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Melatonin delayed senescence
by modulating the contents of
plant signalling molecules in
postharvest okras
Liyu Shi, Yutong Chen, Wanqi Dong, Saisai Li , Wei Chen,
Zhenfeng Yang and Shifeng Cao*

College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
Okra has been widely cultivated worldwide. Consumers appreciate its nutritional

value and delicious taste. However, okra is very perishable after harvest because

of rapid senescence and high susceptibility to mechanical injuries, which limits its

storage life and reduces consumer acceptance. This study examined the

influence of melatonin treatment on senescence process and endogenous

plant signalling molecules in postharvest okras. The results indicated that

melatonin treatment delayed senescence by increasing the endogenous

melatonin content through upregulation of its biosynthetic genes. In addition,

the treatment increased the contents of indole-3-acetic acid (IAA) and

gibberellin (GA) due to the positive modulation of their metabolic and

signalling genes. Furthermore, treated okras exhibited higher levels of g-
aminobutyric acid (GABA) but lower abscisic acid (ABA) content, contributing

to the delayed senescence process compared to control. Overall, the findings

suggested that melatonin postponed senescence in okras fruit by positively

regulating endogenous signalling molecules such as melatonin, IAA, GABA, GA,

and ABA.
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Introduction

Okra (Abelmoschus esculentus L.), also known as ladies’ fingers, is a warm-season

vegetable that belongs to the mallow family. It is a popular crop in many parts of the world,

particularly in Africa, India, and the southern United States (Mishra et al., 2017). The plant

is known for its distinctive green pods, which are long, slender, and contain small edible

seeds. It is a good source of vitamins and minerals such as calcium and potassium, which is

enjoyed by many people around the world (Tavershima Richard and Iveren Blessing, 2022).

However, okra is a highly perishable crop, and proper postharvest management is essential

to maintain its nutritional value and marketability (Liu et al., 2017).
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Melatonin is a signalling molecule that has been shown to regulate

quality and storage life of fruit and vegetables after harvest (Feng et al.,

2022). Melatonin treatment could increase the antioxidant capacity and

slow down senescence in postharvest strawberries (Liu et al., 2018). The

treatment also postponed senescence and maintained the firmness and

color of postharvest broccoli florets by regulating the expression of

genes involved in antioxidant defense and chlorophyll catabolism (Wu

et al., 2021; Lou et al., 2023). Furthermore, melatonin has been reported

to improve the resistance to biotic and abiotic stresses such as chilling

injury, pathogen infection, and mechanical damage in postharvest

horticultural products (Feng et al., 2022). The prior investigations we

conducted have revealed that melatonin treatment reduced the severity

of chilling injury in postharvest peaches (Cao et al., 2016; Cao et

al., 2018).

Recent evidences suggest that melatonin plays a critical role in

coordinating multiple signalling pathways in plants, enabling them to

respond to environmental stimuli and adapt to changing conditions

(Arnao and Hernandez-Ruiz, 2018). Melatonin has been found to

enhance the effects of auxins on root development by promoting cell

division and elongation (Liang et al., 2017). Melatonin regulated shoot

branching and leaf senescence via interaction with cytokinins (Wang

et al., 2022). Additionally, melatonin has been shown to interact with

abscisic acid (ABA), a hormone involved in stress responses, to modify

stomatal closure and water use efficiency (Arnao and Hernandez-Ruiz,

2018). The treatment with melatonin promoted grape berry ripening

partially through regulating ABA content (Xu et al., 2018). Guo et al.

(2023) have reported that melatonin treatment stimulated the

generation of endogenous salicylic acid in kiwifruit, triggering the

defense response to chilling stress. In addition, melatonin treatment

increased chilling tolerance by promoting g-aminobutyric acid

(GABA) biosynthesis in cold-stored peaches (Cao et al., 2016). To

our understanding, however, there was a lack of literature on the

influence of melatonin, an essential signalling molecule, on other

phytohormones with respect to senescence process in postharvest

okras. Our previous study has demonstrated that a correlation

between the presence of phytohormones, including indole-3-acetic

acid (IAA), ABA, and gibberellin (GA), and the senescence process in

postharvest okras (Dong et al., 2023). Therefore, the purpose of the

current investigation was to evaluate the regulation of melatonin on

endogenous plant signalling molecules in relation to the senescence

retardation and storage life extension in harvested okras by examining

the levels of IAA, GABA, ABA and GA and their metabolizing genes.
Materials and methods

Plant materials and treatment

Fresh okra samples were procured from a market located in

Ningbo City, China. Samples of uniform size and maturity, devoid

of any signs of disease or mechanical damage, were selected. The

okras were randomly assigned into two groups of 180 each, and

subjected to immersion in either distilled water or 100 µmol L-1 of

melatonin for a duration of 30 minutes. Melatonin solution was

prepared with distilled water. After all the okras were air-dried at

room temperature, they were stored for 12 d at 25 ± 1 °C with 80%
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relative humidity and sampled every 3 d. Each treatment was

performed in three replicates (sixty fruit per replicate). At each

sampling point, fifteen fruit per replicate were analyzed for

senescence index, and then their peels were collected to measure

signalling molecule content and gene expression levels.
Senescence index

The visual evaluation of senescence index on the surface of ten

okras from each replicate was conducted. Senescence was rated

according to methods described by Dong et al. (2023).
Endogenous melatonin, abscisic acid,
indolacetic acid, gibberellin and g-
aminobutyric acid levels

The levels of melatonin, ABA, IAA, and GAwere measured using

commercially available kits with instructions provided by Jiangsu

Meimian-industrial Co., Ltd, located in Nanjing, China. Enzyme-

linked immunosorbent assay (ELISA) was used and the absorbance

was recorded at 450 nm. The extraction and determination of GABA

followed the methods outlined by Wang et al. (2019).
Gene expression analysis

Total RNA was extracted and subjected to reverse transcription

using the methodology described by Dong et al. (2023). Gene

expression was evaluated via SYBR Green I Master Mix (Vazyme,

Nanjing, Jiangsu, China) and specific primers (Supplementary Table 1)

on a StepOnePlus™ real-time PCR instrument (BIO-RAD, Hercules,

California, USA). The sequence information for each gene is provided

in Supplementary Table 2. Due to the stability of the ACT gene as a

plant reference gene across all samples and conditions (Qu et al., 2019),

AeACT was chosen as the internal reference gene for calculating gene

expression levels using the 2-DCt method in okras.
Statistical analysis

Experimental data were presented as the mean ± standard

errors of three replicates. The statistical comparisons between the

control and treatment groups were made using Student’s unpaired

t-test (* p < 0.05, ** p < 0.01, and *** p < 0.001).
Results

Okra appearance senescence index after
melatonin treatment

During storage, the okras without treatment gradually became

withered and discolored, as indicated by the rising senescence

index. Nonetheless, the application of melatonin treatment
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substantially postponed the senescence of okras and preserved their

quality throughout storage. The senescence index in the treated

okras was 81.2% lower than controls (Figure 1).
Endogenous melatonin content and
expression of biosynthesis-related genes in
okras treated with melatonin

As illustrated in Figure 2, both melatonin-treated and non-

treated okras exhibited an initial increase followed by a subsequent

decline in endogenous melatonin contents during storage.

Nonetheless, melatonin treatment notably elevated the melatonin

levels in okras throughout the storage. In parallel, the treatment

upregulated the expressions of AeTDC and AeT5H1 at the end of

storage. The treated okras displayed higher transcripts of AeSNAT

and AeT5H2 after 9 days and 6 days of storage, respectively.

Melatonin treatment significantly elevated the expression of

AeT5H3 and AeCOMT2 throughout the entire storage period.

Additionally, the treatment increased the transcript abundance of

AeCOMT3 on days 3 and 9 of storage. Higher expression of

AeCOMT1 was only observed on day 3 in treated okras.
Endogenous indolacetic acid content and
expression of metabolizing genes in okras
treated with melatonin

As illustrated in Figure 3, the IAA content in treated and non-

treated okras increased gradually during the whole storage with the

content in treated okras being higher than that in the controls.

The transcript abundance of AeYUC6 decreased drastically during

the first three days of storage followed by an increase towards to the

end, which was upregulated by the treatment. Melatonin also

increased AeYUC10 expression after 3 days of storage except day

12. Meanwhile, the okras with treatment also showed higher

transcripts of AeTAR and AeMES after 9 days of storage. On the

other hand, the treatment significantly downregulated the

expression of AeDAO, a gene encoding a protein that degrades

IAA, on days 6 and 9. Higher expression of AeSAUR50 compared to

the control was only observed on day 6 in treated okras but no
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difference in AeSAUR62 was found between control and the treated

okras. Melatonin elevated AeSAUR71 expression within the storage

except day 6.
GABA content and GABA metabolic gene
expression after melatonin treatment

As illustrated in Figure 4, GABA content in the control group

exhibited a decrease and then an increase during storage. However,

melatonin treatment maintained higher level of endogenous GABA

content after 6 days. The treatment upregulated the AeGAD1

expression during the whole storage. The transcription levels of

AeGAD2/3 were increased by the treatment on days 6 and 12. After

9 days of storage, melatonin enhanced AeALDH1 expression, however,

for AeALDH2 and AePAO2, the enhancement was only observed on

day 9. There was no difference in AePAO1 between the two groups but

the treatment elevated the transcripts of AePAO3 after 6 days.
GA content and GA metabolic gene
expression after melatonin treatment

As illustrated in Figure 5, the GA content in control okras

increased gradually firstly and declined during remaining time. The

okras treated with melatonin had consistently higher GA levels

during the entire storage. The treatment increased AeKAO

expression on day 6 and 9, and upregulated the transcripts of

AeKO after 9 days of storage. For genes encoding proteins that

degrade GA, melatonin inhibited the expression of AeGA2OX1/2

after 6 days of storage but elevated AeGA20OX expression at the

end. During storage, the expression levels of AeDELLA was

significantly down-regulated with the treatment.
ABA content and ABA metabolic gene
expression after melatonin treatment

As illustrated in Figure 6, ABA content increased gradually in

both groups for the first 9 days, then declined at the end of storage.

However, okras treated with melatonin had lower ABA content
FIGURE 1

Appearance and senescence index in postharvest okras treated with melatonin during storage. The black bar represents 5 cm. Asterisks indicate
significant differences between the control and treatment groups (*** p < 0.001).
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after 6 days. The expression of AeNCED and AeAAO3 in non-

treated okras decreased within the storage. Melatonin reduced

AeNCED expression throughout storage except day 6. The

treatment also up-regulated AeAAO transcripts on days 6 and 9.

Meanwhile, the treated okras also exhibited lower AeZEP
Frontiers in Plant Science 04
expression on day 9 but higher AeCYP707A expression one of

ABA catabolic gene in comparison to the controls. Moreover,

melatonin inhibited AePLY9 expression after 6 days of storage

but AePLY3 on day 9. With the treatment, the transcripts of AeABF

were down-regulated during the whole storage except day 12.
A

B

C

FIGURE 2

Melatonin metabolism pathway (A), endogenous melatonin content (B) and expression of its metabolic genes (C) in postharvest okras treated with
melatonin during storage. TDC, tryptophan decarboxylase; SNAT, serotonin N-acetyltransferase; T5H, tryptamine 5-hydroxylase; COMT, caffeic acid
O-methyltransferase. Asterisks indicate significant differences between the control and treatment groups (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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Discussion

Melatonin has been shown to mitigate the negative effects of

senescence in vegetables by acting as an antioxidant and reducing

the levels of ROS (Jayarajan and Sharma, 2021). It also modulated
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the expression of senescence-related genes, delaying senescence and

extending the shelf life in postharvest vegetables (Jayarajan and

Sharma, 2021). Various studies have demonstrated the beneficial

effects of melatonin on senescence in vegetables, including broccoli,

lettuce, and Chinese flowering cabbage (Tan et al., 2021; Wu et al.,
A

B

C

FIGURE 3

IAA metabolism pathway (A), endogenous IAA content (B) and expression of its metabolic genes (C) in postharvest okras treated with melatonin
during storage. YUC, YUCCA flavin-containing monooxygenases; TRA, tryptophan aminotransferase; MES, methylesterase; DAO, dioxygenase for
auxin oxidation; SAUR, small auxin upregulated RNA. Asterisks indicate significant differences between the control and treatment groups (* p < 0.05,
** p < 0.01, and *** p < 0.001).
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2021; Belisle et al., 2023). In the present study, we observed a similar

postponement of the senescence process in postharvest okras

treated with melatonin. It has been reported that the treatment

with exogenous melatonin induced the expression of melatonin

biosynthetic genes, thus increasing the levels of endogenous

melatonin in postharvest horticultural products (Cao et al., 2016;
Frontiers in Plant Science 06
Hu et al., 2017). Our recent study also found the hydrogen rich

water delayed senescence in okras after harvest via upregulating the

expression of melatonin synthesis-related genes and endogenous

melatonin content (Dong et al., 2023). Therefore, the data presented

here clearly showed that suspension of senescence in okras treated

with melatonin could be due to the upregulation of melatonin
A

B

C

FIGURE 4

GABA metabolism pathway (A), endogenous GABA content (B) and expression of its metabolic genes (C) in postharvest okras treated with melatonin
during storage. GAD, glutamate decarboxylase; ALDH, aldehyde dehydrogenase; PAO, polyamine oxidase. Asterisks indicate significant differences
between the control and treatment groups (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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biosynthetic genes and the resultant increase in endogenous

melatonin content.

IAA, a plant hormone occurring naturally, participates in

numerous aspects of plant growth and development, such as cell

division, elongation, and differentiation (Perrot-Rechenmann,

2010). IAA also can regulate senescence by modulating various

biochemical and molecular processes (Lim et al., 2010). Senescence
Frontiers in Plant Science 07
in detached leaves of Arabidopsis thaliana was associated with a

decline in their IAA content due to the decreased transcript

abundance of auxin biosynthetic genes (Kim et al., 2011).

Exogenous treatment with IAA inhibited the expression of

SAG12, one of the well-investigated senescence-response genes

(Noh and Amasino, 1999), and mutation of the auxin-responsive

transcription was beneficial to anti-aging in Arabidopsis (Lim et al.,
A

B

C

FIGURE 5

GA metabolism pathway (A), endogenous GA content (B) and expression of its metabolic genes (C) in postharvest okras treated with melatonin during
storage. KAO, ent-kaurenoic acid oxidase; GA20OX, GA 20-oxidase; KO, ent-kaurene oxidase; GA2OX, GA 2-oxidase; DELLA, a key negative regulator of
GA signaling. Asterisks indicate significant differences between the control and treatment groups (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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2010). Furthermore, it was reported that melatonin could interact

with IAA to regulate plant growth and development (Arnao and

Hernandez-Ruiz, 2018). Melatonin treatment increased the levels of

IAA in rice and governed root architecture by the upregulation of

auxin-related genes (Liang et al., 2017). Acting as a powerful

antioxidant, melatonin alleviated leaf senescence by increasing

IAA levels via upregulating the expression of genes involved in
Frontiers in Plant Science 08
IAA biosynthesis and signalling in cucumber plants (Jing et al.,

2022). The results of our study revealed that melatonin increased

the expression of genes involved in IAA biosynthesis including

AeYUCs, AeTRA, and AeMES, as well as the auxin response genes

(AeSAURs) in okras after harvesting. Conversely, the

transcriptional activity of the IAA catabolic gene, AeDAO, was

suppressed by the treatment. Therefore, the treatment increased the
A

B

C

FIGURE 6

ABA metabolism pathway (A), endogenous ABA content (B) and expression of its metabolic genes (C) in postharvest okras treated with melatonin
during storage. NCED, 9-cis-epoxycarotenoid dioxygenase; AAO, ABA-aldehyde oxidase; ZEP, zeaxanthin oxidase; CYP707A1, CYP707A gene family;
PLY, PYR1-like; ABF, Abscisic acid (ABA)-responsive element (ABRE)-binding factors. Asterisks indicate significant differences between the control
and treatment groups (* p < 0.05, ** p < 0.01, and *** p < 0.001).
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endogenous IAA content due to coordination of its metabolizing

genes, which could be considered as one of melatonin reaction

mechanism to delay senescence and in postharvest okras.

According to our results, melatonin treatment increased

endogenous GABA content which was probably the other reaction

mechanisms of melatonin treatment to extend storage time in

postharvest okras. In plants, GABA is involved in many

physiological processes, including the regulation of growth,

development, senescence processes (Khan et al., 2021). Application

of GABA postponed the initiation of leaf senescence in Arabidopsis

thaliana by upregulating the expression of genes involved in

antioxidant defense and stress responses (Bouche et al., 2003).

Vaezi et al. (2022) found that the improved GABA biosynthesis

and accumulation played an important role in decreasing senescence

and deterioration rate in strawberries treated with methyl jasmonate.

Melatonin has been reported to increase the endogenous GABA

levels in yellow-flesh peaches and enhanced the antioxidant defense

system, leading to reduced oxidative stress and improved fruit quality

(Wu et al., 2023). Our study demonstrated that treatment with

melatonin increased the expression of genes involved in GABA

biosynthesis, such as AeGADs, AePAOs, and AeALDHs, resulting in

higher levels of GABA content, which was in line with our prior

investigation on peaches that exogenous melatonin treatment

triggered the accumulation of GABA content through enhanced

GABA shunt activity (Cao et al., 2016).

Additionally, we also found that the increased GA content

induced by melatonin treatment could be considered as the other

reason for the delayed senescence process as compared to control.

The positive effect of GA on delaying senescence in plants are well

documented. For example, exogenous treatment with GA postponed

leaf senescence in Chinese flowering cabbage as experienced by

down-regulating the expression of a series of senescence-associated

gene (Fan et al., 2018). Treatment with GA3 increased the content of

endogenous GAs, thereby retarding the chlorophyll degradation and

senescence of shoots in Paris polyphylla (Li et al., 2010). Furthermore,

GA3 has been demonstrated to modulate the activity of genes that

play a role in chlorophyll breakdown, which is a hallmark of

senescence in harvested okras (Xiao et al., 2022). Prior research has

demonstrated that melatonin could potentially interact with GA,

contributing to plant growth and development beneficially.

Melatonin promoted the antioxidant systems and GA biosynthesis

to enable seed germination in high salinity conditions in cucumber

(Zhang et al., 2014). The interaction between melatonin and GA3 has

also been linked to the regulation of stress induced senescence in

plants in which melatonin pre-treatment modulated GA-mediated

pathways to suppress heat-induced senescence in tomatoes (Jahan

et al., 2021). In this study, the transcription abundance of AeKAO,

AeGA2OX and AeKO, three essential genes responsible for GA

synthesis, was induced with melatonin treatment after 6 days of

storage. In addition, we also found that melatonin treatment down-

regulated the degradative genes AeGA20Xs and negative regulatory

factor DELLAs. However, it is worth noting that the three GA

biosynthetic genes were upregulated starting from the 6th day after

treatment, while GA began to accumulate on the 3rd day. Therefore,

GA upregulation might not be a result of the enhanced biosynthesis

during the early stage of storage. However, Zhou et al. (2022) found
Frontiers in Plant Science 09
that over-expression of yam DoDELLA1 in tobacco resulted in

reduced GA content, indicating a feedback and feed-forward

mechanism of DELLA on GA levels. Interestingly, in our study, the

inhibition of melatonin on the expression of AeDELLA started from

day 3, which could be the reason why the treated okras displayed

higher GA content on the 3rd day. Taken together, our results

suggested that the increase in endogenous GA content and

signalling could involve in melatonin-mediated the delay of

senescence in postharvest okras. However, the detailed feedback

regulation of AeDELLA on GA content in melatonin-treated okras

should be investigated in the near future.

ABA is a hormone that regulates plant responses to

environmental stresses, such as drought, salinity, and extreme

temperatures (Hong et al., 2013). ABA also contributes to regulate

the degradation of chlorophyll and onset of senescence, leading to the

yellowing of leaves and the eventual death of the plant. Gao et al.

(2016) found ABA promoted chlorophyll breakdown and leaf aging

through transcriptional activation of senescence-associated genes and

genes involved in chlorophyll breakdown in Arabidopsis. The

interaction or cross talk between melatonin and ABA has been

reported to play an important role in affecting the responses to

biotic or abiotic stresses in plants (Arnao and Hernandez-Ruiz, 2018).

The induction of drought tolerance and suppression of leaf

senescence in apples treated with exogenous melatonin was related

to the regulation of ABA metabolism (Li et al., 2015). Melatonin

treatment delayed leaf senescence through inhibiting ABA

accumulation and maintaining chlorophyll contents via down-

regulating ABA signaling transcription factors in Chinese flowering

cabbage (Tan et al., 2019). The decrease in ABA biosynthesis and

downregulation of signalling pathways was also contributed to the

suppression of heat-induced leaf senescence by exogenous melatonin

in perennial ryegrass (Zhang et al., 2017). Based on our experiment

results, melatonin treatment was found to decrease the expression of

ABA biosynthetic genes, such as AeNCED, AeZEP, and AeAAO,

while increasing the transcripts of degradative geneAeCYP707A. As a

result, the ABA content was reduced, which ultimately led to the

inhibition of senescence in okras treated with melatonin. Previous

studies have reported PLYs and ABFs were involved in the regulation

of ABA-mediated leaf senescence in plants (Zhao et al., 2016; Tan

et al., 2019). Similarly, in our present study, AePLY3/9 and AeABF

were also downregulated by melatonin. These findings suggested that

melatonin had the potential to regulate signals associated with ABA,

thereby slowing down the senescence process in okras after harvest.
Conclusions

In conclusion, our results showed that melatonin treatment

delayed senescence in postharvest okras. The coordination of gene

expression involved in plant signalling molecules pathways by

melatonin led to the increased levels of endogenous melatonin,

GABA and GA but decline in ABA content, contributing to the

suppression of senescence process in treated okras (Figure 7).

However, melatonin has demonstrated the ability to regulate

diverse physiological processes in plants by interacting with other

signaling molecules, such as hydrogen peroxide and nitric oxide.
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Therefore, additional investigation is necessary to fully underpin the

regulation of cross-talk and transduction interactions to reveal the

mechanism in the positive effect of melatonin on senescence in

horticultural products.
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