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Livestock presence impacts plant biodiversity (species richness) in grassland

ecosystems, yet extent and direction of grazing impacts on biodiversity vary

greatly across inter-annual periods. In this study, an 8-year (2014-2021) grazing

gradient experiment with sheep was conducted in a semi-arid grassland to

investigate the impact of grazing under different precipitation variability on

biodiversity. The results suggest no direct impact of grazing on species

richness in semi-arid Stipa grassland. However, increased grazing indirectly

enhanced species richness by elevating community dominance (increasing the

sheltering effect of Stipa grass). Importantly, intensified grazing also regulates

excessive community biomass resulting from increased inter-annual wetness

(SPEI), amplifying the positive influence of annual humidity index on species

richness. Lastly, we emphasize that, in water-constrained grassland ecosystems,

intra-annual precipitation variability (PCI) was the most crucial factor driving

species richness. Therefore, the water-heat synchrony during the growing

season may alleviate physiological constraints on plants, significantly

enhancing species richness as a result of multifactorial interactions. Our study

provides strong evidence for how to regulate grazing intensity to increase

biodiversity under future variable climate patterns. We suggest adapting

grazing intensity according to local climate variability to achieve grassland

biodiversity conservation.
KEYWORDS

grazing intensity, sheep, precipitation concentration index, standardized precipitation
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1 Introduction

Grasslands provide a variety of habitats for organisms and

harbor a large proportion of the world’s plant and animal life

forms (Cleland et al., 2013; Petermann and Buzhdygan, 2021; Yan

et al., 2023). However, these ecosystems were facing unprecedented

threats from climate change and human activities. Herbivorous

vertebrates can alter plant biodiversity (species richness) in

grassland ecosystems, but the degree and direction of their impact

varied greatly depending on grazing intensity and inter-annual

variations (Korell et al., 2021). Predicting the impact of

herbivores on biodiversity is expected to generate unpredictable

effects on ecosystem services and functions (Reich et al., 2012). In

an era of rapid species loss caused by global changes and human

activities, it is of paramount importance to understand the

mechanisms that affect biodiversity (Allan, 2022).

Herbivorous vertebrates play a key role in determining the

structure and diversity of grassland plant communities

(McNaughton et al., 1989; Olff and Ritchie, 1998; Herrero-

Jauregui and Oesterheld, 2018). One theory proposes that

ecosystem productivity influences the direction of herbivore

effects on plant diversity. For instance, in highly productive

systems, herbivores may increase biodiversity by reducing

competition for light and promoting seedling establishment (Olff

and Ritchie, 1998; Borer et al., 2014; Allan, 2022). In contrast, in low

productivity systems, herbivores may decrease species richness by

impeding colonization or increasing species extinction (Koerner

et al., 2018). Recent studies suggest that changes in community

dominance driven by herbivore preference, rather than site

productivity, drive grassland biodiversity (Koerner et al., 2018).

This theory posits that changes in community dominance alter the

competitive abilities among species for above- and below-ground

resources in the ecosystem (Olff and Ritchie, 1998). It is noteworthy

that grazing intensity has varied direct or indirect effects on

diversity. Changes in grazing intensity can also induce shifts in

interspecific relationships within the community, thereby

influencing biodiversity. Therefore, investigating the role of the

stress gradient hypothesis (SGH) in the impact of grazing intensity

on biodiversity is essential. The stress gradient hypothesis posits

that the net outcome of plant community interactions shifts from

negative (competition) to positive (facilitation) as stress increases

(Bossuyt et al., 2005; Smith et al., 2009; Adams et al., 2022). Previous

studies on the impacts of herbivores on grassland biodiversity have

yielded mixed results, with some reporting positive effects, while

others report neutral or negative effects (Stohlgren et al., 1999;

Koerner et al., 2014; Eldridge et al., 2016; Gao and Carmel, 2020).

Therefore, the impact of herbivores on grassland plant diversity is

not determined by a single theory but is instead the result of

multiple mechanisms acting in concert. The identification of

multiple mechanisms driving the impact of herbivores on

biodiversity is of significant importance.

A central question in ecology is which biotic and abiotic factors

regulate species diversity in plant communities over space and time

(Tilman, 2000; Ulrich Sommer and Worm, 2002; Worm et al.,

2002). In semi-arid ecosystems, water, especially effective
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precipitation, is recognized as the primary limiting factor and key

driving force for plant biodiversity and productivity (Fu et al., 2017;

Shi et al., 2018; Li et al., 2021). These communities face challenging

physiological limitations due to water scarcity, making plant

productivity more sensitive to precipitation (Korell et al., 2021).

The positive correlation between species richness and precipitation

has also been confirmed globally, as increased resource/energy

availability allows for greater species coexistence (Currie et al.,

2004). With rising greenhouse gas levels in the atmosphere

causing a warming trend, significant changes in precipitation

amount and distribution patterns were expected in arid regions

over the coming decades (Cleland et al., 2013; Miao et al., 2020).

Interannual precipitation variability and frequency of drought

events are widely believed to had increased and are projected to

continue increasing in many regions (Durack et al., 2012).

Therefore, we need to determine whether the plant diversity

across regional precipitation gradients also applies to the

temporal changes in biodiversity of a grassland ecosystem driven

by interannual variation in precipitation. Additionally, we should

pay more attention to the magnitude of changes in the distribution

of precipitation within a year (i.e., precipitation concentration index

or PCI), as plant available water is not only influenced by

precipitation amount but also by the concentration of

precipitation events (Knapp et al., 2002; Huxman et al., 2004).

Intra-annual precipitation variability (or PCI) may cause a

mismatch between water availability and the developmental needs

of plants in different growth stages (Voigt et al., 2003; Suttle et al.,

2007). For instance, a lack of rainfall during the growing season

when plants require more water can result in an inadequate water

supply (Wang et al., 2020). Non-concentrated precipitation can

prevent species from establishing in a community under high

evapotranspiration conditions, thereby affecting species diversity.

Additionally, biodiversity often exhibits a certain lag in response to

disturbance (grazing intensity) (Trindade et al., 2020). Investigating

long-term changes in community structure in response to

disturbance will contribute to a better understanding of how

grazing influences plant diversity. Therefore, it is necessary to

conduct multi-year grazing gradient control experiments to

determine how the impact of grazing intensity on biodiversity

varies with changes in intra- and inter-annual climate variability.

In this study, we had conducted a long-term multi-gradient

grazing experiment to quantify the effects of grazing intensity and

climate variability on species richness and to evaluate whether these

effects had been mediated by changes in plant community

productivity and dominance. Through the time scale of “meta-

community”, we had considered all species that appeared in

communities under different ecological niches at different times of

the year. We expect grazing to influence species richness by altering

community productivity and dominance, while interannual climate

variability and associated changes in effective moisture supply will

enhance or dampen the effects of grazing. We had aimed to address

the following two specific scientific questions: (1) How does grazing

affect plant diversity? (2) Is the alteration in species richness the

combined outcome of grazing intensity, climatic variability, and

community structure?
frontiersin.org

https://doi.org/10.3389/fpls.2024.1294895
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1294895
2 Methods and data

2.1 Study sites

The grazing manipulation experiment had been conducted in

Xilinhot City (44°08′N, 116°19′E, 1118m a.s.l), Inner Mongolia,

China (Figure 1A). From 1960 to 2021, the mean annual

temperature (MAT) of this area had increased at a rate of 0.04°C

per year, accumulating a total increase of 2.4°C during this period

(Figure 1B). The mean annual precipitation (MAP) over the past 60

years was approximately 279.54 mm, with nearly 85% occurring

during the growth season from May to September (Figure 1C;

Figure 2E). During the study period from 2014 to 2021, this area

had experienced a transition from a humid year to a severe drought

year and then back to a humid year (Figure S1). The biotic

community of this area is characterized by a typical grassland

dominated by Stipa grandis P. Smirn (a perennial bunchgrass)

and Leymus chinensis Trin. Tzvel (a perennial rhizomatous grass).

The grazing history of this grassland area had involved low-

intensity sheep grazing (approximately 0.5 sheep-day per hectare).
2.2 Grazing experiment design

In 2013, we had fenced 12 paddocks of equal-size (120×120 m)

and had implemented four grazing intensity treatments from 2014 to

2021: no grazing (NG: 0 sheep·ha−1·day−1), low grazing (LG: 2

sheep·ha−1·day−1), medium grazing (MG: 4 sheep·ha−1·day−1), and

high grazing (HG: 8 sheep·ha−1·day−1) (Figure 2A). Each grazing

treatment had three replicates. Four bouts of grazing were conducted

each year during the growing season from June to September using

Inner Mongolian Ujimqin sheep (Wu et al., 2022). Each bout lasted
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for 21 days and followed a particular treatment. Grazing started at

7:00 am and ended at 6:00 pm every day, during which time the sheep

had free access to water and minerals (Figure 2C).
2.3 Data sampling and calculation

2.3.1 Plant sampling
We had virtually divided each paddock (120×120 m) into five

subplots (24×120 m). In each subplot, we had randomly placed a 1-

m2 quadrat 30 meters from the fence (Figure 2B). For each subplot,

we had used scissors to clip aboveground living portions of each

species from each quadrat and collected them as plant community

samples. We had oven-dried these samples at 65°C for 48 hours and

weighed them with a 0.01g precision electronic balance to determine

the shoot biomass for each species. We collected plant sample data

using this method during June, July, August, and September from

2014 to 2021. The focus of this study was the seasonal-scale meta-

community, which represented the collection of all species that had

appeared within a unit area during the four-month growing season

(Figure 2D). We had extracted the highest value of shoot biomass

recorded for each species during the four months as the biomass of

each species in the assemblage community.
2.3.2 Plant diversity
At the local scale (i.e., subplot), we had calculated plant

community species richness (q=0), exponentiated Shannon

diversity (q=1), and Simpson diversity (q=2) for the seasonal-scale

meta-community using three Hill numbers. The number of species in

the meta-community for each subplot was calculated as the plant

community species richness. The Shannon-Wiener diversity for the

community was calculated as H¼ �oS
i=1pi � lnpi, where S
A B

C

FIGURE 1

The geographic and historical climatic distributions of grazing manipulation experiments. (A) illustrates the distribution of the sample sites on a map.
The mean annual temperature in the study area from 1960-2021 is represented in (B), while (C) shows the mean annual precipitation during the
same period in the study area. '***' represents extremely significant.
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represents the number of species in the meta-community and pi
represents the relative biomass of species i in the meta-community.

The effective species (i.e., common species) of the community was

calculated as the exponentiated Shannon-Wiener of the meta-

community. The effective species (referred to as the Shannon

diversity hereafter) was calculated as H’ = eH, where H is the

Shannon-Wiener diversity of the meta-community. Due to the

tendency of dominant species in a community to influence species

diversity through resource monopolization, we had quantified

community dominance through two methods. The Berger-Parker

dominance diversity is the relative biomass of the most abundant

species in each subplot’s meta-community (Koerner et al., 2018).

Simpson’s dominance index is calculated as Simp =o Si p
2
i , where S

represents the number of species in the meta-community and pi
represents the relative biomass of species i in the meta-community.

2.3.3 Climate variables
In our experiment, standardized precipitation evapotranspiration

index (SPEI) and precipitation concentration index (PCI)
Frontiers in Plant Science 04
standardized the wetness and precipitation distribution patterns

within the year, respectively. We calculated the precipitation

concentration index (PCI) to measure the distribution pattern of

rainfall during the year (Sloat et al., 2018). The larger the PCI value,

the more concentrated the distribution of rainfall during the year, and

vice versa. The PCI was calculated as PCI =om
i P

2
i = om

i Pi
� �2�100%

, where Pi represents the precipitation in month i of the year and m =

12. The peak temperature in the region occurs in July, and whether

rainfall is concentrated in July largely determines the growth status of

the plant community. Additionally, we calculated the standardized

precipitation evapotranspiration index (SPEI) to measure each year’s

degree of wetness using the SPEI package in R.

2.3.4 Statistical analyses
To assess the effects of grazing and year on plant diversity and

branch biomass, we conducted a repeated-measurements analysis of

variance (ANOVA) using the ez package in R. In this model, grazing

intensity was treated as the between-subjects factor and year as the

within-subjects factor. Tukey’s range method was used to test
A B

D

E

C

FIGURE 2

The experimental design for grazing manipulation, long-term plant community survey, and landscape map. (A) presents an aerial view of the grazing
experiment site, while (B) illustrates the long-term monitoring plan for plant community. (C) shows the randomized block grazing experiment
designed with four treatments, namely low grazing (LG: 2 sheep·ha-1·day-1), medium grazing (MG: 4 sheep·ha-1·day-1), high grazing (HG: 8
sheep·ha-1·day-1), and no grazing (NG: 0 sheep·ha-1·day-1). Each plot covered an area of 1.44 ha and the experiment was conducted over a period
of eight years with three replicates per treatment. (D) displays an aggregate community at the growing season scale, demonstrating aggregation of
four quadrats from the same site in different months. (E) shows the landscape map of the four different grazing treatments.
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differences in grazing intensity across each year. Additionally, to

evaluate the response of species richness to climate and plant

community attributes under different grazing intensities, we

established ordinary least squares linear regression models (OLS-

LM) between climate and community variables (i.e., independent

variables) and species richness (i.e., dependent variable).

We also constructed a structural equation model (SEM) to

explore how grazing and climate drive species richness through

their mediation of plant community dominance and productivity.

Shipley’s d-separation test was used to ensure that no significant

paths were omitted (p>0.05), and the final SEM model was selected

based on the lowest Akaike information criterion (AIC). The SEM

was constructed using the piecewiseSEM package in R (Lefcheck,

2016). Finally, we used a multiple regression model to evaluate the

most important driving factors influencing species richness. To assess

the relative importance of each explanatory variable (GI, SPEI, PCI,

Berger-Parker, and Shoot biomass) in the best model on species

richness, we used the averaged ranking method by running the

relaimpo package in R to decompose R2. Additionally, we

conducted partial correlation analysis to further identify the

primary driving factors of species richness and the interdependency

among the explanatory variables.
3 Results

3.1 The impacts of grazing on plant
community attributes

Over the years of grazing, there was a significant increase in

species richness in the plant community (Table 1; Figure 3A).

However, increased grazing intensity did not have a significant

impact on species richness (Figure 3E). Furthermore, the interactive

effect of the year and the grazing intensity on species richness was

also significant (Table 1), primarily manifested as follows: the

impact of increased grazing intensity on species richness

diminished during dry years (e.g., 2017), while it intensified

during wet years (2020-2021) (Table S1). Additionally, our study

indicated that Shannon-Wiener diversity was not only significantly

influenced by grazing intensity and year but also by their interaction

(Table 1). Specifically, compared to no grazing, increased grazing

intensity significantly decreased Shannon-Wiener diversity, with

this effect becoming more pronounced over the years (Figures 3B,

F). Our analysis also revealed that plant community dominance, as

indicated by Simpson diversity and the Berger-Parker index, was

primarily influenced by grazing intensity and its interaction with

year (Table 1). We found that grazing increased dominance while

the no grazing decreased it, with this difference becoming more

pronounced over time (Figures 3C, D, G, H). Shoot biomass of the

plant community was significantly affected only by grazing intensity

(Table 1), with medium and high grazing being significantly lower

than no grazing and low grazing (Figure S2).
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3.2 The combination of grazing and
climate factors impels plant diversity

The continuous increase in mean annual temperature (MAT)

was not conducive to an increase in species richness, with this effect

being non-significant across various grazing intensities (Figure

S3B). We did not observe a significant promoting effect of mean

annual precipitation (MAP) on species richness (Figure S3C).

However, when considering the intra-annual distribution pattern

of precipitation, we found that the precipitation concentration

index (PCI) had a significant positive effect on species richness,

with this effect being more pronounced at higher grazing intensities

(Figure 4C; Figure 5). Additionally, the standardized precipitation

evapotranspiration index (SPEI) positively influenced species

richness (Figure 4B). However, the promoting effect of SPEI on

species richness was attenuated by an increase in shoot biomass

(Figure 5; Figure S4).

The increasing grazing intensity had no direct effect on species

richness, but indirectly increased it by reducing shoot biomass

(Figure 5; Figure S3A). Shoot biomass had no significant effect on

species richness, but the relationship shifted to a significant negative

correlation when SPEI was not considered (Figure 4A; Figure 5;

Figure S4). The dominance of the community had no clear

relationship with species richness, but it should be noted that this

relationship was significantly negatively correlated with no grazing,

while it turned into a significant positive correlation at high grazing

intensities (Figure 4D). Conversely, in the absence of grazing, the

effective species (Shannon diversity) of the community had a

positive promoting effect on species richness (Figure S3D).

Plant community species richness was primarily driven by PCI,

accounting for 70% of the observed variation. SPEI was the second

most influential factor, explaining 14% of the total variance. Branch

biomass also plays a significant role in affecting species richness,

contributing to 10% of the total variation (Figure S5).
4 Discussion

Compared to the well-defined spatial distribution pattern of

plant diversity (species richness), it is important to determine

whether the same driving mechanisms apply on a temporal scale.

Our research had shown that in ecosystems with distinct seasonal

patterns, precipitation patterns (particularly precipitation

concentration index: PCI) within a year have a stronger impact

on plant species richness than grazing intensity. Increased grazing

intensity did not exert a direct driving effect on species richness.

Instead, the regulation of species richness was primarily influenced

by changes in aboveground biomass, which were modulated by

variations in both grazing intensity and precipitation. Therefore,

species richness cannot be determined by a single driving

mechanism alone; rather, it is the result of multiple interacting

factors (Figure 5).
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4.1 Grazing affect plant diversity

The primary reason for the absence of a decrease in plant

species richness due to grazing intensity is the shelter effect

generated by the increased dominance of S. grandis. S. grandis is

a tall, dense grass species in our ecosystem, which is unpalatable and

has defense traits such as long needle-shaped seeds (Liang et al.,

2021). Sheep preferentially forage palatable and nutritious species,

which indirectly increases the dominance of the community by

reducing competition from other species (increasing the dominance

of S. grandis) (Liang et al., 2019). Some studies suggest that

unpalatable species act as biological refuges by protecting

neighboring plants from being eaten (Smith et al., 2009; Kelemen
Frontiers in Plant Science 06
et al., 2019). Our research confirmed this, as high grazing intensity

significantly promoted an increase in species richness by increasing

the dominance of the community. Under conditions of high grazing

intensity, the sheltering effect provided by S. grandis prevents

vulnerable species from local extinction due to foraging pressures.

Additionally, the relaxation of niche constraints resulting from

reduced interspecific competition creates favorable conditions for

colonization by new species (Knapp et al., 1999; Bossuyt et al., 2005;

van Wieren et al., 2008). However, we found that after grazing was

excluded, the community dominance decreased and species

richness increased. This inconsistent relationship is due to the

shift from mutualistic relationships between species under grazing

to competitive relationships when grazing is excluded (Bossuyt
TABLE 1 Repeated-measures ANOVA results for plant diversity and shoot biomass with grazing intensity (GI) as a between-subjects factor and year (Y)
as a within-subjects factor.

GI Y GI*Y

F P F P F

Species richness 1.53 0.28 111.91 <0.001 6.66 <0.001

Shannon diversity 30.49 <0.001 6.28 <0.05 16.96 <0.001

Simpson diversity 15.01 <0.01 0.73 0.40 15.30 <0.001

Berger-Parker 16.72 <0.001 0.03 0.87 13.67 <0.001

Shoot biomass 17.82 <0.001 0.39 0.53 0.35 0.79
frontie
P

F- and P-values were used to represent ANOVA results and statistical significance, respectively. Significant differences (p< 0.05, 95% confidence level, n = 3) are indicated in bold, with GI*Y
representing grazing and year interactions.
A B D

E F G H

C

FIGURE 3

Variations in plant diversity and its response to different grazing intensities over multiple years (mean ± SE, n=3). Shown are the dynamics of species
richness (A, E), Shannon diversity (B, F), Simpson diversity (C, G), Berger-parker (D, H) with statistics (i.e. Tukey’s range test) indicating the results
from the ANOVA models of grazing intensity, year and their interactions (see Table 1). Tukey’s range test was used to examine differences between
grazing intensities, with unfilled dots indicating significant grazing effects compared to the no-grazing treatment (p< 0.05). Key; NG, no grazing
(green); LG, low grazing intensity (blue); MG, medium grazing intensity (yellow); HG, high grazing intensity (red). Different lowercase letters indicate
significant differences in plant diversity between pairwise grazing intensities.
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et al., 2005; Smit et al., 2009). The stress gradient hypothesis

suggests that as environmental stress increases, the importance of

positive interactions between species also increases (Gibson, 2009;

Smit et al., 2009). Therefore, the theory that livestock, by altering
Frontiers in Plant Science 07
community dominance, influences species richness is not

universally applicable across all ecosystems (Koerner et al., 2018).

Species interactions are also an important factor that needs to

be considered.
A B

DC

FIGURE 4

Plant species richness response to biotic and abiotic variables under different grazing intensities. (A), Relationship between shoot biomass and the
plant species richness. (B), Relationship between standardized precipitation evapotranspiration index (SPEI) and the plant species richness.
(C), Relationship between precipitation concentration index (PCI) and the plant species richness. (D), Relationship between dominance (Berger-
Parker dominance index) and the plant species richness. The black line represents the overall relationship from linear models, and the colored line
represents the relationship for each grazing intensity (shaded areas indicate 95% confidence intervals). Solid and dashed lines denote significant and
insignificant, respectively. Key; NG, no grazing (green); LG, low grazing intensity (blue); MG, medium grazing intensity (yellow); HG, high grazing
intensity (red).
FIGURE 5

The piecewise structural equation model (pSEM) presents a comprehensive understanding of the impacts of grazing intensity (GI), climate (PCI and
SPEI), and community attributes (Berger-parker and Shoot biomass) on species richness, both directly and indirectly. Negative and positive
relationships are indicated by the red and black arrows, respectively, with significant associations at p< 0.05. The statistical metrics report Fisher’s C
as 10.26, p-value as 0.74, df as 14, and AIC as 38.26. The precipitation concentration index is denoted by PCI, while the standardized precipitation
evapotranspiration index is known as SPEI. Grazing intensity is referred to as GI in the model.
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4.2 Synergistic effects: grazing intensity,
climate change, and community structure
on biodiversity

Themagnitude of community productivity is equally an important

factor driving species richness, with productivity primarily regulated by

grazing intensity and inter-annual variations in wetness. In arid

ecosystems, increased moisture availability, as indicated by higher

SPEI (standardized precipitation evapotranspiration index) values,

typically leads to greater species richness (Currie et al., 2004). Our

research confirms this, as an increase in SPEI may directly provide

more ecological niche opportunities for species coexistence (Smith

et al., 2022). However, an increase in SPEI also increases the shoot

biomass of the community. Generally, under high productivity

conditions, taller and fast-growing plants reduce diversity by

monopolizing light and shading smaller plants (Borer et al., 2014;

Allan, 2022). In our low productivity ecosystem, an increase in shoot

biomass is disadvantageous for species richness when not considering

the positive effect of SPEI (Figure S4). This is because competition

among species increases with annual climate moisture (Smith et al.,

2022). The presence of livestock mitigated the indirect negative impact

of SPEI on species richness caused by an increase in the biomass of

branches. (Figure 5). One explanation for the importance of

productivity is that when herbivores alleviate plant competition,

exclusion, and limitations on species establishment, they may

increase plant diversity in grasslands (Grubb, 1977; Eskelinen and

Virtanen, 2005; Bakker et al., 2006). Therefore, adapting grazing

intensity based on climate moisture may be an effective strategy for

increasing biodiversity in semiarid grassland ecosystems.

The positive effect of Precipitation Concentration Index (PCI) on

plant community species richness is enhanced by an increase

in grazing intensity and is the strongest driving factor. Our

ecosystem exhibits pronounced seasonality, with over 90% of

annual rainfall occurring during the growing season and high

evapotranspiration (Liang et al., 2021). Consequently, PCI may be

crucial for grassland biodiversity since water availability is influenced

not only by precipitation amount but also by precipitation event

concentration (Knapp et al., 2002; Sloat et al., 2018). Our study

demonstrates that a higher concentration of precipitation events

promotes an increase in species richness. This is primarily due to

rain and heat coinciding, such as the highest monthly precipitation

during 2020-2021 occurring in July, the hottest month (peak growing

season). However, we did not find a significant effect of mean annual

precipitation on species richness. This is because monthly

precipitation during the growing season does not correspond to

actual temperature (or evapotranspiration); for instance, in 2015, a

large amount of precipitation occurred in June (early growing season)

when temperatures were not high. Different water-heat periods

throughout the year may result in a mismatch between water

availability and plant development requirements at different growth

stages (Voigt et al., 2003; Suttle et al., 2007; Wang et al., 2020).

Additionally, grazing intensity increases ecological niche space by

reducing community coverage. When climate conditions (water-heat

coinciding) in a year provide an “opportunity window”, more species
Frontiers in Plant Science 08
(annual plants or perennial seedlings) may establish and grow in the

community (Balke et al., 2014; Mortensen et al., 2018). These results

provide the first evidence that the distribution pattern of precipitation

throughout the year determines the effect of livestock grazing on

species richness.

We conclude our discussion with two caveats. Firstly, we failed to

conduct in situ surveys of community species richness and identity

information for eachmonth, which may have led to an overestimation

of the temporal-scale meta-community responses to grazing and

climate. Secondly, our focus was solely on the impact of sheep

grazing on species diversity. However, the impact of different

livestock with varying preferences on species diversity can vary

greatly (Albon et al., 2007; Tóth et al., 2018). Therefore, we suggest

studying a broader range of livestock to investigate how they regulate

species diversity at different time scales. Lastly, considering the

pronounced seasonality of our ecosystem, the driving effect of

precipitation concentration (PCI) on species richness may be

limited. In the context of increasingly frequent future extreme

weather events (Zhou et al., 2023), it is imperative to investigate the

relative driving roles of intra-annual and inter-annual precipitation

variability on species richness across various ecosystems.
5 Conclusion

The global driving mechanisms of plant diversity in grazing

lands are well understood. However, to determine if these spatial

patterns apply at the temporal (annual) scale, a thorough

understanding of annual variation and its influence by grazing

intensity and climate change is necessary. In this study, we focused

on the intra-annual precipitation variation patterns, revealing the

importance of water-thermal synchronization on plant diversity

and elucidating the synergistic effect of grazing intensity on such

impacts. Specifically, species richness increases with rising effective

precipitation (PCI) and is further enhanced with increasing grazing

intensity. Additionally, intra-annual wetness levels (SPEI) improved

species richness but also increased community shoot biomass,

indirectly weakening this promotional effect. The grazing activity

of livestock, however, can alleviate the indirect negative impact of

increased humidity on species richness. Thus, we emphasize that

the absence of herbivores in semiarid areas can also be detrimental

to biodiversity enhancement. In ecosystems with pronounced

seasonality, the impact of intra-annual precipitation variation on

plant diversity is much greater than that of annual mean

precipitation. Future research should focus more on the impact of

precipitation variation on grassland ecosystems to better

understand driving mechanisms under different climate scenarios.
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