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Introduction: Although it is widely acknowledged that biodiversity maintains

plant community assembly processes, exploring the patterns and drivers of beta-

diversity (b-diversity; species variation among local plant communities) has

received much less attention compared to alpha-diversity (a-diversity; species
variation within a local plant community). Here, we aim to examine the patterns

and spatial–environmental drivers of taxonomic and phylogenetic b-diversity,
and their components such as species turnover and nestedness, in large-scale

Leymus chinensis grassland communities.

Methods: We collected plant community data from 166 sites across widely

distributed L. chinensis communities in northern China, and then calculated the

taxonomic and phylogenetic b-diversity indices (overall, turnover and

nestedness) using a pairwise dissimilarity approach. To assess the effects and

to explain the variation in the patterns of b-diversity, we collected data on

geospatial, climate and soil conditions. We applied descriptive statistics, Mental

correlations, and multiple linear regression models to assess the patterns and

spatial–environmental drivers of b-diversity.

Results: The b-turnover, as compared to b-nestedness, exhibited a predominant

influence, constituting 92.6% of the taxonomic b-diversity and 80.4% of the

phylogenetic b-diversity. Most of the spatial–environmental variables were

significantly positively correlated with the overall taxonomic and phylogenetic

b-diversity and b-turnover, but not with b-nestedness. Climatic factors such as

MAP andMATwere the strongest predictors of both taxonomic and phylogenetic

b-diversity and b-turnover. The variance partitioning analysis showed that the

combined effects of spatial and environmental factors accounted for 19% and

16% of the variation in the taxonomic and phylogenetic b-diversity (overall), 17%
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and 12% of the variation in the b-turnover, and 7% and 1% of the variation in the b-
nestedness, respectively, which were higher than independent effects of either

spatial or environmental factors.

Discussion: At larger spatial scales, the turnover component of b-diversity may

be associated with the species complementarity effect, but dominant or

functionally important species can vary among communities due to the

species selection effect. By incorporating b-diversity into grassland

management strategies, we can enhance the provision of vital ecosystem

services that bolster human welfare, serving as a resilient barrier against the

adverse effects of climate change at regional and global scales.
KEYWORDS
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Introduction

A growing body of global evidence shows that biodiversity plays

an important role in maintaining plant community assembly

processes through species functional strategies which in turn

regulate ecosystem functions such as biomass production, thereby

providing numerous ecosystem services that underpin human well-

being (van der Plas, 2019; Ali, 2023). Considering the

multidimensional nature of biodiversity in maintaining the plant

community assembly processes, biodiversity can be quantified as

alpha-diversity (a-diversity; species variation within a local plant

community) and beta-diversity (b-diversity; species variation

among local plant communities) which can be further explained

by changes in taxonomic, functional and phylogenetic diversity

(Mori et al., 2018; Nakamura et al., 2020). Yet, exploring the

patterns and drivers of b-diversity has received much less

attention compared to a-diversity under diverse concepts,

theories and analyses (Mori et al., 2018; van der Plas et al., 2023).

Thus, further studies are needed to explore the patterns of plant

b-diversity and its association with spatial–environmental

(including climate and soil) factors which could enhance our

understanding of plant community assembly processes, ecosystem

functioning and biodiversity conservation.

In plant ecosystems, b-diversity considers variations in species

identities and abundances among communities at a regional scale

through species turnover (or substitution) and nestedness (differences

in richness) (Baselga, 2010; Mori et al., 2018; Fu et al., 2019). In this

context, species turnover refers to differences in species composition

between communities caused by the phenomenon of species

replacement, whereas species nestedness refers to changes due to an

increase or decrease in species richness along an environmental

gradient (Lennon et al., 2001; Staniczenko et al., 2013; Fu et al.,

2019). Previous studies have revealed that potential mechanisms

driving species turnover involve geospatial heterogeneity,

environmental filtering and species competition (Cardoso et al.,
02
2014; Boschilia et al., 2016; van der Plas et al., 2023). However, the

mechanisms governing species richness differences encompass

ecological niche diversity and the ecological processes of forming

nested patterns (Legendre, 2014). In different communities, the

overall composition of b-diversity components often varies, and their

relative importance in community construction also depends on spatial

scale (Boschilia et al., 2016; Bertuzzi et al., 2019). Consequently,

decomposing b-diversity enables the discernment of spatial

distribution patterns among different components, thereby

elucidating the formation mechanisms and ecological significance of

each component and facilitating an understanding of evolutionary

processes (Baselga, 2010; Legendre, 2014).

Many previous studies have focused only on the level of

taxonomic b-diversity in plant communities, which solely provides

information regarding species differences among sites without

considering the evolutionary aspects within a community (Graham

and Fine, 2008; Qian et al., 2013). However, research indicates that

incorporating phylogenetic information into b-diversity analysis

provides significant assistance in exploring ecological processes

such as plant community assembly processes and evolutionary

patterns (Mori et al., 2018; Zheng et al., 2019; Ali, 2023).

Therefore, conducting a concurrent analysis of both taxonomic

and phylogenetic b-diversity holds paramount importance in

obtaining a comprehensive understanding of the community

assembly processes and dynamics within a plant ecosystem.

Furthermore, numerous studies have indicated that patterns of b-
diversity formation and maintenance are not exclusively driven by a

single ecological process. Instead, their formation is influenced by the

combined impacts of environmental filtering and dispersal

limitation, exhibiting variations across different community types

and spatial scales (Bellier et al., 2014; Soininen et al., 2018; Menegat

et al., 2019). For instance, in studies of b-diversity within liana

communities, it has been observed that community composition is

jointly influenced by environmental filtering and dispersal

limitation, with environmental filtering predominantly exerting
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control over the underlying ecological processes (Myers et al., 2013;

Zhang et al., 2020). In contrast, several studies in grasslands have

found dispersal limitation to be a major factor affecting taxonomic b-
diversity (Pinto et al., 2014; Li et al., 2021). Hence, the driving

mechanisms of b-diversity exhibit variations based on community

type, climatic context, and scale (Mori et al., 2018; Gan et al., 2019;

van der Plas et al., 2023).

Here, we broadly aim to highlight the crucial role of b-diversity in
maintaining grassland biodiversity, community assembly processes

and ecosystem functions. The specific objective of this study is to

examine the patterns and spatial–environmental drivers of taxonomic

and phylogenetic b-diversity in large-scale L. chinensis communities

across Chinese grasslands. We anticipate that derived results from our

study will offer valuable insights into the conservation and

management of large-scale Chinese grasslands. The Leymus

chinensis community is a unique vegetation type with a continuous

distribution in the Eurasian steppe zone which is predominantly

distributed in regions such as the Loess Plateau, Mongolian Plateau,

and Daxinganling Mountains (Yao et al., 2022). This community is

primarily observed in small and relatively moist habitats. Prior studies

on b-diversity have predominantly concentrated on either local scales

or diverse community types on a larger spatial scale (Chi et al., 2014;

Qin et al., 2019; Hu et al., 2022), but fewer studies examining the same

community type in a large-scale continuous distribution in a region.

To this end, we address the following research questions: (1)What are

the patterns and contributions of b-turnover and b-nestedness to

each taxonomic and phylogenetic b-diversity (overall)? (2) How do

spatial and environmental factors affect the patterns of taxonomic and

phylogenetic b-diversity and their components, and what are their

relative importance?
Materials and methods

Study area and field investigation

This study was conducted in northern China, with longitudes

ranging from 101°14′–125°27′ and latitudes ranging from 38°42′–50°
Frontiers in Plant Science 03
53′’(Figure 1). The terrain displays an altitudinal gradient spanning

from 129 m to 2085 m, characterized by elevated terrain in the western

regions and lower elevations in the eastern zones. The climatic

conditions in the area are classified as temperate continental,

featuring a mean annual temperature spanning from -3.2°C to 8.1°C.

The mean annual precipitation varies from 204 to 501 mm/yr creating

a notable rainfall gradient across the study area, with the majority of

rainfall occurring during the growing season. The soil types in the study

area mainly include chestnut, chernozem, and loess soil. The vegetation

types mainly include meadow, meadow steppe, and typical steppe.

Grassland sites dominated by L. chinensis were selected as

sampling sites. Our vegetation assessments were conducted

annually from mid-July to late August between the years 2016

and 2020. This period was chosen to coincide with the peak

productivity phase of the grassland ecosystem. Within each site,

three randomly established plots, each measuring 1×1 m, were used

for data collection; i.e., 498 plots across 166 sites. The following

parameters were recorded within each plot: plant height, density,

coverage, and composition of the species.
Data and statistical analyses

Computation of patterns in taxonomic and
phylogenetic b-diversity

For the computation of taxonomic and phylogenetic b-diversity
and their two components (i.e., b-turnover and b-nestedness), we
used the pairwise dissimilarity approach between all possible pairs of

sites (Baselga, 2013). Based on the presence or absence of species

within each site, Jaccard b-diversity indices including turnover and

nestedness for both taxonomic and phylogenetic aspects were

calculated using the “betapart” package (Baselga and Orme, 2012).

Species occurring in the sample site were classified into species,

genera and families according to the APG IV system. The

phylogenetic tree analysis was performed using V.PhyloMaker in R

(Supplementary Figure S1) (Jin and Qian, 2019), and then, the

phylogenetic b-diversity indices were calculated. Using the simple

bar chart analysis, we showed the patterns of b-diversity components.
FIGURE 1

Geographical maps showing the location of the study area in China on the global map, and the sampling sites of Leymus chinensis communities
within China.
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Spatial–environmental drivers of taxonomic and
phylogenetic b-diversity

For each sampling site, the longitude, latitude, altitude and slope

were determined using the Global Positioning System, compass and

ArcGIS. Using the longitude and latitude information of each site,

we derived the following environmental factors, i.e., mean annual

precipitation (MAP), Mean annual temperature (MAT),

precipitation of the coldest quarter (PCQ), minimum temperature

of the coldest month (MTCM) and Aridity index (AI) from the

WorldClim Database version 2.0 (Fick and Hijmans, 2017). For

top-soil nutrients and other related factors such as soil total

phosphorus (TP), total potassium (TK), total nitrogen (TN), pH

value (H2O), available phosphorus (AP), soil exchangeable Mg2+

(MG), and exchangeable Ca2+ (CA), the data were extracted from

the China Dataset of Soil Properties (Shangguan et al., 2013). After

that, Mantel correlations were examined to assess the associations

of taxonomic and phylogenetic b-diversity with spatial and

environmental factors. More importantly, variations in each of

the taxonomic and phylogenetic b-diversity were examined in

association with each of the spatial and environmental factors,

and their joint effects. The sole and joint effects of spatial and

environmental variables on taxonomic and phylogenetic b-diversity
were determined using the multiple regression model (MRM)

(Lichstein, 2007). The residual variance represents the variance

described by [1 – (separate and shared variance for environmental

and spatial factors)]. The “vegan” package for the Mantel

correlation test and the “ecodist” package for the MRM analysis

were used (Goslee and Urban, 2007). All data and statistical

analyses were done using R software (version 4.2.3). A summary

of variables is presented in Supplementary Table S1.
Results

Patterns of taxonomic and phylogenetic
b-diversity

The average taxonomic b-diversity for the studied L. chinensis

communities was 0.87, with a b-turnover component of 0.81 and a

b-nestedness component of 0.06. The average phylogenetic

b-diversity was 0.68, comprising a b-turnover component of 0.55

and a b-nestedness component of 0.13 (Figure 2). The b-turnover
component exhibited a predominant influence, constituting 92.6%

of the taxonomic b-diversity and 80.4% of the phylogenetic

b-diversity. Pearson’s correlation matrix between indices is

presented in Supplementary Figure S2.
Associations of spatial and environmental
factors with taxonomic and phylogenetic
b-diversity

The results of the Mantel correlation test showed that all spatial–

environmental variables were significantly positively correlated with

the overall taxonomic and phylogenetic b-diversity (Figures 3–6). The
Frontiers in Plant Science 04
taxonomic and phylogenetic b-turnover indices were significantly

positively correlated with all spatial–environmental factors, except

slope and soil AP, which had no significant correlation. In contrast,

the taxonomic and phylogenetic b-nestedness indices were not

significantly correlated with all spatial–environmental factors

(Figures 3–6). It is worth noting that spatial–climatic factors such as

longitude, MAP and MAT were the strongest predictors of both

taxonomic and phylogenetic b-diversity and b-turnover, followed by

other spatial–environmental factors (Figures 3–6). Pearson’s

correlation matrix between spatial–and environmental factors is

presented in Supplementary Figure S3.
Relative importance of spatial and
environmental factors with taxonomic and
phylogenetic b-diversity

The variance partitioning analysis, based on the MRM, showed

that the combined effects of spatial and environmental factors

accounted for 19% and 16% of the variation in the taxonomic and

phylogenetic b-diversity (overall), 17% and 12% of the variation in

the b-turnover, and 7% and 1% of the variation in the b-nestedness,
respectively (Figure 7). Specifically, the independent effects of

environmental factors explained greater variation than the

independent effects of spatial factors (i.e., < 2%), accounting for

5.4% and 6.2% of the variation in the taxonomic and phylogenetic

b-diversity (overall), 4.5% and 4.4% of the variation in the

b-turnover, and 1.2% and 0.2% of the variation in the b-nestedness
component, respectively. These findings suggest that while both

spatial and environmental somehow contribute to explaining

b-diversity, their shared role has a greater effect than their single

role (Figure 7; Supplementary Figure S4).
FIGURE 2

Patterns in the components (turnover and nestedness) of taxonomic
and phylogenetic b-diversity of Leymus chinensis communities in
large-scale Chinese grasslands.
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Discussion

In this study, we comprehensively analyzed the patterns and

spatial–environmental drivers of taxonomic and phylogenetic

b-diversity and their two components (b-turnover and

b-nestedness) within the widely distributed L. chinensis

communities in northern China. The results indicate that

b-turnover contributed substantially to the b-diversity (overall)

than b-nestedness, regardless of taxonomic or phylogenetic
Frontiers in Plant Science 05
identification of plant species. Interestingly, taxonomic and

phylogenetic b-diversity (overall) and b-turnover, but not

b-nestedness, were significantly positively affected by most of the

spatial and environmental variables. Moreover, although

environmental factors explained more variation in b-diversity than

spatial factors, their joint effects were higher in explaining patterns in

large-scale L. chinensis grassland communities in northern China.

Our results show that the composition patterns of taxonomic and

phylogenetic b-diversity (overall) of L. chinensis communities in
FIGURE 4

Mantel correlation between taxonomic b-diversity and soil factors of large-scale Leymus chinensis grassland communities in China. TBD-jac is
taxonomic b-diversity (overall); TBD-jtu is taxonomic b-turnover; TBD-jne is b-nestedness; TP is soil total phosphorus; TK is soil total potassium; TN
is soil total nitrogen; PH is soil pH value (H2O); AP is soil available phosphorus; MG is the soil exchangeable Mg2+; CA is soil exchangeable Ca2+.
FIGURE 3

Mantel correlation between taxonomic b-diversity and spatial–climate environmental factors of large-scale Leymus chinensis grassland communities
in China. TBD-jac is taxonomic b-diversity (overall); TBD-jtu is taxonomic b-turnover; TBD-jne is b-nestedness; MAP is mean annual precipitation;
MAT is mean annual temperature; PCQ is the precipitation of the coldest quarter; MTCM is the minimum temperature of the coldest month.
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China exhibited uniformity, with both primarily driven by the

b-turnover component. At larger spatial scales, the turnover

component of b-diversity may be associated with the species

complementarity effect, but dominant species, or functionally

important species, can actually vary among communities due to the

species selection effect (Mori et al., 2018). This aligns with the

findings of numerous previous studies conducted in different

ecosystems, such as grasslands and forests, indicating that

alterations in species composition within communities are
Frontiers in Plant Science 06
predominantly influenced by species substitution (Yakimov et al.,

2020). The distribution of our study sites, primarily located on the

Mongolian Plateau, likely contributed to the observed consistent

patterns probably because the Mongolian Plateau experienced less

impact from the Last Glacial Maximum, allowing for increased

species survival. Furthermore, the region has exhibited significant

warming and wetting trends since the Last Glacial Maximum,

facilitating more species survival and leading to higher species

turnover in the area (Zheng et al., 2019). As we investigated large-
FIGURE 6

Mantel correlation between phylogenetic b-diversity and soil factors of large-scale Leymus chinensis grassland communities in China. TBD-jac is
taxonomic b-diversity (overall); TBD-jtu is taxonomic b-turnover; TBD-jne is b-nestedness; TP is soil total phosphorus; TK is soil total potassium; TN
is soil total nitrogen; PH is soil pH value (H2O); AP is soil available phosphorus; MG is the soil exchangeable Mg2+; CA is soil exchangeable Ca2+.
FIGURE 5

Mantel correlation between phylogenetic b-diversity and spatial–climate factors of large-scale Leymus chinensis grassland communities in China.
TBD-jac is taxonomic b-diversity (overall); TBD-jtu is taxonomic b-turnover; TBD-jne is b-nestedness; MAP is mean annual precipitation; MAT is
mean annual temperature; PCQ is the precipitation of the coldest quarter; MTCM is the minimum temperature of the coldest month.
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scale L. chinensis-dominated communities distributed in different

habitats, the structural composition and origin of the communities

tended to be similar due to their shared developmental history. This

shared evolutionary history leads to the coexistence of closely related

species within the same region, typically leading to lower

phylogenetic b-diversity when compared to taxonomic b-diversity
(Cavender-Bares et al., 2009; Mori et al., 2018). A comparable

phenomenon has been observed in the assessment of b-diversity
among angiosperms in studies conducted in other regions (Qin et al.,

2019; Qian et al., 2020).

In comparison to spatial factors, we found that the role of

environmental (including both climate and soil) factors was more

pronounced in shaping taxonomic and phylogenetic b-diversity
(and more importantly b-turnover) of L. chinensis grassland

communities. This result can be attributed to the fact the impacts

of environmental factors outweigh the effects of spatial factors,

underscoring the pivotal role of environmental factors in driving

changes in plant community species composition and ecosystem

functioning (Page and Shanker, 2018; Yi et al., 2020; van der Plas

et al., 2023). Specifically, mean annual precipitation and

temperature were identified as the predominant factors exerting

significant influences on both taxonomic and phylogenetic

b-diversity of L. chinensis communities, indicating that climate

change may largely influence the species diversity, structure and

functioning of studied plant communities (Pugnaire et al., 2019;

Berdugo et al., 2020; Yao et al., 2022). However, the topographic

slope as compared to elevation exhibited no substantial effect on

taxonomic and phylogenetic b-diversity, probably linked to the

topographic-centric distribution of L. chinensis communities that

predominantly occurs in the lower parts of the lower hills due to

favourable climatic and soil conditions. In these areas, the

community-building species L. chinensis occupies more ecological

niches, resulting in a simpler composition of other species in the

community, thereby allowing the survival of closely related species,

which leads to its significant association with phylogenetic

b-diversity (Satdichanh et al., 2019). We also found that most of
Frontiers in Plant Science 07
the soil factors, except soil AP, were significantly correlated with

taxonomic and phylogenetic b-diversity, indicating the role of soil

fertility effect on plant growth through niche complementarity

mechanisms (Quesada et al., 2012). Nonetheless, it is also debated

that climatic factors outweigh soil factors in their contribution to b-
diversity, with climate generally regulating community assembly at

larger scales (Qian et al., 2013), whereas soil’s impact becomes more

pronounced at smaller scales (Zhang et al., 2011).

The sexuality of L. chinensis grassland community is mainly

influenced by environmental filtering that primarily comprises

perennial rhizomatous grasses, thereby predominantly relying on

asexual reproduction, resulting in minimal seed reproduction

probability (Ott and Hartnett, 2011; Russell et al., 2017). As a

result, the b-diversity of L. chinensis community is primarily

governed by environmental factors, consistent with the findings

of other studies conducted in grassland areas (Li et al., 2021).

Notably, both taxonomic and phylogenetic b-diversity of

L. chinensis communities were more explained by combined

spatial and environmental factors than by environment or space

alone, indicating the context-dependency effect (Catford et al.,

2021). Through variance partitioning analysis, we show that a

considerable portion of the b-diversity of L. chinensis community

remains unexplained, which could be attributed, at least in part, to

the absence of analysis on functional traits, such as seed

characteristics that indicate dispersal abilities (Sreenivasulu and

Wobus, 2013). Additionally, the limited scope of our spatial–

environmental conditions, which only considered a small number

of factors such as climate, topography, and soils, might have

resulted in the overlooking of the influence of other variables,

including various soil trace elements and water content (Myers

et al., 2000; Zhang et al., 2020). Also, some studies have shown that

factors such as paleoclimate and human activities are important

factors influencing b-diversity (Dobrovolski et al., 2012; Qin et al.,

2019). Therefore, to achieve a comprehensive understanding of the

underlying mechanisms driving b-diversity formation within

L. chinensis communities, future research efforts should
FIGURE 7

Interpretation rates of variance partitioning of taxonomic and phylogenetic b-diversity in large-scale Leymus chinensis grassland communities in
China. TBD-jac is taxonomic b-diversity (overall); TBD-jtu is taxonomic b-turnover; TBD-jne is b-nestedness.
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encompass the integration of more environmental variables,

functional characteristics, and human disturbances.
Conclusions

We show that b-turnover plays a significant role in the overall

taxonomic and phylogenetic b-diversity, surpassing the contribution
of b-nestedness. Intriguingly, both taxonomic and phylogenetic b-
diversity, as well as b-turnover rather than b-nestedness, are strongly
influenced by various spatial and environmental factors such as

favorable climatic and soil fertility conditions. Furthermore, while

environmental factors explain a greater proportion of the variation

in b-diversity, the combined effects of spatial and environmental

factors are particularly important in understanding the patterns

observed in the large-scale L. chinensis grassland communities in

northern China. We contend that the b-turnover component holds

significant control in shaping the processes of plant community

formation, thereby influencing the functioning and services provided

by grasslands. By incorporating b-diversity into grassland

management strategies, we can enhance the provision of vital

ecosystem services that bolster human welfare, serving as a

resilient barrier against the adverse effects of climate change at

regional and global scales. Regrettably, prevailing management

policies frequently overlook b-diversity as a viable metric for

assessing biodiversity, owing to the limited connection between

scientific findings, policy formulation, and implementation.
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