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1Institute for Electric Light Sources, School of Information Science and Technology, Fudan University,
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The maturity of kiwifruit is widely gauged by its soluble solids content (SSC), with

accurate assessment being essential to guarantee the fruit’s quality. Hyperspectral

imaging offers a non-destructive alternative to traditional destructive methods for

SSC evaluation, though its efficacy is often hindered by the redundancy and

external disturbances of spectral images. This study aims to enhance the

accuracy of SSC predictions by employing feature engineering to meticulously

select optimal spectral features and mitigate disturbance effects. We conducted a

comprehensive investigation of four spectral pre-processing and nine spectral

feature selection methods, as components of feature engineering, to determine

their influence on the performance of a linear regression model based on ordinary

least squares (OLS). Additionally, the stacking generalization technique was

employed to amalgamate the strengths of the two most effective models

derived from feature engineering. Our findings demonstrate a considerable

improvement in SSC prediction accuracy post feature engineering. The most

effective model, when considering both feature engineering and stacking

generalization, achieved an RMSEp of 0.721, a MAPEp of 0.046, and an RPDp of

1.394 in the prediction set. The study confirms that feature engineering, especially

the careful selection of spectral features, and the stacking generalization technique

are instrumental in bolstering SSC prediction in kiwifruit. This advancement

enhances the application of hyperspectral imaging for quality assessment,

offering benefits that extend across the agricultural industry.
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1 Introduction

Kiwifruit (Actinidia deliciosa) is a popular fruit known for its

unique flavor and nutritional benefits. As a typical climacteric fruit, it

continues ripening even after being harvested. This post-harvest

ripening process makes kiwifruit highly perishable and requires

careful handling and storage to maintain its quality. The

assessment of its quality and maturity commonly relies on the

measurement of soluble solids content (SSC). On the one hand,

SSC serves as an indicator of the sugar content in kiwifruit, for sugars

constituting approximately 81% of the total SSC (Tian et al., 2022).

On the other hand, SSC exhibits a consistent pattern of variation over

time in storage. Throughout the storage period, as time goes by, the

starch and pectin present in the kiwifruit undergo hydrolysis, leading

to a gradual increase in SSC. Therefore, monitoring the SSC of

kiwifruit is effective for evaluating its quality and maturity. However,

the determination of SSC, being an internal attribute of fruit, often

involves destructive techniques like refractometry, which requires the

extraction of juice or pulp from fruit. These methods are time-

consuming, labor-intensive and cause damage to the fruit, preventing

the repeated utilization of samples. Consequently, there is an

increasing demand for non-destructive and expeditious techniques

that can precisely estimate the SSC of kiwifruit.

Hyperspectral imaging has emerged as a promising non-

destructive method for assessing the quality of various agricultural

products (Yao et al., 2013; Huang et al., 2018). This technique

enables the measurement of spectral reflectance across a broad

range of wavelengths, providing detailed insights into the chemical

and physical properties of samples. In the case of kiwifruit, the

visible near-infrared (Vis-NIR) spectral range contains valuable

information related to the absorption of O–H, N–H, and C–H

vibrations (Guo et al., 2017; Xu et al., 2023). These vibrational

modes facilitate the identification and quantification of key

chemical constituents associated with SSC, such as sugars and

other organic compounds. Through the employment of regression

models, relevant information can be extracted from spectral

reflectance, leading to the establishment of a strong relationship

between the observed spectral features and SSC measurements.

Once the regression model is constructed, predicting SSC

becomes a straightforward process, allowing for the non-

destructive estimation of SSC values (Nicolaï et al., 2007).

Various well-designed regression models, such as partial least

squares regression (PLSR) (Lee et al., 2022), support vector machine

regression (SVR) (Ma et al., 2018), and artificial neural network

(ANN) (Pullanagari and Li, 2021) have been developed to establish

the relationship between observed spectral features and SSC

measurements. However, the high-dimensional nature of spectral

features can pose challenges to regression models. These features

often contain redundant information and are influenced by various

disturbances (e.g., sample differences, environmental noise, and

baseline drift). Excessive redundant information for regression

models not only results in prolonged hardware and software
Frontiers in Plant Science 02
runtime but also compromises the regression performance,

leading to unreliable estimations of SSC values (Xiaobo et al., 2010).

Unlike previous research that focuses on refining regression or

machine learning models, our study intentionally emphasizes the

importance of eliminating redundancies and disturbances in the

initial phase of model development to enhance SSC prediction for

kiwifruit—a crucial yet frequently underestimated step in

existing studies.

The quality and suitability of input features significantly

influence the performance of regression models. Carefully selected

features provide more relevant information, resulting in simpler

models and improved results. Conversely, the inclusion of irrelevant

features can negatively impact the model’s ability to generalize. In

contrast to complex models, which may present challenges in

interpretation and fine-tuning, simpler models with more effective

features tend to yield more reliable results (Xiaobo et al., 2010).

Hence, it is essential to pay meticulous attention to the pre-

processing and selection of these features. These tasks, involving

data converting and filtering before model building, are collectively

referred to as feature engineering. In general, feature engineering

involves spectral pre-processing and selection to effectively mitigate

the impact of various disturbances, eliminate irrelevant features,

and identify the most informative ones. Its ultimate goal is to

generate enhanced features that are well-suited for integration into

regression models. By prioritizing the use of more effective features

and employing simple models, we can strike a balance between

model complexity and performance, thus leading to more accurate

and interpretable regression results.

In this study, we focus on investigating the effectiveness of

feature engineering in enhancing the performance of SSC

prediction in kiwifruit using hyperspectral imaging. To achieve

this goal, we employed a linear regression model based on ordinary

least squares (OLS) due to its simplicity and interpretability.

Subsequently, we conducted a systematic evaluation and

comparison of the variations in the regression performance under

different combinations of four spectral pre-processing methods and

nine spectral feature selection methods (details will be provided in

section 2.3~2.5). Through this comprehensive analysis, our study

not only demonstrates the positive impact of feature engineering

but also identifies the optimal condition that yields the best

regression performance. Additionally, we introduce the stacking

generalization technique to integrate the strengths of two best-

performing models which are achieved through above feature

engineering, thus effectively addressing overfitting issues, and

further improving the regression performance. This study

highlights the potential of feature engineering and the stacking

generalization technique in SSC prediction for kiwifruit, providing

practical insights for quality assessment in the kiwifruit industry.

The application of these techniques holds promise for more efficient

and reliable SSC prediction, benefiting the kiwifruit industry and

potentially extending to other agricultural produce quality

assessment domains.
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2 Materials and methods

2.1 Preparation of kiwifruit samples

In June 2023, a substantial number of kiwifruit samples were

obtained from an agricultural plantation situated in Shaanxi

Province, China. Following the removal of unqualified samples

such as unripe, overripe, or mechanically damaged ones, a total of

116 kiwifruit samples with intact skin were selected for utilization in

this experiment.

Prior to conducting the spectral acquisition step, a meticulous

wiping procedure was carried out using soft tissue paper to

eliminate any lint present on the surface of kiwifruit samples.

This step was taken to mitigate the potential influence of lint on

the spectral acquisition step.

Immediately following the spectral acquisition step, the sample

preparation for the SSC measurement was conducted under the

guidelines of the NY/T 2637-2014 standard. This sample

preparation entails peeling the samples along their equators,

removing the pulp, and extracting the juice through pressing. The

kiwifruit juice will be introduced into the detection tank of one

refractometer for subsequent SSC measurement.
2.2 Spectral acquisition and
SSC measurement

A custom-built hyperspectral imaging system is specifically

developed to capture spectral images of the kiwifruit samples,

consisting of four main components: a spectral imaging camera

(Specim FX10, Konica Minolta, Inc., Japan), a motorized

positioning sample platform, two halogen area light sources, and a

computer installed with suitable data acquisition software (see

Figure 1). Among them, the Specim FX10 spectral imaging camera

provides a spectral resolution of 400 ~ 1000 nm (due to the low

signal-to-noise ratio in the lower wavelength regions, only data from

wavelengths above 450 nmwere exclusively utilized in this study) and
Frontiers in Plant Science 03
works in a push-broom mode, thus necessitating a motorized

positioning sample platform. To ensure an accurate aspect ratio in

the captured spectral images, it is crucial to carefully adjust the

advancing speed of the platform and the exposure time of the spectral

imaging camera to match each other. The two light sources were

positioned symmetrically to uniformly illuminate the camera’s field

of view. This arrangement aims to ensure consistent spectral response

across different positions within the imaged area. For stable and

accurate measurements, a one-hour warm-up and black and white

calibration procedure should be performed before the initial use of

the system. Besides, the whole procedure of spectral acquisition was

performed in a dark room to avoid the interference of stray light.

A digital refractometer with a resolution of 0.1% Brix (PAL-1,

ATAGO Inc., Japan) was utilized to measure the SSC of kiwifruit

samples. First, the prepared kiwifruit juice was carefully dropped

into the detection tank. Then, the SSC physicochemical values of

SSC were recorded once the display data stabilized. It is worth

noting that before measuring the SSC of each sample, it is essential

to calibrate the refractometer reading by setting it to zero using

distilled water. This calibration step was crucial to ensure the

accuracy and reliability of the SSC measurements by accounting

for any potential offset or drift in the refractometer readings.
2.3 Feature engineering

Feature engineering involves two key aspects: spectral pre-

processing methods and spectral feature selection methods. Spectral

pre-processing refines spectral reflectance by mitigating disturbances,

while spectral feature selection eliminates redundancy, pinpointing

crucial informative attributes for modeling. This duality is essential

for extracting meaningful patterns from raw data and is imperative

for developing robust regression models.

Recognizing that feature quality significantly influences model

success, we implement an orthogonal experimental design for

feature engineering. This methodical approach ensures

experimentation and validation tailored to our specific modeling
FIGURE 1

The custom-built hyperspectral imaging system.
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context, enabling a structured assessment of diverse feature

engineering strategies’ effects on model accuracy. We rigorously

investigate four spectral pre-processing and nine spectral feature

selection techniques, assessing their individual and combined

effects. The ensuing sections, 2.4 and 2.5, will delineate these

techniques, underscoring their roles in data refinement and

feature optimization, ultimately contributing to the improved

accuracy of our model.
2.4 Spectral pre-processing methods

During the spectral acquisition step, various disturbances, such

as sample differences, environmental noise, and baseline drift, can

affect the final captured spectral image (Xu et al., 2023). To mitigate

these variations in spectral reflectance and emphasize the features

related to SSC, a spectral pre-processing procedure is conducted. It

is a critical step in feature engineering (Lee et al., 2022) and

primarily aims to refine and cleanse the data by removing

unwanted noise, correcting baseline drift, and addressing other

disturbances. To tackle the specific variations encountered in

spectral pre-processing, a wide array of algorithms has been

developed, each possessing unique characteristics and catering to

various aspects of the process. In the following content, we will

provide a brief description of several widely used spectral pre-

processing methods that will be utilized in this study later.

Firstly, the Standard Normal Variant transform (SNV) (Dong

et al., 2022; Liu et al., 2022) is a notable method that is meticulously

designed to address the detrimental effects of scattering and

concentration-related influences. It achieves this by normalizing

spectral reflectance across the entire wavelength range, effectively

mitigating deviations, and nullifying the impact of extraneous factors.

Secondly, the Direct Orthogonal Signal Correction (DOSC)

(Westerhuis et al., 2001) method disentangles spectral reflectance

into correlated and uncorrelated components. By leveraging the

principles of multivariate statistics, it discriminates between valuable

signal information and intrusive background perturbations. In

addition, the Detrend Correction (DC) (Ai et al., 2022) method

adeptly attenuates the disruptive interference of external noise. It

accomplishes this by subtracting the trend-fitting lines, enabling a

refined and noise-free characterization of intrinsic spectral attributes.

Lastly, the Savitzky-Golay (SG) (Savitzky and Golay, 1964) convolution

smoothing method emerges as an exemplary technique for spectral

refinement. By utilizing weighted polynomial regression within moving

windows, it effectively suppresses high-frequency noise while

preserving essential spectral features.
2.5 Spectral feature selection methods

Spectroscopy instruments typically exhibit highly correlated

spectral responses, particularly in adjacent wavelength regions,

leading to redundant data. Additionally, not all wavelengths are

relevant to the problem at hand, potentially impacting the accuracy

and precision of results. Therefore, discriminative feature selection

becomes critical to enhance model performance. A range of spectral
Frontiers in Plant Science 04
feature selection methods was investigated to address these issues,

which are integral to feature engineering. These methods aim to

identify and retain informative features, reduce the feature space,

improve computational efficiency, and prevent multicollinearity

and overfitting. Nine distinct spectral feature selection methods

were identified and classified into three categories: basis-vectors-

based, statistical-measures-based, and iterations-based methods.

Each category offers unique approaches to feature selection and is

briefly described below.

2.5.1 Based on basis vectors
Dimensionality reduction techniques such as Principal

Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933) and

Singular Value Decomposition (SVD) (Smithies, 1938) use linear

combinations of basis vectors to simplify high-dimensional data.

PCA prioritizes components based on explained variance, while

SVD utilizes singular values. Additionally, Kernel Principal

Component Analysis (KPCA) (Schölkopf et al., 1997) extends

PCA by capturing nonlinear patterns through a higher-

dimensional kernel-based feature space, providing greater

flexibility in representing high-dimensional data and extracting

nonlinear features. By selecting a subset of basis vectors and

transforming, these dimensionality reduction methods effectively

reduce the dimensionality of the data while endeavoring to preserve

as much information as possible.

2.5.2 Based on statistical measures
Individual wavelength features can also be evaluated using

statistical measures. The F-test assesses the significance of feature

differences between classes. Features with high F-values indicate

greater relevance. Thus, one can rank the features based on their F-

values and select the top n features for further analysis or

dimensionality reduction. Similarly, the Pearson product-moment

correlation coefficient (PPMCC) measures linear correlations, while

Mutual Information (MI) detects both linear and non-

linear dependencies.

2.5.3 Based on iterations
Iterative feature selection methods systematically search the

feature space to identify the most relevant features for a specific

problem. These methods, through a process of selection and

elimination, adaptively integrate criteria, performance metrics, or

domain knowledge. The Recursive Feature Elimination (RFE)

(Araújo et al., 2001) is one such method that employs a backward

elimination technique to prune irrelevant features from a regression

model. Starting with all features, RFE trains the model, ranks

features by their impact on model performance, and iteratively

discards the weakest until a targeted feature set size or stopping

condition is reached. The Successive Projection Algorithm (SPA)

(Soares et al., 2013) selects features by projecting data onto

orthogonal hyperplanes, treating spectral feature selection as a

constrained combinatorial optimization problem. SPA minimizes

multicollinearity, thereby reducing redundancy and addressing ill-

conditioning by preventing the propagation of superfluous features

during calibration. The Competitive Adaptive Reweighted

Sampling (CARS) (Li et al., 2009; Zhang et al., 2019) focuses on
frontiersin.org

https://doi.org/10.3389/fpls.2024.1292365
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2024.1292365
discarding features with minor regression coefficients in the PLSR

model, using adaptive reweighting and cross-validation to fine-tune

feature selection. CARS’ adaptability allows it to dynamically

capture dataset characteristics, which may result in varying

feature selections across iterations.
2.6 Experiment settings

2.6.1 Sample division
The Sample Set Partitioning Based on Joint X-Y Distances (SPXY)

(Wang et al., 2022)method was employed to divide the entire dataset of

116 kiwifruit samples into a calibration set and a prediction set, with a

ratio of 3:1. This hold-out partitioning technique ensures a

representative distribution of samples across both sets, allowing for

the evaluation of model performance on unseen data.

Furthermore, the number of selected features in the spectral

feature selection methods was determined using 5-fold cross-

validation on the calibration set. This approach optimizes the

feature selection process by iteratively evaluating the performance

of different feature subsets across various subsets of the calibration

set. By employing cross-validation, the optimal number of selected

features is achieved while mitigating the risk of overfitting and

ensuring the robustness of the model’s performance.
2.6.2 Evaluation metrics
Three metrics, namely the Root Mean Square Error (RMSE), the

Mean Absolute Percentage Error (MAPE), and the Residual

Prediction Deviation (RPD) were employed to evaluate the impact

of feature engineering on the regression model. These evaluation

metrics are calculated using the following Equations 1–3.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

n

i=1
(yi − ŷi)

2

s
(1)

MAPE = 1
No

n

i=1

yi − ŷ ij j
yi

(2)

RPD = SD
RMSE (3)
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where ŷi is the predicted value of the ith sample, yi is the

measured value of the ith sample, and N is the total number of

samples in the prediction set. Additionally, SD is the standard

deviation of the measured value of the N samples. It is important to

note that the metrics calculated for the validation set (RMSEv , MA

PEv and RPDv) represent the mean values obtained from cross-

validation. Conversely, the metrics calculated for the prediction set

(RMSEp, MAPEp and RPDp) represent the mean values obtained

from a single prediction. The details of the sample division and

metrics calculation can be found in Figure 2.

2.6.3 The regression model
To comprehensively evaluate the effectiveness of feature

engineering, a linear regression model based on OLS was

established using an orthogonal experimental design. The OLS

model, known for its ability to minimize the sum of squared

residuals, is a widely-used regression method and a suitable

choice for modeling the relationship between the input features

and the SSC values. Its simplicity and interpretability make it a solid

foundation for analyzing and comparing the effects of feature

engineering on the regression model’s performance. Meanwhile,

those orthogonal experiments allow for a thorough examination of

the individual effects of spectral pre-processing methods and

spectral feature selection methods, as well as the exploration of

potential interactions between them. By systematically varying and

controlling these factors, researchers can gain valuable insights into

the impact of different feature engineering techniques on the overall

performance of the regression model.
3 Results and discussion

3.1 Distribution of the spectral reflectance
and SSC

The distribution range of spectral reflectance in different

wavelength regions were shown in Figure 3. Notably, the

distribution range below 500 nm appears narrower, indicating

lower variance and suggesting that this region contains less

information. Conversely, the distribution range above 750 nm is

broader, indicating higher variability in spectral reflectance within
FIGURE 2

The details of the sample division and metrics calculation.
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this wavelength region. This observation suggests that features of

higher wavelength regions may contain more valuable information

for the analysis and prediction of SSC values.

The SSC values for the complete dataset of 116 kiwifruit

samples exhibit a mean value of 13.148 and a standard deviation

of 1.025. The distribution of these values approximately follows a

normal distribution, as evidenced by the Lilliefors test with a p-

value of 0.0642. A visual representation of the frequency histogram

depicting the specific distribution can be found in Figure 3. The

calibration set of 87 samples presents a mean SSC of 13.165 and a

standard deviation of 1.031, while the prediction set of 29 samples

has a mean of 13.093 and a standard deviation of 1.022, indicating

similar distribution parameters. Such comparability between

calibration and prediction sets is vital to the reliability of our

model’s performance evaluation.

3.2 Regression performances

The performances of the OLS model under all conditions were

summarized in Tables 1–5, grouped by spectral pre-processing
Frontiers in Plant Science 06
methods, with the best scores highlighted in bold (due to

rounding of specific metric values, some values that appear to be

the same may still have minor differences). For a clearer comparison

of outcomes among different spectral selection methods, we

underline the results that fall below the baseline performance (i.e.,

without employing any spectral selection method) under identical

spectral preprocessing conditions. The number of selected features

of the corresponding spectral selection method is briefly

represented by n.

These tables provide an exhaustive overview of the evaluation

metrics, such as RMSE, MAPE, and RPD, enabling easy comparison

and identification of the top-performing models within each feature

preprocessing group. As shown in Tables 1–5, the superior

performance of the OLS model utilizing feature engineering

becomes evident when comparing it to the model without feature

engineering. Within each spectral pre-processing method,

employing a spectral feature selection method consistently

enhanced performance across all metrics for both the calibration

and validation sets (except for the minor anomaly of the MAPEp
metric for the DC-CARS-OLS model).
A B

FIGURE 3

Distribution of the (A) spectral reflectance and (B) SSC.
TABLE 1 Regression performances using various spectral selection methods under no spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

None

None / 1.279 0.078 0.811 1.161 0.071 0.865

PCA 5 0.953 0.062 1.061 0.780 0.053 1.288

KPCA 5 0.947 0.062 1.068 0.780 0.053 1.287

SVD 4 0.959 0.063 1.055 0.807 0.055 1.244

F-test 10 0.966 0.061 1.050 0.943 0.059 1.064

PPMCC 2 1.014 0.067 0.997 1.021 0.063 0.984

MI 6 0.937 0.058 1.086 0.883 0.060 1.137

RFE 6 0.994 0.065 1.017 0.773 0.050 1.299

SPA 2 0.970 0.063 1.044 0.854 0.055 1.176

CARS 8 0.912 0.058 1.118 0.771 0.048 1.302
front
The best scores are highlighted in bold.
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This conclusion, however, does not extend to spectral pre-

processing methods. For the sake of simplicity, the performance

outcomes of the OLS model under just a few selected spectral feature

selection methods are succinctly summarized in Table 6. It is

apparent that spectral pre-processing methods do not always lead

to performance enhancements. Nevertheless, a judicious synergy

between spectral pre-processing and feature selection methods may

facilitate further amelioration of model performance. It is imperative

for scholars to meticulously assess these variations when constructing

an optimal feature engineering for their specific application.

These findings underscore the effectiveness of feature

engineering in enhancing the regression model’s predictive

capabilities. In the calibration set, the DC-CARS-OLS model

consistently demonstrates the best performance across all
Frontiers in Plant Science 07
evaluation metrics (RMSEv = 0:760, MAPEv = 0:047 and RPDv =

1:372), indicating that the combination of the DC spectral

preprocessing method, the CARS spectral feature selection

method, and the OLS regression model yields the most accurate

and reliable predictions in this particular dataset. However, the

performance differs in the validation set, where the SG-CARS-OLS

model outperforms the other models, achieving the best scores in all

evaluation metrics (RMSEp = 0:740, MAPEp = 0:046 and RPDp =

1:358). This suggests that the combination of the SG spectral

preprocessing method, the CARS spectral feature selection

method, and the OLS regression model performs exceptionally

well on unseen data. These findings emphasize the importance of

evaluating model performance in both the calibration set and

validation set to ensure the generalizability of the results.
TABLE 2 Regression results using various spectral selection methods under SNV spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

SNV

None / 1.795 0.109 0.593 1.535 0.098 0.654

PCA 4 0.958 0.063 1.056 0.840 0.056 1.195

KPCA 7 0.953 0.063 1.061 0.740 0.048 1.358

SVD 4 0.958 0.063 1.056 0.840 0.056 1.195

F-test 10 0.960 0.061 1.058 0.988 0.058 1.016

PPMCC 2 1.018 0.067 0.995 1.030 0.064 0.975

MI 4 1.001 0.064 1.019 0.948 0.061 1.059

RFE 5 0.978 0.065 1.036 0.880 0.058 1.142

SPA 8 0.928 0.059 1.101 0.795 0.049 1.263

CARS 8 1.025 0.065 0.999 0.982 0.062 1.023
front
The best scores are highlighted in bold.
TABLE 3 Regression results using various spectral selection methods under DOSC spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

DOSC

None / / / / / / /

PCA 4 0.974 0.064 1.038 0.809 0.052 1.242

KPCA 4 0.974 0.064 1.038 0.809 0.052 1.242

SVD 3 0.984 0.065 1.029 0.845 0.055 1.188

F-test 5 0.953 0.062 1.061 0.812 0.052 1.236

PPMCC 5 0.953 0.062 1.061 0.812 0.052 1.236

MI 2 0.980 0.064 1.033 0.864 0.054 1.162

RFE 3 1.003 0.066 1.010 0.891 0.058 1.127

SPA 13 0.970 0.061 1.053 0.879 0.057 1.142

CARS 12 0.888 0.053 1.173 0.978 0.058 1.026
The best scores are highlighted in bold.
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It further demonstrates that the optimal combination of

feature preprocessing methods and spectral feature selection

methods may vary depending on the dataset and the specific

task concerned. Researchers should carefully consider these

variations when designing the most suitable combination of

feature engineering.

The frequency with which the OLS model achieves the best

performance for each metric under every condition is summarized

in Table 7. Among the spectral pre-processing methods, all exhibit

an equal frequency of best performance. However, when

considering spectral feature selection methods, it is noteworthy

that the CARS method stands out with a significantly higher

frequency of best performance compared to the other methods.

This observation raises the possibility that greater attention should

be directed toward spectral feature selection methods during the

design of feature engineering and suggests that CARS is particularly
Frontiers in Plant Science 08
effective in selecting informative features for enhancing the

performance of the regression model.
3.3 Selected optimal features

The distribution of the features selected by the DC-CARS and

SG-CARS methods are shown in Figure 4. The features extracted by

the DC-CARS method show a more dispersed distribution across

different wavelengths. In contrast, the features extracted by the SG-

CARS method exhibit a relatively concentrated distribution,

particularly around 600 nm and 850 nm. Both methods display a

concentration of selected features above 750 nm, but there is also a

smaller distribution near 600-700 nm. These findings align with the

distribution range of spectral reflectance in different wavelength

regions, as depicted in Figure 3A.
TABLE 5 Regression results using various spectral selection methods under SG spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

SG

None / 1.553 0.096 0.662 1.425 0.091 0.704

PCA 5 0.953 0.062 1.061 0.780 0.053 1.287

KPCA 5 0.948 0.062 1.068 0.780 0.053 1.287

SVD 4 0.959 0.063 1.055 0.807 0.055 1.244

F-test 8 0.989 0.063 1.029 0.924 0.059 1.087

PPMCC 5 1.015 0.065 1.006 0.903 0.057 1.112

MI 12 0.980 0.062 1.037 0.793 0.053 1.267

RFE 6 0.963 0.063 1.049 0.774 0.052 1.298

SPA 2 0.970 0.063 1.044 0.853 0.055 1.178

CARS 13 0.895 0.053 1.139 0.740 0.046 1.358
front
The best scores are highlighted in bold.
TABLE 4 Regression results using various spectral selection methods under DC spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

DC

None / 1.303 0.081 0.785 1.238 0.076 0.811

PCA 31 0.934 0.058 1.119 0.802 0.047 1.252

KPCA 9 0.957 0.060 1.069 0.754 0.051 1.332

SVD 15 0.942 0.059 1.099 0.759 0.049 1.324

F-test 1 0.964 0.063 1.050 0.831 0.053 1.208

PPMCC 1 0.964 0.063 1.050 0.831 0.053 1.208

MI 7 0.982 0.062 1.043 0.810 0.053 1.239

RFE 5 1.004 0.066 1.011 0.810 0.053 1.240

SPA 4 0.968 0.064 1.048 0.780 0.049 1.287

CARS 18 0.760 0.047 1.372 1.189 0.077 0.844
The best scores are highlighted in bold.
The results that fall below the baseline performance are highlighted in underlined.
iersin.org
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3.4 The stacking generalization

We observed that the DC-CARS-OLS model, despite achieving

the best performance in the calibration set, did not perform as well

in the validation set. This suggests that the DC-CARS-OLS model
Frontiers in Plant Science 09
may have overfit the calibration set and may not generalize well to

unseen data. Conversely, the SG-CARS-OLS model achieved the

best performance in the validation set but performed lower than the

DC-CARS-OLS model in the calibration set, indicating that there is

still room for improvement in its fitting ability.
TABLE 7 Statistics of the frequency of best performance for each metric under every condition.

None PCA KPCA SVD F-test PPMCC MI RFE SPA CARS SUM

None 0 0 0 0 0 0 0 0 0 6 6

SNV 0 0 3 0 0 0 0 0 3 0 6

DOSC 0 3 0 0 0 0 0 0 0 3 6

DC 0 1 2 0 0 0 0 0 0 3 6

SG 0 0 0 0 0 0 0 0 0 6 6

SUM 0 4 5 0 0 0 0 0 3 18 /
frontie
The best scores are highlighted in bold.
FIGURE 4

Distribution of the features selected by the DC-CARS and SG-CARS methods.
TABLE 6 Regression results using various spectral pre-processing methods under no and CARS spectral pre-processing.

Pre-processing Feature Selection n
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

None

None

/ 1.279 0.078 0.811 1.161 0.071 0.865

SNV / 1.795 0.109 0.593 1.535 0.098 0.654

DOSC / / / / / / /

DC / 1.303 0.081 0.785 1.238 0.076 0.811

SG / 1.553 0.096 0.662 1.425 0.091 0.704

None

CARS

8 0.912 0.058 1.118 0.771 0.048 1.302

SNV 8 1.025 0.065 0.999 0.982 0.062 1.023

DOSC 12 0.888 0.053 1.173 0.978 0.058 1.026

DC 18 0.760 0.047 1.372 1.189 0.077 0.844

SG 13 0.895 0.053 1.139 0.740 0.046 1.358
The best scores are highlighted in bold.
The results that fall below the baseline performance are highlighted in underlined.
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To leverage the strengths of both models and address these

limitations, we introduced the stacking generalization technique

(Wolpert, 1992). The stacking generalization technique is a

powerful method that combines outputs of multiple base models

to improve the final predictive performance. It involves constructing

a meta-model that takes the predictions of base models as input, thus

addressing the limitations of individual models and harnessing their

complementary strengths. Specifically, the base models are trained

on the same calibration dataset but with different methods or

settings. The meta-model then learns to combine the outputs of

base models in an optimal way to produce the final prediction. In

this study, we utilized stacking generalization technique to combine

the outputs of the DC-CARS-OLS model and SG-CARS-OLSmodel,

aiming to leverage their respective strengths and enhance the final

predictive capability and generalization performance of the

regression model. The specific structure and computational flow

of the stacking generalization model utilized in this study can be

found in Figure 5, providing a visual representation of how the

stacking generalization process is implemented.

The performance of the base models as well as the stacking

generalization model is presented in Table 8. The performance of

the stacking generalization model on the calibration set showed a

decrease compared to the DC-CARS-OLS model. Besides, its
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performance has improved compared to the SG-CARS-OLS

model on both the calibration and validation sets. These findings

suggest that the stacking generalization model effectively addresses

the overfitting issue observed in the DC-CARS-OLS model and

further enhances the model’s fitting ability based on the SG-CARS-

OLS model. By combining the strengths of both base models, the

stacking technique successfully achieves improved overall

performance and enhanced generalization ability.

The comparison between the experimentally measured and

stacking generalization model-predicted values of SSC is shown in

Figure 6. The close alignment of predicted SSC distributions across

both calibration and prediction datasets underscores the model’s

robustness, reflecting its capability to generalize well without

succumbing to overfitting within the calibration phase.

This study’s approach is benchmarked against established

methods in the field, with comparative results detailed in Table 9.

Moen et al. (Moen et al., 2021) explored the link between kiwifruit

spectral data and SSC using various machine learning approaches

and determined that the optimal prediction was achieved by UVE-

PLS model, yielding an RMSEp of 1.047. Zhou et al. (Zhou, 2022)

also investigated this relationship and discovered that SVR model

offered the best predictive accuracy with an RMSEp of 1.309.

Meanwhile, Benelli et al. (Benelli et al., 2022) applied a PLS
FIGURE 5

The specific structure and computational flow of the stacking generalization model.
TABLE 8 Regression results of the base models as well as the stacking generalization model.

Regression model
Calibration (Cross-Validation) Validation

RMSEc MAPEc RPDc RMSEp MAPEp RPDp

DC-CARS-OLS 0.760 0.047 1.372 1.189 0.077 0.844

SG-CARS-OLS 0.895 0.053 1.139 0.740 0.046 1.358

Stacking Generalization 0.782 0.047 1.331 0.721 0.046 1.394
front
The best scores are highlighted in bold.
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model leveraging hyperspectral imaging to assess kiwifruit maturity,

attaining RMSEc and RMSEp values of 0.81 and 0.73, respectively. In

our research, cross-validation within the calibration set was utilized

to robustly detect overfitting, resulting in the most accurate

predictions characterized by the lowest RMSEp in the validation set.
4 Conclusion

In conclusion, our investigation reveals that feature engineering,

particularly the application of the CARS method for feature

selection, significantly enhances SSC prediction accuracy in

kiwifruit using hyperspectral imaging. Through rigorous

comparative analysis, we established that the DC-CARS-OLS

model delivers the most accurate results in calibration, while the

SG-CARS-OLS model excels in validation scenarios. These

outcomes specifically highlight the critical nature of spectral

feature selection in constructing effective predictive models.

Additionally, the introduction of the stacking generalization

technique has proven instrumental in amalgamating the

predictive strengths of individual models, thereby mitigating

overfitting, and refining overall regression accuracy. Our findings

not only bolster the methodological framework for non-destructive
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SSC estimation in kiwifruit but also suggest a template for broader

application in agricultural quality assessment. The practical upshot

of our study is a robust, non-invasive approach that promotes the

kiwifruit industry’s capability to ensure product quality, optimize

resource use, and minimize waste. Ultimately, this research

underlines the transformative potential of targeted feature

engineering and advanced ensemble techniques in enhancing the

precision of agricultural produce quality prediction models.
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