclusion

This study analyzed air temperature data from indoor

farming systems using an alternative decomposition method based

on surrogate data as a representation of the periodicity of

environmental sensor data to assess system performance and

stability. Data from multiple sensors was used to compare a standard

decomposition with the alternative method, and it was found that the

alternative method was effective in detecting outliers. The outlier

detection method used here can be adapted to any sensor data that

displays regular seasonality in a controlled environment setting. The

simplicity and low computational requirement of this method makes it

effective for IoT infrastructure, and can be utilized with offline, online,

static, dynamic, logged data or real-time data collection. However, this

method is reliant on the quantity and accuracy of data collected and is

thus impacted by sensor data quality and quantity sampled, which has

a simple but potentially costly remedy of using larger quantities

of sensors.

Regression analysis showed an inverse relationship between

cumulative agriculture operations and the intensity of deviated

condition (residual z-scores). The log-normal distribution model

best characterized the residuals, highlighting the importance of

monitoring uncertainties. Systems with less impact of agriculture

operations (either few outliers or fading severeness overtime) and

lower z-scores of outliers were deemed more stable. These findings

underscore the importance of managing uncertainties in indoor

farming systems to enhance reliability and efficiency, with the

alternative decomposition method offering a promising approach

for improved system monitoring. However, the data collected and

studied in this experiment was of relatively short duration, and used

few sensors. Further studies on the reliability of the proposed

surrogate data collection and alternative decomposition method as

data diagnostic tools should be performed. Future research should

further validate these methods in larger commercial operations.
6 Appendix

An environmental growth chamber (Environmental Growth

Chambers, TC2, Chagrin Falls, Ohio) of 2.74 m × 2.74 m × 2.39 m
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(width × depth × height) contained the indoor farm system used in

for this experiment. Temperature, relative humidity (RH), and

airflow in this chamber were controlled by the heating,

ventilation, and air-conditioning (HVAC) system with continuous

fan operation. Two 2.13 m × 0.61 m × 2.13 m (width × depth ×

height) shelving units placed front to back created the shelf surfaces

on which the hydroponic systems were held (Figure 7). A solenoid

valve regulator was used to enrich the CO2 in the chamber to a

constant 800 mg/L. A day/night interval of 16.5/7.5 h (Brechner and

Both, 2013; Caplan, 2018) was used for both lighting and

temperature control. RH was controlled by the chamber HVAC

system and was set to a maximum of 60% RH with no minimum.

Vertical white plastic reflectors were placed between the NFT

channels provide uniform lighting conditions to all plants in the

system. Four temperature trials were conducted where lettuce was

grown for 7 days in an Ebb & Flood system, and then transplanted

into the NFT channels at day 7 until harvested on day 35.

Agricultural operations consisted of opening/closing the chamber

door, gathering data, recalibrating sensors, refilling nutrient

solution reservoirs, harvesting lettuce, and general maintenance

tasks within the chamber.
6.1 Data collection system

Six microcontroller boards were used to separate the LC sensors

to provide adequate power for each sensor and ensure high interval

data collection. Five MEGA2560 boards (Elegoo, MEGA 2560,

Shenzen, China) were used for the environmental monitoring and

control, and one ESP32 (Espressif Systems, ESP32-S2-Saola-1,

Shanghai, China) board was used for agricultural operations

monitoring. All six boards were connected to a single computer

tower that acted as a data logger by logging data online to a MySQL

database, and locally as a.txt file with python scripts. All data was

timestamped after being collected in the Python serial monitor

(RRID:SCR_008394) to ensure the date-time was accurate and

experienced no drift.

Sensor data was collected for the full five weeks of each of the

four trials. The first week of each trial was identical to have uniform

germination conditions and seedling growth rates. The seedlings

would be exposed to experimental conditions from week 2-5 to test
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the changes in growth and development of the plants at the varied

air temperature setpoints. LC sensor data was collected at 10 sec

intervals and included air temperature, relative humidity (RH), CO2

concentration, electrical conductivity (EC), pH, dissolved oxygen

(DO), root-zone temperature, the dosing quantity for nutrient/

water/acid/base, and agricultural operations performed. This data

collection resulted in a 302,400 data points for each of the 50

parameters measured per trial. The reference system collected data

at 5 second intervals amounting to 604,800 data points per

parameter per trial. Unique parameters were averaged per minute,

and these averaged data sets were used for data analysis and

visualization. Each of the four trials had a different air

temperature set point (24, 26, 28, 30°C), so unique data sets were

averaged per trial. Sensors were placed at varying locations in the

chamber as can be seen in Figure 8. Air temperature, RH, and CO2

data were collected at the two plant canopy levels to ensure the

operation of the system matched the needs of the plants being

grown and to measure the environmental uniformity. The reference

sensor was placed away from the growing system to monitor the

overall chamber conditions. LC air temperature, humidity and CO2

sensors were placed next to the reference sensor to compare data

gathered in identical conditions. Each nutrient solution reservoir

was monitored for pH, EC, DO, temperature, and a float sensor to

maintain desired conditions.
6.2 Sensor matrix

A reference data set was collected from a standalone sensor and

data logger (Hydrofarm, APCEM2, Petaluma, CA), which collected

air temperature, CO2 concentration, and RH, and recorded it locally

into a microSD card. The water reservoir volumes were monitored

with float switches (Anndason, DP3500, Shenzen, China)

(Figure 9A). EC, pH, and water levels were maintained via

automatic dosing by peristaltic pumps (Atlas Scientific, EZOTM-

PMP, Long Island City, NY) based off of their respective sensor

readings. CO2 concentration was monitored with five infra-red CO2

(Vaisala, GMP252, Vantaa, Finland) sensor probes, and controlled

by a CO2 tank regulator and solenoid valve connected to a relay

(Figure 9B). Five air temperature and relative humidity sensors

(Adafruit, SHT30, New York, NY) were placed at different
FIGURE 7

Indoor farming system diagram where lettuce was grown with a fully automated hydroponic system: (A) side elevation; (B) front elevation; (C) image
of actual growth chamber used before the transplanting of lettuce seedlings into the channels.
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elevations and locations (both plant canopies, HVAC intake, beside

the reference sensor, outside the chamber) to monitor the

conditions inside and outside the chamber. A multiplexer

(Adafruit, TCA9548A, New York, NY) switched between the five

sensors of identical I2C address (Figure 9C). The nutrient solution
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temperatures were monitored with waterproof type T

thermocouples (Aideepen, DS18B20, Shenzen, China) calibrated

with water at 100°C and 0°C (Figure 9D). The date/time data of

agricultural operations performed by entering the chamber were

recorded using a photoresistor (Adafruit, CdS photocell, New York,
FIGURE 8

Diagram of sensor placement in the growth chamber: (A) side elevation; (B) front elevation.
FIGURE 9

Sensor wiring diagrams with Arduino and bread boards for data collection. (A) Nutrient solution system; (B) CO2 concentration; (C) temperature and
humidity; (D) nutrient solution temperature; (E) agricultural operations.
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NY) to log the chamber door open or closed state, and with manual

button switches to record the presence of up to three people in the

chamber at a time (Figure 9E). Atlas Scientific sensor probes and

their corresponding EZO™ embedded circuits were also used to

monitor the nutrient solution. These sensor arrays included pH

(Atlas Scientific, #ENV-40-pH, Long Island City, NY), electrical

conductivity (Atlas Scientific, #ENV-40-EC-K1.0, Long Island City,

NY), and dissolved oxygen (Atlas Scientific, #ENV-40-DOX, Long

Island City, NY). The EZO™ circuits were mounted onto a tentacle

shield (Whitebox, T1.16, Schlatt TG, Switzerland) that provided

circuit breakouts, electrical isolation, and probe connection ports.

Cumulative electrical consumption was measured with current

meters (CrocSee, CRS-022B, Shenzen, China).
6.3 Data management

How data is collected, managed, and stored can play a

significant role in the integrity of any system relying on sensor

based automation and control. An indoor farming system that

collects data at high frequency needs to be able to store large data

sets in a reliable and accessible manner to ensure the system is

operating at optimal capacity, and is being controlled within the

desired environmental parameters. Analysis of collected data can

reveal system requirements, uncertainties experienced, errors in

data, and other such operational insights.

6.3.1 Database design
The data collection system requires: 1) real-time data storage and

2) adaptation of adding/removing devices. The design of the database

should fulfill these requirements. Specifically, the database is

constructed with MySQL service, which provides functionality for

storing real-time data. Data is uploaded from Arduino boards via the

API of MySQL and dumped into a table (sensor_data) recording the

time stamps, values and M_ID (a unique ID assigned to each sensor)

(Figure 10). To address the issue of adding, removing, and replacing

sensors, we established and managed a measurement table serving as

the reference of sensor devices. This table includes the unit, type of

measurement, and the identity of each sensor. The identities of
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sensors, corresponding to the M_IDs in sensor_data, are set as the

primary key (a connection index information to connect multiple

tables in a regional database, such as MySQL) for querying the senor-

specific information in the database. The bridging built on M_IDs

between two tables allows us to manage the database more efficiently.

For example, once a reading is recorded in the sensor_data table, its

corresponding measurement and unit can be traced down in the

measurement table by the M_ID. Similarly, when a new sensor is

connected to the Arduino board, a row with a new M_ID

representing this sensor can be appended to the measurement

table. The data collected from new sensor is added to the

sensor_data table with its corresponding M_ID. With this

procedure, a static database structure can be used to facilitating a

dynamic CEA system.

6.3.2 Backup file system
The backup file system is a crucial component for data security,

and works by aggregating all data within the system into a

comprehensive data stream and then automatically writing this

data stream into a.txt file stored on the local computer hard-drive

once per day. This involved scanning and compiling each unique

data stream to ensure a complete data flow. By transforming these

data sets into a sequential stream, it became easier to manage and

was optimized for storage space requirements. A.txt file format was

used to back-up the data locally since this file type is a simple,

efficient format renowned for its compatibility and ease of use. This

process was designed with data integrity in mind, allowing for the

original data to be re-created seamlessly from the locally stored

data. The backup file system’s ability to convert and store data in

this way provides an effective safeguard against potential data loss

incidents from a system crash, human error, or other unforeseen

circumstances. Thus, it serves as a key player in maintaining data

safety and stability. However, there many other uncertainties that

can affect data collection in an indoor farming system, and can also

result in data loss, corruption, or other such errors. For our

experiment, the expected uncertainties are listed in Table 1. Many

methods exist to identify and remedy these uncertainties, from

modifying the system design, to data processing, but no method

is perfect.
FIGURE 10

Structure of measurement table (A) and sensor_data table (B). M_ID is the key in bridging two tables.
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