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Pine wilt disease (PWD) poses a significant threat to forests due to its high

infectivity and lethality. The absence of an effective treatment underscores the

importance of timely detection and isolation of infected trees for effective

prevention and control. While deep learning techniques combined unmanned

aerial vehicle (UAV) remote sensing images offer promise for accurate

identification of diseased pine trees in their natural environments, they often

demand extensive prior professional knowledge and struggle with efficiency. This

paper proposes a detection model YOLOv5L-s-SimAM-ASFF, which achieves

remarkable precision, maintains a lightweight structure, and facilitates real-time

detection of diseased pine trees in UAV RGB images under natural conditions.

This is achieved through the integration of the ShuffleNetV2 network, a simple

parameter-free attentionmodule known as SimAM, and adaptively spatial feature

fusion (ASFF). The model boasts a mean average precision (mAP) of 95.64% and a

recall rate of 91.28% in detecting pine wilt diseased trees, while operating at an

impressive 95.70 frames per second (FPS). Furthermore, it significantly reduces

model size and parameter count compared to the original YOLOv5-Lite. These

findings indicate that the proposed model YOLOv5L-s-SimAM-ASFF is most

suitable for real-time, high-accuracy, and lightweight detection of PWD-

infected trees. This capability is crucial for precise localization and

quantification of infected trees, thereby providing valuable guidance for

effective management and eradication efforts.
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1 Introduction

Pine wilt disease (PWD) is a disease caused by wood pathogens

carried by the pinewood nematodes. It is characterized by a brief

incubation period, strong infectivity, and the ability to kill pine trees

within just 40 days after infection. The entire pine forests can be

completely destroyed within 3-5 years from the initial outbreak of a

single pine tree. PWD stands out as one of the most dangerous and

destructive diseases affecting forest ecosystems in China and even the

world (Li et al., 2023). Pinewood nematode is native to North America

and is less harmful to native pine plants. However, after invading Asia

and Europe (Kim et al., 2018, 2020; Lim et al., 2022), the PWD has had

disastrous effects on pine trees in countries such as Japan, Korea, China,

Portugal, and Spain (Ohsawa and Akiba, 2014;Wang and Zhang, 2015;

Wang et al., 2022). Since 1982, when PWD was first discovered in

China, the disease has caused the death of hundreds of millions of pine

trees, with an annual average of about 27 million dead trees, making it

the biggest killer of China’s pinewoods (Yang et al., 2014).

However, there is no effective eradication means for PWD, so

timely detection and isolation of diseased pine trees have become

crucial for controlling its spread. Pine trees infected with PWD

dehydrate and eventually die due to leaf stem blockage, causing

their green pine needle-like leaves to discolor (turning yellow, yellow-

brown, or red) and appear lifeless. The above characteristics provide

important auxiliary information for the rapid identification of pine

wilt diseased trees. Currently, the detection of PWD primarily relies

on field investigation by forest protection personnel to collect data on

the specific coordinates and locations of individual diseased pine

trees. This approach is not only inefficient but also hindered by

terrain and landscape challenges, making it difficult to obtain real-

time information of pine wilt diseased trees. Fortunately, with the

development of unmanned aerial vehicle (UAV) technology, high-

definition cameras mounted on UAVs are now capable of capturing

images with centimeter-level resolution. Additionally, when UAVs

capture images of wild forests, human operators have the flexibility to

select sunny weather conditions to photograph the study area,

effectively reducing the mitigating interference from clouds, rain,

and snow. It can quickly collect images of areas that cannot be

reached by humans on a large scale (Blackman and Yuan, 2020).

UAVs have been increasingly used for monitoring PWD (Yu et al.,

2021; Sun et al., 2022). Kim and Deng et al. (Kim et al., 2017; Deng et

al., 2020) used UAV remote sensing technology to identify and locate

pine wilt diseased tree and found that the disease is not related to the

species of pine trees. Liu Xialing et al. (Liu et al., 2018). utilized a

multi-template recognition method to identify infected pine trees

based on drone images at different stages of PWD. Lee and Zhang et

al. (Lee et al., 2019; Zhang et al., 2022b) combined UAV remote

sensing technology with artificial neural networks (ANN) and

support vector machines (SVM) to identify pine wilt diseased trees

in complex terrain. Tao Huan et al. (Tao et al., 2019). acquired RGB

images by UAV and used the HSV threshold method to identify

discolored pine wilt diseased trees. Qin et al. (Qin et al., 2021).

proposed a method to identify PWD based on UAV multispectral

remote sensing images and a new network called SCANet, which

retains spatial and contextual information and reduces the

occurrences of false detections and missed detections. Xu Xinluo
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et al. (Xu et al., 2020). utilized convolutional neural networks (CNN)

to monitor the research area of PWD based on UAV hyperspectral

data, verifying the high accuracy of target detection in the UAV

images of PWD.

The aforementioned studies extensively utilized UAVs to

acquire multispectral, hyperspectral, RGB images, and other

pertinent data from the designated study areas. These studies

employed diverse machine learning algorithms to precisely detect

PWDs. The efficient coverage of vast areas by UAVs, coupled with

the application of sophisticated algorithms and models, significantly

enhanced the accuracy and reliability of disease identification.

In recent years, deep learning (DL) algorithms have been widely

applied in pattern recognition and have achieved great successes

(Jermsittiparsert et al., 2020). Compared with traditional machine

learning methods, DLs exhibit remarkable superiority in feature

extraction. They can automatically learn and extract high-level,

abstract features from raw data without requiring extensive manual

feature engineering. This automated feature extraction capability

significantly simplifies the data preprocessing workflow and reduces

the reliance on expert feature design. Additionally, deep learning

models, through complex combinations and transformations of

multilayer neural networks, can capture deeper relationships and

patterns within the data. This allows deep learning algorithms to

excel in complex tasks such as image recognition, speech recognition,

and natural language processing, achieving numerous breakthrough

results. Therefore, DL networks, including YOLO (You Only Look

Once), Faster R-CNN (Region-based Convolutional Neural

Networks), and SSD (Single Shot Multibox Detector), have

increasingly found their applications in disease recognition and

target classification (Wang et al., 2021; Zhang et al., 2021; Xie and

Hu, 2022; Xu et al., 2023). The combination of UAV (Unmanned

Aerial Vehicle) remote sensing technology with these DL networks has

emerged as a prominent trend in monitoring PWD (Pine Wilt

Disease), yielding significant progress and achievements. For

instance, Hu et al. (Hu et al., 2022). effectively integrated

DDYOLOv5 with the ResNet50 network, introducing efficient

channel attention and hybrid dilated convolution modules. This

approach achieved remarkable results in detecting and classifying

PWD in UAV remote sensing images. Similarly, Zhou et al. (Zhou

et al., 2022). proposed a Multi-band Image Fusion Infection Pine

Detection (MFTD) detector, which accurately pinpointed PWD using

a combination of UAV visible light and multispectral images,

particularly in its early stages. Specifically, the average precision

values (AP@50) were 87.2%, 93.5%, and 84.8% for early, middle,

and late stages on the KP dataset and 81.2%, 92.9%, and 86.2% on the

CP dataset. Although MFTD achieved a high average precision in

detecting PWD, the model’s parameter count was 413.4MB with an

FPS of 35.6. However, despite these advancements, practical

applications still face several challenges. One such challenge is the

relatively large size of these models, which can hinder their

deployment in resource-constrained environments. Additionally, as

the accuracy of these networks improves, there is often a trade-off with

real-time capabilities, as model complexity increases. This highlights

the need for further research in developing more efficient and

lightweight models that can maintain high accuracy while

preserving real-time performance.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1302361
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Du et al. 10.3389/fpls.2024.1302361
To enhance the utility of DL networks and UAV remote sensing

technology in monitoring and managing PWD and similar diseases,

it is crucial to address the aforementioned challenges.

When utilizing UAVs to capture images for the identification of

trees infected with PWD, the preferred approach is to execute the

model directly on a mobile terminal device, such as a tablet

computer. This facilitates prompt navigation to suspected infected

trees for on-site verification and remedial action. However,

compared to PCs and servers, mobile devices typically possess

limited computing and storage capabilities. Among the remote

sensing devices mounted on UAVs, optical RGB cameras offer a

cost-effective solution for data acquisition while facilitating easier

processing and analysis on mobile devices when compared to

multispectral cameras or radar sensors. Simultaneously, we need

to better balance performance between accuracy, efficiency, and

real-time capabilit ies when developing algorithms for

predicting PWD.

This study aims to find a lightweight and high-precision DL

algorithm and attempts to improve it to be more suitable for use on

RGB images captured by UAVs to identify PWD-infected trees.

Specifically, leveraging RGB images of forests obtained via UAVs,

we conducted a comparative analysis of Faster R-CNN, SSD, and

YOLO algorithms, ultimately selecting a lightweight and efficient

algorithm as our base model. Subsequently, we refined its backbone

network, augmented target feature representation through the

introduction of a spatial attention mechanism, and enhanced

both the recognition accuracy of PWD-infected trees and the

model’s robustness against various disturbances by incorporating

multi-scale feature fusion and spatial context enhancement through

adaptively spatial feature fusion.
Frontiers in Plant Science 03
2 Materials and methods

2.1 Study area

The study area (Figure 1), Jinbei Street, is in Lin’an District,

Hangzhou City, Zhejiang Province, China (118°51’~119°52’E, 29°

56’~30°23’N). Lin’an was designated as a PWD epidemic area by the

former State Forestry Administration in 2008. Admittedly, through

more than ten years of prevention and control of PWD, Lin’an

District has preserved the important landscapes of pine forests.

However, there are still some problems such as insufficient attention

and low accuracy of the census in some towns and streets, resulting

in the serious PWD in some areas. Jinbei Street is located in the

eastern of Lin’an District, with an administrative area of 81.54

square kilometers (122,310 mu) and with Pinus massoniana as the

main tree species of Pine. There are 689 sub-compartments of pine,

with an area of 2,343.3 hectares proportioning 28.28% of the

administrative area. Pinewoods resources play a very important

role in the construction of ecological environment as well as

economic development in this area. Due to the rapid spread of

PWDs, Jinbei Street has become one of the serious epidemic areas in

Lin’an District.
2.2 Data collection

The UAV remote sensing data was captured by the DJI Genie 4

PRO RTK multi-rotor UAV (Da Jiang Innovations, Inc., Shenzhen,

Guangdong, China) equipped with an FC6310R aerial camera. The

technical parameters of the equipment are shown in Table 1.
FIGURE 1

Location of the study area (Jinbei Street).
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The PWD occurs annually from May to October. The

nematodes enter the pine tree through wounds and reproduce in

large numbers. The symptoms are evident in August and September

and ultimately cause a severe infection of the tree, which wilts and

dies around October. In order to effectively verify the remote

sensing image identification results, the distribution of pine wilt

diseased trees in the study area was roughly identified through the

analysis of Pléiades satellite images in October. Furthermore,

verification sampling areas were set up in Shangdong village,

Jinma village, and Longma village respectively (as shown in

Figure 2). Subsequently, within one week after acquiring satellite

images, UAV images of the affected area were captured, providing

crucial baseline data for verifying the accurate identification of pine

wilt diseased trees based on the DL algorithm.

To better adapt to the terrain and vegetation characteristics of

the target area, the parallax overlap being about 70%, the heading

overlap being 80% and a fixed flying altitude of 300 meters were

presented by the Pix4D Mapper software (Pix4D Company,

Switzerland). The images were captured between 12:00 and 14:00

when sunlight is sufficient and it can effectively avoid interference

by oblique sunlight. Eventually, the images were geometrically

corrected and stitched together by DJI Terra software (Da Jiang
Frontiers in Plant Science 04
Innovations, Inc., Shenzhen, Guangdong, China) to produce an

orthophoto map of the area.
2.3 Dataset production

The orthophoto map was further segmented into 999 RGB images

with a size of 5472*3648 pixels. However, to facilitate processing on

resource-constrained devices like mobile terminal devices, these images

were further resized to 1824x1824 pixels using the batch image

cropping tool IrfanView (available at https://www.irfanview.net,

version 4.62). Additionally, images lacking PWD-infected pine trees

or those of poor quality (blurred images where even experienced

professionals struggle to visually identify PWD infection) were

discarded, resulting in a refined dataset of 1041 images.

Subsequently, guided by the experts of forest disease, our study

made use of LabelImg, a python-based annotation tool retrieved

from https://github.com/heartexlabs/labelImg on April 16, 2023, to

systematically annotate the image datasets in compliance with the

Pascal VOC data label storage format. The dataset was then divided

at random into a training set and a testing set, following a 9:1 ratio.

After that, we employed Mosaic Data Augmentation from

YOLOv5 to enhance the training set data. This technique merges

four distinct images into one composite image, introducing

randomness in scaling, cropping, and image arrangement. This

approach significantly enhances the diversity of object sizes,

backgrounds, and perspectives within the dataset. By leveraging

Mosaic Data Augmentation, YOLOv5 is able to effectively expand

its training dataset, ultimately leading to improved model

generalization and overall performance. Figure 3 visually

illustrates training samples after data augmentation, where “0”

denotes instances of “PWD-infected tree”.
FIGURE 2

Accuracy verification sampling area.
TABLE 1 DJI Genie 4 PRO RTK multi-rotor UAV and technical
parameters of aerial camera.

Parameter Name Parameter Value

Name of UAV DJI Genie 4 PRO RTK

Aerial Camera FC6310R

Sensor Size 13.2mm×8.8mm

Lens focal length 8.8mm
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Furthermore, to achieve a more comprehensive evaluation of

the generalization ability, this study employed a 10-fold cross-

validation method to evaluate the accuracy of the model.
2.4 Experimental environment
and parameters

The experimental environment was constructed on the AutoDL

cloud server, leveraging an Intel Xeon processor (Skylake, IBRS)

with a 10-core CPU and 56 GB RAM. Simultaneously. The software

configuration comprised of Ubuntu 20.04 as the operating system,

Python 3.8 as the development language, and PyTorch 1.10.0 as the

development framework. During the training, the input image size

was set to 640×640 pixels, with a freeze training strategy. Initially,

the backbone network parameters were frozen for 100 epochs, with

a batch size of 8 (simultaneous training of 8 images per batch) and a

learning rate of 0.001. Subsequently, the unfreezing of network
Frontiers in Plant Science 05
parameters were set as: epoch is 200, batch size is 4, and the learning

rate is 0.0001. This freeze-unfreeze approach was expected to

accelerate network training and potentially improve the

generalization ability of the model.
2.5 Improved YOLOv5Lite-based
detection method

In this paper, YOLOv5-Lite (as shown in Figure 4) was utilized

as the fundamental algorithm for detecting PWD-infected trees.

Compared with YOLOv5, the YOLOv5-Lite introduces innovative

techniques to enhance the detection speed and reduce model

parameters count, thus fulfilling the dual objectives of higher

detection accuracy and stronger real-time performance.

PWD-infected pine trees are often obscured in various complex

backgrounds, covering by other trees or only appearing subtle

targets. In standard YOLOv5-Lite implementations, small target
FIGURE 4

YOLOv5-Lite network structure.
FIGURE 3

Training samples after data augmentation.
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features tend to diminish as the network depth increases during

detection. Consequently, the detailed features of these small targets

gradually disappearing in the subsequent network propagation,

causing missed or false detection. Moreover, this study aims to

apply the detection model to mobile devices for rapid, real-time

identification. To address these challenges, we enhanced the

YOLOv5-Lite by refining its model size and parameter number

for increased lightness. In addition, we improved the feature

extraction and fusion capability of the neck network to increase

accurate. Specifically, our proposed algorithm (as shown in

Figure 5) replaced the original CSPLocknet53 backbone with the

light-weight ShuffleNetV2. It also integrated the SimAM attention

mechanism into the neck network path aggregation network

(PANet), and appended an adaptively spatial feature fusion

(ASFF) module after PANet for improving performance.
2.5.1 Lighten backbone network
Due to the computational complexity and extensive parameters

inherent in the CSPDarknet53 backbone of traditional YOLOv5-

Lite, it is not suitable for scenarios in resource-constrained

environments such as mobile devices.

ShuffleNetV2 (as shown in Figure 6) is a lightweight neural

network that mainly uses Channel Shuffle and Pointwise Group

Convolution technology to greatly reduce the computation and

parameter amount of the network. By integrating ShuffleNetV2 into

YOLOv5-Lite, it can significantly lighten the model, thereby

accelerating its training without significantly decreasing the

model performance.

In the ShuffleNet-1 unit of the ShuffleNetV2 (as shown in

Figure 6), the input feature map is first divided into two

branches, each with half the channels. The left branch preserves

the feature map intact through identity mapping, while the right

branch goes through three convolutions including two 1×1 ordinary

convolutions and a 3×3 depthwise convolution (DWConv), both

using the same input and output channel numbers. Following the
Frontiers in Plant Science 06
convolutions, the branches are reunited through concatenation

(Concat), and Channel Shuffle is employed to facilitate cross-

group information exchange, ensuring thorough channel

integration. Contrastingly, in the ShuffleNet-2 unit, the feature

map is directly distributed across two branches, both utilizing 3×3

DWConv with a step of 2. This configuration effectively reduce the

height (H) and width (W) of the feature map, thereby reducing the

amount of computational overhead. The outputs from branches are

then concatenated by the Concat operation, doubling the channel

count while without changing the network parameter amount

significantly. Finally, channel shuffling is utilized to exchange

information across channels.

In the traditional YOLOv5-Lite backbone network, direct point-

to-point convolution between the image and the filter results in a

high computational complexity. However, The DWConv introduce

multiple convolution kernels for multiple input channels to reduce

the number of the parameters which is calculated by (Equation 1).

C = DK �M � N � DF (1)

C0 = DK �M � DF +M � N � DF (2)

C0

C
=

1
N

+
1
DK

< 1 (3)

Where, DK denotes the size of the convolution kernel, M is the

number of input channels, N is the number of convolution kernels,

and DF is the size of the input image. The DWConv decomposes a

complete convolution block into two convolution blocks by first

using channel-by-channel convolution on M input channels, and

then adjusting the number of output channels by pointwise

convolution based on N 1×1 convolution kernels. The resulting

parameter count (C′) is determined by (Equation 2). By comparing

the relationship between C and C′ [as shown in (Equation 3)], it was

found that the improved network can significantly reduce the

number of parameters, boosting processing efficiency.
FIGURE 5

Improved YOLOv5-Lite network structure.
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However, excessive depth in the network introduced by depth-

separable convolution can lead to gradient dispersion, impeding

model convergence. Thereby, it is necessary to introduce the

residual structures by directly backpropagation of errors from the

output layer to the input layer to avoid gradient disappearance.

2.5.2 Enhanced feature extraction
YOLOv5-Lite treats the target detection process as a regression

task. However, it does not distinguish well between the foreground

and background regions in the input image, potentially leading to

missed or incorrect detections. This challenge arises due to the

limited number of occupied pixels by the foreground target and the

presence of a complex background, which can obscure crucial

information about the target. To address this issue, this study

enhances the feature representation of the target by introducing

an attention mechanism. The attention mechanism can be broadly
Frontiers in Plant Science 07
categorized into two types: spatial attention mechanism and

channel attention mechanism (as shown in Figure 7) (Mo

et al., 2023).

The spatial attention mechanism focuses on different spatial

locations in the feature map. To detect target, the feature map can

be viewed as a matrix consisting of a series of feature vectors

extracted from the input image. The spatial attention mechanism

adaptively adjusts the weights of the features at different locations

by calculating the importance of each spatial location to enhance

the attention to the critical regions of the target object. On the other

hand, the channel attention mechanism considers different

channels in the feature map, representing various feature

dimensions. It adaptively weights these channels based on their

importance, thereby enhancing attention to significant features of

the target object. These two attention mechanisms correspond

exactly to feature-based attention and spatial-based attention in
A B

FIGURE 7

(A) Channel Attention mechanism and (B) Spatial Attention mechanism.
FIGURE 6

Network structure of ShufflenetV2.
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the human brain, offering a biologically inspired approach to

improving target detection accuracy.

Most attention mechanism modules inherit the principle of

action into each block to improve the output from previous layers.

This process typically generates one- or two-dimensional weights,

either along the channel dimension or spatial dimension, treating

neurons uniformly in each channel or spatial location. The channel

attention mechanism is a 1-D attention mechanism that

distinguishes between channels while treating all locations

equally, thereby enhancing the feature representation of the

occluded target. Conversely, the spatial attention mechanism is a

2-D method that emphasizes different locations of the feature map

that are relevant to the current task, while considering all

channels equally.

In human brain, spatial attention and channel attention always

coexist to jointly facilitate information selection during visual

processing. The existing attention mechanisms, such as CBAM

and SimAM, combine spatial attention mechanisms and channel

attention mechanisms in parallel or serial fashion.

In neuroscience, neurons carrying rich information often

exhibit firing patterns that are distinct from neighboring neurons.

To differentiate the importance of these neurons and achieve

effective attention, an energy function is employed. This function

determines the linear separability between the target neuron and all

other neurons in the same channel (Lei et al., 2023). The final

energy function is presented in (Equation 4).

et(wt , bt , y, xi) =
1

M − 1 o
M−1

i=1
( − 1 − (wtxi + bt))

2 + (1 − (wtt

+ bt))
2 + g w2

t (4)

where t denotes calibrated neuron. The weight and bias at

neuron transformation in (Equation 4) are shown in (Equation 5)

and (Equation 6).

wt =  −
2(t − mt)

(t − mt)
2 + 2d 2

t + 2g
(5)

bt =  −
1
2
(t + mt)wt (6)

where m and d 2
t are the mean and variance of all neurons except

t. m is shown in (Equation 7) and d 2
t is shown in (Equation 8).

mt =
1

M − 1 o
M−1

i=1
xi (7)

d 2
t =

1
M − 1 o

M−1

i=1
(xi − ui)

2 (8)

Given the assumption that all pixels in a single channel follow

the same distribution, we can calculate the mean and variance once

and reuse them for all neurons on that channel. This approach

significantly reduces computation costs by avoiding the need to

iteratively calculate m and s for each position. Therefore, the

minimum energy can be obtained by (Equation 9):
Frontiers in Plant Science 08
e*t =
4(d 2 + g )

(t − e)2 + 2d 2 + 2g
(9)

The (Equation 9) indicates that a lower the energy value

corresponds to a greater difference between neuron t and its

neighboring neurons, signifying higher the importance. Moreover,

the input features are further enhanced by (Equation 10):

~X = sigmoid(
1
E
)⊙X (10)

where X denotes the input feature vector, E represents the

energy value of each neuron. The enhanced feature vector is

obtained by applying the Sigmoid function to activate E of

each neuron.

The attention mechanism is a plug-and-play module that can

theoretically be integrated after any feature layer, such as the

backbone network or an enhanced feature extraction network.

However, in the context of transfer learning, if the attention

mechanism module is incorporated into the backbone network,

the pre-training weights of the network may become unavailable.

Therefore, in our proposed algorithm, the attention mechanism is

applied specifically to the enhanced feature extraction network.

2.5.3 Enhanced feature fusion
Since PANet in YOLOv5-Lite doesn’t fuse multi-scale features,

it struggles to fully leverage both low-level details and high-level

semantic for target identification. For diseased pine tree targets with

complex backgrounds and even serious occlusion, some low-level

information tends to weaken the information representation

capability of the upper-level features in the bottom-up

transmission process. To solve this problem, ASFF (as shown in

Figure 8) structure is introduced after PANet. Therefore, the three

feature outputs of PANet are fused by adaptive learning to make full

u se o f low- l eve l de ta i l in format ion and high- l eve l

semantic information.

ASFF is a network based on adaptive spatial feature fusion. It

takes the Level1, Level2, and Level3 layer feature maps output from

the PANet network as input. After the feature fusion operations of

ASFF-1, ASFF-2, and ASFF-3 are performed respectively, the fused

feature maps of each layer are finally predicted as output. During

fusion, all layers are adjusted to have the same channel size and

number, and corresponding weight coefficients are calculated.

Finally, the feature map is multiplied by the weight coefficient of

each layer and the sum of the multiplication results is calculated to

achieve feature fusion.

Taking ASFF-3 as an example, the feature fusion process is

expressed as (Equation 11).

y3 = a3 · X1→3 + b3 · X2→3 + g 3 · X3→3 (11)

where y3 is level-3 of the feature map; X1→3, X2→3, and X3→3

denote the feature maps output when each layer feature map is

adjusted to the same size and number of channels as the level-3

feature map, respectively; a3, b3, and g3 are the weight coefficients
learned by the three feature maps of X1→3, X2→3, and X3→3, when

feature fusion is performed at the level-3. The specific procedure is
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as follows: Firstly, perform a 1×1 convolutional operation to the

three feature maps X1→3, X2→3, and X3→3; Secondly, perform

channel cascading operations; Thirdly, use SoftMax to calculate

the weight values which are within the range of [0,1] and satisfying

the constraint of a3 + b3 + g3 = 1. Finally, the three feature maps

are multiplied by the weight coefficients for each layer and the sum

of the multiplication results is calculated to achieve feature fusion.

When adjusting the size and number of channels for each layer,

the adjustment methods are different for feature fusion operations

of ASFF-1, ASFF-2, and ASFF-3. As shown in Figure 8, the

adjustment methods are down-sampling operation for ASFF-1,

while up-sampling operation for ASFF-3.

Due to the different sizes of the target images in the dataset in this

study, they should be resized to a uniform size in the input to the

model. However, the resizing may lead to the targets smaller, which is

more difficult to identify the foreground target from the complex

background. Fortunately, ASFF enhances the feature information of

smaller targets, thereby improving detection accuracy.
2.6 Evaluation index

We chose a 10-fold cross-validation method to evaluate the

accuracy of the model. There are six evaluation indexes, i.e., three

accuracy evaluation indexes of mean Average Precision (mAP),

Recall, and F1, and three indexes to evaluate the lightweighting

effect, that is, Frames Per Second (FPS), model size, and number of

model parameters. mAP is one of the most important metrics in

target detection to evaluate the detection accuracy performance of the

model, its value is usually calculated by an Intersection over Union

(IoU) with a threshold of 0.5. Recall represents the proportion of

positive samples correctly predicted to all true positive samples, and

F1 is the total average of model accuracy and recall, which is used to

evaluate the effectiveness of the model. In the three indexes to

evaluate the lightweighting effect, the larger the frames per second

(FPS) transmission, the more images can be detected per second and

the smoother the display. The smaller the model size, the better the

lightweighting of the model. Similarly, the smaller the number of

parameters, the better the lightweighting of the model. Specifically,
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the indicators are determined by Equations 12–16.

IOU =
A ∩  B
A ∪  B

(12)

precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =  2 �  
precision �  Recall
precision  +  Recall

(15)

mAP  =  AP  =  
Z 1

0
P(R)dR (16)

Where, A and B are the measured and predicted values,

respectively. “Positive” denotes a prediction that the pine trees are

infected with PWD, while “negative” denotes a prediction that the

pine trees are not infected with PWD. A true positive (TP) means

the pine tree is actually infected with PWD and the prediction is

also positive. Conversely, a false positive (FP) means the tree is not

infected with PWD, but the prediction is positive. False negative

(FN) is defined similarly for the case where the prediction is

negative and the tree has not infected with PWD in fact.
3 Results

The performance metrics, including mAP, Recall, F1, FPS, Model

Size, and Number of model parameters, were generated by models:

Faster R-CNN, SSD, YOLOv5Lite, and YOLOv7, as well as the

improved networks based on YOLOv5Lite. These results are

presented in Table 2. In this study, YOLOv5L represented the

original YOLOv5-Lite algorithm, YOLOv5L-s represented an

enhanced version where the backbone network, CSPDarknet53, was

substituted with the lightweight network ShuffleNetV2. YOLOv5L-s-

SimAM further improved upon YOLOv5L-s by introducing the

SimAM module to the last convolutional layer of the feature
FIGURE 8

Network structure of ASFF.
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extraction network. Similarly, YOLOv5L-s-CBAM incorporated

CBAM instead of SimAM. Finally, YOLOv5L-s-SimAM-ASFF

augmented YOLOv5L-s-SimAM by adding the ASFF module to the

end of PANet. Due to its optimal performance indicators, the

YOLOv5L-s-SimAM-ASFF was identified as the ultimate improved

algorithm proposed in this study.
3.1 Compare the performance metrics of
initial models

To intuitively compare the accuracy evaluation indexes for the

four initial models of Faster R-CNN, SSD, YOLOv7, and YOLOv5L,

a figure is drawn to display the heights of the vertical cylindrical

bodies (as shown in Figure 9). The YOLO series, as more advanced

models, outperform SSD and Faster R-CNN in terms of mAP,

Recall, and F1 metrics, demonstrating superior performance. While

the FPS values of SSD and YOLOv7 are comparable, although
Frontiers in Plant Science 10
YOLOv7 achieves a higher mAP, it also has a larger parameter

count. In terms of lightweight evaluation metrics, YOLOv5L shows

more comprehensive performance metrics compared to SSD

and YOLOv7.
3.2 Lighten backbone network of YOLOv5L

The results indicate that although YOLOv5L-s slightly

underperforms compared to YOLOv5L in terms of accuracy

performance, the most significant improvement lies in the

model’s lightweight characteristics (as shown in Figure 10).

Specifically, compared to YOLOv5L, the FPS of YOLOv5L-s is

improved by 2.76 times approximately, jumping from 36.62 to

101.30. Additionally, the model size of YOLOv5L-s is dropped to

12.3 MB, which is equivalent to 29% of the original YOLOv5L.

Furthermore, the number of parameters of YOLOv5L-s is reduced

to 1542966, which is equivalent to 29.1% of the YOLOv5L model.
FIGURE 9

Comparison of accuracy evaluation indexes of initial models.
TABLE 2 The performance metrics of different models.

Models mAP(%) Recall(%) F1(%) FPS Size(MB) Parameters p-value

Faster R-CNN 87.45 79.96 83.49 10.56 108 137098724 1.31e-51

SSD 90.76 83.31 86.93 24.11 90.6 26285486 2.82e-24

YOLOv7 94.16 91.2 89.41 26.87 142.3 87620243 2.55e-24

YOLOv5L 94.08 86.75 88.83 36.62 41.3 5304534 2.84e-24

YOLOv5L-s 93.6 86.58 88.6 101.30 12.3 1542966 1.77e-20

YOLOv5L-s-CBAM 94.65 89.28 90.15 97.23 13.2 1564439 9.21e-17

YOLOv5L-s-SimAM 94.98 89.66 90.21 101.30 12.3 1542966 1.61e-13

YOLOv5L-s-SimAM-ASFF 95.64 91.28 91.1 95.70 17.9 2234484 1.53e-21
fro
Bold represents the optimal values. mAP, Recall, F1, and FPS are bolded for maximum values. Size, Parameters, and p-value are bolded for minimum values.
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3.3 Enhanced feature extraction of
YOLOv5L-s

As shown in Figure 11, the mAP has an increasement of 1.38%

by introducing the SimAM to the YOLOv5L-s, and a boost of 1.05%

by introducing the CBAM to the YOLOv5L-s, respectively. The

other two accuracy evaluation indexes, Recall and F1 score, also

show improvement. In terms of model lightweight metrics,

YOLOv5L-s-SimAM outperforms YOLOv5L-s-CBAM in FPS,

model size, and number of parameters. Notably, YOLOv5L-s-

SimAM demonstrates some improvement in accuracy evaluation

metrics, including mAP, Recall, and F1, when compared to

YOLOv5L-s, without any compromise in its lightweight

characteristics (as shown in Table 2). The results indicate that the
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SimAM module contributes to enhancing the overall performance

of the model to a certain degree.
3.4 Enhanced feature fusion of YOLOv5L-
s-SimAM

The addition of the ASFF module after the PANet in YOLOv5L-

s-SimAM further enhances feature fusion across different layers. As

shown in Table 2, YOLOv5L-s-SimAM-ASFF achieves a

remarkable mAP of 95.64% (the highest among all networks),

Recall of 91.28%, and F1 score of 91.1% (also the best).

Obviously, the integration of ASFF has significantly improved the

detection accuracy. Although, YOLOv5L-s-SimAM-ASFF exhibits
FIGURE 10

Evaluation index of different initial model accuracy.
FIGURE 11

Comparison of accuracy evaluation indexes of YOLOv5L-s, YOLOv5L-s-CBAM and YOLOv5L-s-SimAM.
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slightly inferior FPS, model size, and number of model parameters

compared to YOLOv5L-s-SimAM in terms of model lightweighting,

it is still significantly better than ones of the original YOLOv5L

model. Comprehensively, YOLOv5L-s-SimAM-ASFF emerges as

the optimal model.
Frontiers in Plant Science 12
In this study, we utilized UAV images (captured by Unmanned

Aerial Vehicle) with multi-resolutions and background

complexities to predict pine wilt diseased trees. This approach

aims to verify the detection ability of the four improved models,

and partial prediction results are shown in Figure 12.
A

B

D

E

C

FIGURE 12

Labeling images and comparison of detection performance of the four improved models. (A) stands for Label image, (B) stands for detection result
by YOLOv5L-s, (C) stands for detection result by YOLOv5L-s-CBAM, (D) stands for detection result by YOLOv5L-s-SimAM, (E) stands for detection
result by YOLOv5L-s-SimAM-ASFF. Where, the left images show scenes with larger targets of pine wilt diseased trees and less background
interference, the middle images indicate scenes with smaller targets of pine wilt diseased trees and more background interference, and the right
images show scenes in which the targets of pine wilt diseased trees greatly covered by other tree species and with more complex background
interference. The boxes denote the detected infected trees.
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The detection results gradually improve from sub-figure (b) to

(e). In which, the YOLOv5L-s-SimAM-ASFF demonstrates the best

overall performance, especially in complex backgrounds, it

effectively improves the problem of missing detection of

small targets.
4 Discussion

Among the various detection models involved in this study, the

Faster R-CNN is a two-stage network, whereas SSD and YOLO are

one-stage networks. Generally, one-stage networks are structurally

simpler and faster compared to the two-stage networks, making

them ideal for real-time applications (Srivastava et al., 2021). They

complete object detection through a single forward pass, enabling

end-to-end training, and have certain advantages in detecting small

objects. Usually, the detection of pine wilt disease-infected trees

usually requires processing by investigators as soon as they obtain

images from UAVs in the field, which demands high real-time

performance. Therefore, using a one-stage network is more suitable

for detecting PWD-infected trees.

Furthermore, an intriguing finding emerged: the performance

of Yolov7 is slightly better than that of Yolov5L. This outcome

could be attributed to the inherent complexity of YOLOv7 model,

necessitating a more extensive dataset for adequate training and

optimization. Conversely, YOLOv5L’s simpler structure facilitated

better performance within the confines of a limited dataset, owing

to its reduced set of parameters and features to learn. Additionally,

based on the original YOLOv5-Lite, a serios of improved detection

models with higher-accuracy, faster, or better lightweighting were

developed. The improvements were implemented by three

approaches: lightening the backbone network, enhancing the

feature extraction, and optimizing the feature fusion.

Subsequently, the improved models were tested under multiple

scenarios with multi-resolutions and varying complex degrees of

background. Ultimately, by introducing ShuffleNetV2, SimAM

attention mechanism and ASFF module to the original YOLOv5-
Frontiers in Plant Science 13
Lite algorithm, the YOLOv5L-s-SimAM-ASFF demonstrated the

best overall performance, especially in complex backgrounds.

However, despite YOLOv5L-s-SimAM-ASFF’s outstanding

performance during testing, there were still shortcomings.

Figure 13 illustrates instances where trees were either not

identified or incorrectly identified. Upon closer examination of

Figure 13, we observed that the correctly annotated portions

encompassed large in areas with backgrounds, including trees of

various colors such as green, reddish-brown, light reddish-brown,

and grayish-white. The primary reasons for the missed

identifications were the subtlety of PWD features and significant

interference from the surrounding environment. While the

integration of ASFF enhanced the model’s capacity to detect

smaller targets, it occasionally led to incorrect identifications. We

suspect that this could be due to an imbalance in the number of

training samples, resulting in a model that may not have been fully

trained to recognize certain features or classes accurately. Moving

forward, we plan to address these limitations by exploring strategies

to balance the training dataset and further refine the model’s

detection capabilities.

To embed the model into mobile devices in the future, it is

crucial to strike a balance between lightness, accuracy, and speed.

Our findings showed that by swapping YOLOv5L’s CSPDarknet53

backbone with ShuffleNetV2, we achieve significantly improvement

in FPS, model size reduction, and parameter optimization.

Notably, the integration of ShuffleNetV2’s channel shuffle

operation boosts the model’s feature representation, leading to an

increase in mAP. Specifically, YOLOv5L-s, when compared to its

predecessor YOLOv5L, experiences a significant jump in FPS from

36.62 to 101.30, which helps to satisfy the real-time detection

requirements. Furthermore, YOLOv5L-s exhibits a substantial

reduction in model parameters, dropping from 5304534 to just

1542966. The model size is also reduced to 12.3 MB from 41.3MB.

When compared to other studies, such as the research by Huang

et al (Huang et al., 2021), which based on the improved YOLOv4

with a model size of 44.2 MB for pine wilt diseased trees

identification, YOLOv5L-s emerges as a more lightweight.
A B C

FIGURE 13

The cases of detecting errors. (A) stands for Label image, (B) stands for detection result by YOLOv5L-s-SimAM-ASFF, (C) stands for detection error
case. Green boxes and fonts indicate the correct annotation. Red boxes and fonts indicate the result recognized by YOLOv5L-s-SimAM-ASFF.
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Compared to Zhang et al. (Zhang et al., 2022a) who utilized the

improved DenseNet to detect pine wilt diseased trees, YOLOv5L-s

shows slightly lower accuracy, but it’s model size and number of

model parameters are much smaller. The reduction of model size

and number of model parameters has great significance to make the

model more adaptable to low configuration running environments

and can be more easily deployed on mobile devices in the future.

Moreover, further improvements of the detection accuracy of

the model are keep going by introducing the attention mechanism

module. The experimental results indicate that the YOLOv5L-s-

CBAM and YOLOv5L-s-SimAM perform better than YOLOv5L-s

by introducing the attention mechanism modules of CBAM or

SimAM. These attention mechanisms enable the network to capture

finer target-related details, thereby improving the model’s ability to

perceive information. Qin et al (Qin et al., 2023). achieved high

accuracy in detecting pine wilt diseased trees based on improved

YOLOv5 combined with attention mechanisms such as CBAM.

However, SimAM proves to be a more viable option in resource-

constrained settings due to its smaller model size and

fewer parameters.

Leveraging the strengths of YOLOv5L-s-SimAM, this study

further improves the detection accuracy of the model by

incorporating ASFF. This addition effectively reduce missed

detections, particularly for small targets. In YOLOv5L-s-SimAM,

after inputting images into the three feature layers of PANet, large

targets are detected in the higher layers and small targets are

detected in the lower layers. During the detection, the layer-to-

layer interaction exists only for up-sampling and down-sampling

operations so that many of the higher and lower layer features have

not been utilized. In fact, large targets in images require larger

perceptual fields and higher-level semantic features, while small

targets require fine-grained features in low-level features to be

discriminated. Fortunately, the ASFF can fuse features from

different layers together by adaptively learning the weight

coefficients of the mapping fusion of feature layers at each scale

and filter the features of other layers, retaining only the useful

information for that layer. This greatly enriches the model’s ability

to perceive high-level semantic information and underlying detailed

information of diseased pine trees. Although the model size and

number of model parameters are slightly larger after the

introduction of the ASFF, the detection accuracy of the model is

improved significantly. As a result, the YOLOv5L-s-SimAM-ASFF

emerges as the optimal model, especially adept at detecting small

targets within complex backgrounds.

Owing to having both top-down and bottom-up structures,

PANet network does not make better use of the semantic

information of high-level features and the detailed information of

low-level features. The current implementation of ASFF at the end

of PANet may not fully harness the potential of high-level and low-

level features. Further research could explore the strategic

placement of ASFF within the PANet structure to maximize

information utilization. Additionally, experiments with attention

mechanisms integrated into the ShuffleNetV2 backbone could

further bolster the model’s feature extraction and overall accuracy.
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5 Conclusions

Based on our study, we propose the YOLOv5L-s-SimAM-ASFF,

which is a lightweight and accurate detection model for PWD-

infected trees. By combining ShuffleNetV2 as the backbone

network, SimAM attention mechanism, and ASFF for multi-scale

feature fusion, our model effectively improves detection accuracy

while reducing computational overhead. Our experimental results

show that YOLOv5L-s-SimAM-ASFF achieves optimal

performance with a mAP of 95.64%, Recall of 91.28%, F1 score of

91.1%, and FPS of 95.70. These findings suggest that our model is

highly suitable for real-time, high-accuracy detection of PWD-

infected trees, providing valuable guidance for the identification

and management of infected trees.
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