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Deep learning for automated
segmentation and counting of
hypocotyl and cotyledon regions
in mature Pinus radiata D. Don.
somatic embryo images
Sam J. Davidson1*, Taryn Saggese2 and Jana Krajňáková2

1Data and Geospatial Intelligence, New Zealand Forest Research Institute (Scion),
Christchurch, New Zealand, 2Forest Genetics and Biotechnology, New Zealand Forest Research
Institute (Scion), Rotorua, New Zealand
In commercial forestry and large-scale plant propagation, the utilization of

artificial intelligence techniques for automated somatic embryo analysis has

emerged as a highly valuable tool. Notably, image segmentation plays a key

role in the automated assessment of mature somatic embryos. However, to date,

the application of Convolutional Neural Networks (CNNs) for segmentation of

mature somatic embryos remains unexplored. In this study, we present a novel

application of CNNs for delineating mature somatic conifer embryos from

background and residual proliferating embryogenic tissue and differentiating

various morphological regions within the embryos. A semantic segmentation

CNN was trained to assign pixels to cotyledon, hypocotyl, and background

regions, while an instance segmentation network was trained to detect

individual cotyledons for automated counting. The main dataset comprised

275 high-resolution microscopic images of mature Pinus radiata somatic

embryos, with 42 images reserved for testing and validation sets. The

evaluation of different segmentation methods revealed that semantic

segmentation achieved the highest performance averaged across classes,

achieving F1 scores of 0.929 and 0.932, with IoU scores of 0.867 and 0.872 for

the cotyledon and hypocotyl regions respectively. The instance segmentation

approach demonstrated proficiency in accurate detection and counting of the

number of cotyledons, as indicated by a mean squared error (MSE) of 0.79 and

mean absolute error (MAE) of 0.60. The findings highlight the efficacy of neural

network-based methods in accurately segmenting somatic embryos and

delineating individual morphological parts, providing additional information

compared to previous segmentation techniques. This opens avenues for

further analysis, including quantification of morphological characteristics in

each region, enabling the identification of features of desirable embryos in

large-scale production systems. These advancements contribute to the

improvement of automated somatic embryogenesis systems, facilitating

efficient and reliable plant propagation for commercial forestry applications.
KEYWORDS

deep learning, semantic segmentation, instance segmentation, somatic embryo,
embryo morphology, plant phenotyping, automated counting
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1 Introduction

The propagation of conifers, such as Pinus radiata D. Don.,

holds significant importance for meeting global timber demands,

reforestation efforts, and the preservation of natural ecosystems.

With the growing need to ensure sustainable and efficient conifer

propagation, advanced techniques for mass propagation of high-

quality genetics are of high importance.

Somatic embryogenesis (SE) is an advanced developmental

method by which plants can regenerate bipolar structures from a

somatic cell (Méndez-Hernández et al., 2019). These bipolar

structures in their development and morphological features

resemble their zygotic counterparts (von Arnold et al., 2020). In

conifers, SE is the preferable method of propagation due to the

possibility of long-term cryo-storage of the embryogenic tissue. It is

a multi-step process, starting with induction of embryogenic tissue,

followed by proliferation and formation of early somatic embryos in

the presence of auxins and cytokinins. The development continues

with the change of nutrient media. Addition of abscisic acid

enhances the maturation of somatic embryos which is followed

by germination and regeneration of the intact plantlet (Stasolla and

Yeung, 2003). The success of plantlet regeneration is dependent on

the proper execution of each step and several chemical and physical

stimuli may be employed (Filonova et al., 2002; von Arnold et al.,

2020). In the end of the maturation process a population of somatic

embryos is obtained consisting of a mixture of pre-cotyledonary

and cotyledonary somatic embryos and remains of the proliferating

tissue as the maturation process is unsynchronized (Stasolla and

Yeung, 2003).

The selection of high quality mature somatic embryos and the

transfer into germination conditions is traditionally done manually

by trained personnel. A trained tissue culturist will select embryos

from the population based on qualitative assessment of

morphological features such as size, shape, and the number of

cotyledons. Since this is a very labour-intensive process, the latest

advances in the tissue culture technologies focus on the automation

of this process, either by using fluidics systems or picking robots for

the isolation of individual mature embryos from the surrounding

tissue (Find and Krogstrup, 2008; Egertsdotter et al., 2019).

Selection of high-quality somatic embryos requires fast decision

making based on morphological criteria, with the somatic embryo

either being accepted or rejected. The basis of this process is the

accurate quantification of mature somatic embryo characteristics

from imagery, providing the foundation for subsequent analysis.

Several studies have used morphological features related to shape

and size derived from images to assess germination potential or

somatic embryo quality (Uozumi et al., 1993; Zhang et al., 1999; Le

et al., 2021). The crucial first step in quantifying such characteristics

is the automated delineation of the embryo boundary, including any

specific regions of interest. The extracted data can provide valuable

insights into the development of the embryos, as well as help

improve the efficiency and success rates of the SE process.

For the past three decades, artificial intelligence techniques have

been increasingly used in the tissue culture space; previously

explored AI models have included artificial neural networks,

neurofuzzy logic, support vector machines, decision trees and
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random forest (Hesami and Jones, 2020). Their applications

include prediction of length, number of microshoots and roots,

biomass prediction, optimization of environmental conditions, as

well as automated somatic embryo and micro-shoot classification

(Prasad and Gupta, 2008; Osama et al., 2015; Hesami and

Jones, 2020).

Previous studies perform segmentation of somatic embryos

using binary image thresholding to automatically segment mature

somatic embryos in greyscale images and as a result can obtain the

embryo area and boundary (Hamalainen and Jokinen, 1993;

Hamalainen et al., 1993; Uozumi et al., 1993; Chi et al., 1996;

Find and Krogstrup, 2008; Le et al., 2021). Binary image

thresholding involves converting a greyscale or colour image into

a black and white (binary) image, then selecting a threshold value

and assigning pixel values based on whether they are above or below

the chosen threshold. Le et al. (2021) use binary image thresholding

in greyscale images of Norway spruce in their use of the fluidics

system (Le et al., 2021). Similarly, Hamalainen et al. (1993) used a

binary threshold in high contrast bottom view greyscale images of

birch (Betula pendula Roth) somatic embryos (Hamalainen et al.,

1993). Likewise (Find and Krogstrup, 2008), used a binary threshold

on images of nordmanns fir (Abies nordmanniana) and sitka spruce

(Picea sitchensis) somatic embryos. Uozumi et al., 1993 used the

same for segmenting celery embryos (Uozumi et al., 1993). Chi et al.

(1996) used a binary threshold to distinguish carrot somatic

embryos from the background, followed by a thinning algorithm

to remove open contours and noise generated in the acquisition

process. These approaches achieved satisfactory segmentations as

the images had very high levels of contrast between the objects and

background. However, thresholding techniques are unable to

distinguish between different regions containing similar spectral

values such as the upper and lower part of the embryo or between

cotyledons with almost identical spectral intensities. Additional

challenges for pine somatic embryos included the size of the

embryos, the wide variations in the number of cotyledons per

embryo and the overlapping nature of the cotyledons, making

them difficult to distinguish in a single lateral view image. These

factors make our tasks challenging for traditional image processing

methods and make our data a good candidate for more

sophisticated methods which utilise deep learning.

Advancements in deep learning and computer vision have

opened new possibilities for automating the analysis of somatic

embryo images. Deep learning is a form of machine learning where

a model is typically trained on a set of examples related to the

specific task (Janiesch et al., 2021). In the task of image

segmentation, training examples are provided in the form of

images and their corresponding annotations, also known as

masks in the computer vison community. Deep learning

methodologies utilising convolutional neural networks (CNNs)

are revolutionising the way various image-related tasks are solved.

These networks are capable of automatically extracting complex

spatial and structural information from images, enabling them to

accurately differentiate between different objects, regions, or

categories within an image (Yamashita et al., 2018). These

capabilities provide several advantages over traditionally used

somatic embryo image segmentation techniques such as pixel
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thresholding with size filtering. Thresholding methods strongly rely

on pixel intensities being different between classes and ignores the

spatial component of neighbouring pixels. Therefore, as we are

interested in delineating regions belonging to the same pixel

intensities, we have opted to not use thresholding-based methods

which rely purely on differences in intensities. The complexity of

CNNs allow them to consider clusters of pixels to learn relevant

shapes, patterns, and structures at different levels of abstraction,

similar to the way humans use vision. This enables them to

distinguish different objects or categories in regions of similar

spectral intensity. It also allows them to be far more robust to

regions containing noise such as reflections, shadows, and out of

focus areas. As a result, CNNs have achieved state-of-the-art

performance in image classification, object detection, and

segmentation tasks (Taye, 2023).

In biological microscopy, deep learning has demonstrated

promising performance in a range of segmentation applications

including semantic segmentation of human oocyte (Targosz et al.,

2021), semantic and instance segmentation for cell nuclei (Caicedo

et al., 2019) and semantic segmentation potato tuber (Biswas and

Barma, 2020). Examples of plant phenotyping applications include

semantic and instance segmentation for plant leaf detection and

counting (Aich and Stavness, 2017; Giuffrida et al., 2018; Itzhaky

et al., 2018; Jiang et al., 2019; Fan et al., 2022), semantic and instance

segmentation for crop phenotyping (Jiang and Li, 2020), grapevine

leaf semantic segmentation (Tamvakis et al., 2022), barley seed

detection from instance segmentation (Toda et al., 2020) and many

other applications (Kolhar and Jagtap, 2023).

In this work, we focus on two widely used variations of CNN

based segmentation networks: semantic segmentation and instance

segmentation. Semantic segmentation is a computer vision

technique used to assign a class label to each pixel in an image,

while instance segmentation distinguishes individual instances of the

same class by using a box detection step followed by pixel-level

segmentation. Both techniques enable automated delineation of class

boundaries as well as the area of the image they occupy, therefore, we

evaluate and compare them as potential solutions to this pixel-level

segmentation task. However, as instance segmentation allows for the

delineation of individual instances, we additionally evaluate its’

ability to predict the number of cotyledons. In deep learning, the

categories of interest within the image are referred to as classes,

which, for our images, are the hypocotyl and cotyledon regions. Long

et al. (2015) proposed the Fully Convolutional Network (FCN) a

variant of CNN, which significantly increased segmentation accuracy

over previous segmentation approaches (Long et al., 2015). In the

following years, FCNs paved the way for deep-learning-based

semantic segmentation. Residual Network (ResNet) is the variant

of FCN we employ in this work for both semantic and instance

segmentation, for its proven ability to learn fine-grained

segmentation tasks (He et al., 2016).

Several techniques exist for counting overlapping objects

including deep learning approaches such as CNN instance

segmentation networks (Toda et al., 2020) and CNN based

regression networks (Giuffrida et al., 2018; Itzhaky et al., 2018),

and non-deep learning approaches such as distance transform
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combined with the watershed algorithm (Itakura and Hosoi,

2018). We chose instance segmentation for its’ ease of

implementation and proven ability to perform multi-class

detection and segmentation, allowing for counting of objects and

enabling us to obtain semantic segmentations of cotyledon and

hypocotyl regions. Instance segmentation provides an additional

level of information to semantic segmentation and can distinguish

individual instances of regions belonging to the same class. Instance

segmentation does this by using an initial box detection step, which

assigns an ID to each individual instance before proceeding to

segment pixels inside that box to obtain the instance boundary. This

allows for a more detailed further analysis enabling for counting

and, if desired, individual measurements per instance.

The number of cotyledons in coniferous species is a distinctive

feature for discrimination and serves as a valuable parameter for

assessing the efficacy of maturation protocols in somatic

embryogenesis, a biotechnological method applied for the

propagation of these species (Chandler, 2008; Wang and Ran,

2014). The variation in cotyledon number within a given

gymnosperm species correlates with embryo size, which alters

from year to year (Butts and Buchholz, 1940). In somatic

embryos, there is a greater degree of variation in cotyledon

number compared with zygotic embryos (Harrison and Von

Aderkas, 2004), and this number is an indicator of maturity

(Zhang et al., 1999). For instance, normally developed Douglas fir

somatic embryos typically have 4 to 7 cotyledons, with numbers

outside this range considered abnormal (Zhang et al., 1999).

Somatic embryo development is regulated by timed applications

of exogenous plant growth regulating substances (PGRs), and the

germination potential is notably influenced, as only embryos

possessing a sufficient number of cotyledons demonstrate

successful germination.

There has been limited research on delineating the cotyledon

region or individual cotyledons from the rest of the embryo in

mature somatic embryo image analysis. Timmis et al. (2015)

considered both cotyledon count and length from segmented

images of Douglas-fir SE. Barry-Etienne et al. (2002) digitized

coffee somatic embryo cotyledons in a scanner, then manually

obtained cotyledonary area and filtered them into small, medium,

and large categories based on area, before correlating sizes with

conversion into plantlets. They found embryos with large cotyledons

to have a significantly lower conversion rate compared to the smaller

categories (Barry-Etienne et al., 2002). Delineating the cotyledon

region allows for measuring morphological features such as

cotyledon region length, width and area, as well as computing the

ratio of cotyledon to hypocotyl area. These findings underscore the

crucial role that the number of cotyledons plays in shaping

the outcomes of somatic embryogenesis and highlight the need for

further research in this area.

In this study we use convolutional neural networks for the

automated analysis of mature somatic embryo for two key image

analysis tasks. The first aim was to compare and investigate the

potential of semantic segmentation and instance segmentation for

automated segmentation of the hypocotyl and cotyledon regions in

Pinus radiata mature somatic embryo images. Our second aim was
frontiersin.org
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to accurately predict the number of cotyledons per embryo from

instance segmentation by obtaining individual cotyledon detections

from instance segmentation. To the best of our knowledge, this is

the first work using deep learning for the automated annotation of

somatic embryo images of conifers and the first to use instance

segmentation to detect individual cotyledons as a way of obtaining

cotyledon counts.
2 Materials and methods

2.1 Plant material

A total of 658 mature somatic embryos from six embryogenic

cell lines of P. radiata were included in this study. 275 were

annotated and used in training and testing from cell lines A, B,

and C, with the remainder 383 from cell lines D, E, and F used as an

independent set. Mature somatic embryos were produced on semi-

solid culture media as previously described (Poovaiah et al., 2021;

Reeves et al., 2023). All somatic embryos were collected manually

with forceps and placed on germination medium (Reeves et al.,

2023) in a regular pattern as illustrated in Figure 1. A range of

morphologically normal (good) and abnormal (bad) embryos were

included in this study.
2.2 Image acquisition

On the day of collection, lateral view images of individual

mature somatic embryos were captured with a LEICA MZ FLIII

stereomicroscope under 1x objective lens, and 0.8x ocular tube

magnification, with an Axiocam 105 colour camera. Raw image size

was 2560 x 1920 pixels, with a resulting pixel size of 4.8μm.
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2.3 Image annotation

The training of CNNs based models requires a variety of

manually annotated images to provide the network with examples

of what cotyledon and hypocotyl regions look like. Computer

Vision Annotation Tool (CVAT) was used for manual image

annotation of hypocotyl and individual visible cotyledons

(CVAT.ai, 2022). Figure 2 depicts an annotated embryo. For

instance segmentation the annotations were exported as a CVAT

COCO JSON 1.0 format. In the case of semantic segmentation,

cotyledon instances were merged into a single class called

cotyledon, and annotations were exported as Segmentation Mask

1.1 format which provides an individual PNG file per image with

pixels coloured by their class.

The dataset of 275 colour images was randomly split into a ratio

of 70:15:15 for training, validation and testing sets, respectively,

resulting in 42 images in the test set (Table 1). 1866 polygons were

annotated in total which included 1591 individual visible

cotyledons (Table 1).

For an additional 383 embryo images, across three different cell

lines (D, E, F), we recorded the number of visible cotyledons to

evaluate the model’s ability to detect cotyledons from cell lines the

model had never seen before.
2.4 Deep learning

Deep learning instance segmentation was used to automatically

segment the individual instances of hypocotyl and cotyledons

allowing for automated cotyledon detection and counting. The

Mask R-CNN model (He et al., 2017) was trained using open-

source python library Detectron2 (Wu et al., 2019). ResNet-101 (He

et al., 2016) was used as the feature extractor and Feature Pyramid
FIGURE 1

Arrangement of mature Pinus radiata somatic embryos on Petri
plate with germination medium on the day of collection.
FIGURE 2

Annotated image of a Pinus radiata somatic embryo. The individual
cotyledon instances make up the cotyledon region for semantic
segmentation (outlined in green). The entire lower region is
classified here as hypocotyl (outlined in pink).
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Network (FPN) (Lin et al., 2017) as the decoder. We utilized a pre-

trained network trained on the ImageNet dataset to help account for

the relatively small dataset size. Transfer learning from ImageNet

was employed to leverage the feature representations learned from

this large dataset, enhancing the network’s ability to capture

meaningful features on our specific task with a relatively small

dataset. Fine-tuning on our target task of hypocotyl and cotyledon

detection allows the model to adapt its learned features for this
Frontiers in Plant Science 05
objective. ResizeShortestEdge, a widely used Mask R-CNN

transformation, was used to train the model on different input

size images with the short edge length set value to 1100 and max size

value set to 1500 for model training. The network was trained on an

NVIDIA RTX 3090 GPU with 24GB of memory with a batch size of

2 for 100,000 iterations (equivalent to 260 epochs) with the default

learning rate of 0.001. The model which gave the highest

segmentation mask mean average precision (MAP) on the

validation set was used for inference on the testing set. The

stochastic gradient descent optimizer was used for the network

optimization. To enable a direct comparison with semantic

segmentation predictions, the individual instance predictions were

merged according to their class and converted to multiclass

segmentation masks (Figure 3). In cases where there was overlap

between cotyledon and hypocotyl instances, we set the hypocotyl

pixels to foreground to override the cotyledon pixels as this

represents a delineation between the two regions more similar to

that of the data annotation method.
TABLE 1 Number of instances and Pinus radiata somatic embryo images
for cotyledon and hypocotyl classes for training, validation, and
testing sets.

Cotyledons Hypocotyl Images

Train 1094 191 191

Validation 254 42 42

Test 242 42 42
FIGURE 3

Deep learning workflow for Pinus radiata somatic embryo segmentation. Images are captured under a high-resolution microscope before being
manually annotated to train and evaluate the two neural networks. For Mask R-CNN instance segmentation, cotyledon instance predictions are
combined to derive a segmentation mask for direct comparison of pixel-wise metrics with ResNet semantic segmentation. Additionally, individual
instances detected in boxes allow for cotyledon counts to be derived and a range of performance metrics are evaluated.
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Mask R-CNN detection metrics

MAP =
1
Co

C

i=1
APi

where C is equal to the number of classes AP is the average

precision per class. It is obtained by computing the area under the

precision-recall curve to get AP for both classes. The mean of the

APi values across all classes gives the final mean average precision

(MAP) score. This metric was only used to select the best

performing instance segmentation model.

Deep learning semantic segmentation was used to automatically

identify pixels belonging to the hypocotyl and cotyledon regions.

The model was trained using open-source Segmentation Models

PyTorch python library (Yakubovskiy, 2021). To match the

encoder-decoder architecture of the Mask R-CNN network, we

used ResNet-101 as the segmentation encoder and FPN as the

decoder, also pretrained on the ImageNet database. Dice loss was

used as the loss function to train the network and Adam was used as

the network optimization function with a learning rate of 0.0001.

The network was trained for 100 epochs with a batch size of 2 and

the final model used for inference on the test set was the one which

gave the highest IoU score on the validation set. For both models,

the data augmentation techniques of horizontal flip, random crop,

and random rotate were used. Data augmentation involves creating

different transformations of the image-mask pairs and providing

them as additional examples for the model to learn from. This

forces the model to learn additional patterns and information that

was not present in the raw images, improving the model’s ability to

generalise to embryo or genotypes it has never seen before. Images

were converted to greyscale for training both models. For a

comparison with the ability of instance segmentation to do the

same, the predicted cotyledon instances were merged to form the

single cotyledon region mask for evaluating segmentations

(Figure 3). Figure 3 shows the end to end workflow of the two

approaches from data annotation to testing and comparing the

approaches on the test images.

Commonly used image segmentation metrics, intersection over

union (IoU), precision, recall, and F1 score were used to evaluate

the segmentation performance of both models. To evaluate the

performance of cotyledon count predictions, we adopt similar

regression metrics as the previously mentioned studies on leaf

counting and compute the following regression metrics: the mean

squared error (MSE), along with the difference in counts (DiC) and

absolute difference in counts (ADiC) which are equivalent to the

more widely known mean error (ME) and mean absolute error

(MAE) respectively. A final metric, agreement percentage, was also

computed, which quantifies the percentage of embryos where the

model correctly detected the exact number of cotyledons. These

metrics were calculated as follows:
2.5 Semantic segmentation metrics

Precision quantifies the proportion of true positive predictions

among all positive predictions:
Frontiers in Plant Science 06
Precision =
TP

TP þ  FP

Recall quantifies the proportion of actual positive instances that

are correctly identified:

Recall =
TP

TP þ  FN

where TP represent the True Positives which are the correctly

predicted positive observations, FP represents the False Positives

which are the incorrectly predicted positive observations and FN

represents the False Negatives which are the incorrectly predicted

negative observations. These are computed for every pixel.

F1-score is considered the harmonic mean of both precision

and recall:

F1� score = 2� Precision� Recall
Precision þ  Recall

IoU represents the ratio of intersected area (TP) to the

combined area (TP+FP+FN) of the predicted and ground truth

masks (Figure 4):

IoU =
Intersection

Union
=

TP
TP þ  FP þ  FN
2.6 Cotyledon counting metrics

Mean Error (ME) calculates the average of the differences between
predicted and ground truth values.

Mean Absolute Error (MAE) calculates the average of the

absolute differences between predicted and ground truth values.

MAE   =  ADiC   =o
n

i=1
yi − �yj j

where n is the total number of embryo, yi is the ground truth

value for embryo i and �y   is the predicted value.

Mean Squared Error (MSE) calculates the average of the

squared differences between the predicted values and ground true

values.

MSE =
1
no

n

i=1
(yi − �y)2

Agreement percentage computes the ratio of the number of

embryo where the predicted cotyledon count is equal to the actual

value out of all embryo.

Agreement   % =
Number   of   embryo  where   predicted   count   is   equal   to   the   true   count  

Total   number   of   embryo

� �
 �100
3 Results

3.1 Semantic segmentation

The per-class segmentation results from semantic segmentation

are reported in Table 2. For the cotyledon class, the segmentation
frontiersin.org
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model achieved precision of 0.942, recall of 0.915, and F1-score of

0.929. The hypocotyl class segmentation demonstrated a precision of

0.922, recall of 0.942, and F1-score of 0.932. We also evaluated the

overall segmentation accuracy using the Intersection over Union

(IoU) metrics. The IoU scores for the cotyledon, and hypocotyl

classes were 0.867, and 0.872 respectively. It is common for the IoU

score to be lower than the other metrics due to the formula penalizing

the prediction for both false positives and false negatives.

The per-class semantic segmentation results from the instance

segmentation approach are reported in Table 3. For the cotyledon

class, the segmentation model achieved precision of 0.963, recall of

0.896, and F1-score of 0.928. The hypocotyl class segmentation

demonstrated a precision of 0.915, recall of 0.959, and F1-score of

0.937. The IoU scores were similar to semantic results, with values of

0.866, and 0.881 for the cotyledon and hypocotyl classes respectively.

Figure 5 illustrates the manual annotation and both the

semantic and instance segmentation prediction masks for six

embryos, with two from each of the three cell lines. The semantic

segmentation approach resulted in better masks (region

boundaries) from a visual perspective, while the instance

segmentation approach resulted in gaps between and within

regions. Both approaches generally did well at segmenting the

lower end of the hypocotyl (Figure 5 B1, B2, C1 and C2). Results

for both methods showed they were able to ignore residual

proliferating embryogenic tissue attached to the embryo, with

segmentations of embryo in A1, A2, B1 and C2 demonstrating

this. Segmentation performance in the cotyledon-hypocotyl
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boundary was notably less accurate for instance segmentation

when compared with the manual annotation, e.g. in A1 where

there is a significant curve in the upper hypocotyl predicted mask.

Similarly, instance segmentation commonly displayed gaps between

these two regions (A1, B1, B2, C1). Apart from this, both methods

showed good ability to ignore bright non-embryo noise containing

regions in the image, with the left side of A2 being a clear example of

this. Row C2 shows instance segmentation incorrectly detecting an

artifact (a label on the petri plate lid) as a cotyledon. In one image,

the instance segmentation model confused the whole embryo as

being a cotyledon which results in a significantly worse

segmentation mask compared to the semantic segmentation

prediction. However, for this long narrow embryo, the hypocotyl

region was segmented more accurately compared to the semantic

segmentation mask. Row B2 highlights another image where

semantic segmentation resulted in a significantly better

segmentation, this time for the cotyledon region with instance

segmentation resulting in gaps in the cotyledon region. Attached

residual proliferating embryogenic tissue appeared on a small

number of embryos, as shown at the bottom part of the embryos

A1 and A2 in Figure 5, and the model was still able to correctly

ignore these as not belonging to the embryo.
3.2 Instance segmentation for detection of
individual instances

Figure 6 shows a visual evaluation of instance segmentation

predicted instances of the hypocotyl and cotyledons per embryo for

three examples from the test set. For embryo A and C, the exact

number of cotyledons were detected, and for embryo B, an error

value of one was seen, as seven cotyledons were detected when there

were eight manually identified. For embryo B, the network

demonstrated the ability to detect small and barely visible

cotyledon instances shown by the small blue and grey instances

on the far side of the cotyledon region. The cotyledon that was not
TABLE 2 Semantic segmentation evaluation metrics for each class on
the test dataset of Pinus radiata somatic embryos.

Classes Precision Recall IoU F1

Cotyledon 0.942 0.915 0.867 0.929

Hypocotyl 0.922 0.942 0.872 0.932
FIGURE 4

Examples of ground truth segmentation mask, predicted mask, and both together applied to images of mature somatic embryos of Pinus radiata.
False Positive (FP), True Positive (TP) and False Negative (FN) were used to compute IoU.
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detected by the network is barely visible to the human eye unless

zooming in. It is a small tip located on the far-right hand side of

embryo B and is almost fully occluded by another cotyledon.
3.3 Cotyledon counts

Figure 7 shows the visual distribution of cotyledon counts per

cell line were not skewed towards high or low counts, with four to

seven cotyledons being most common. This depended on cell line
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with cell lines B and C having similar distributions compared to cell

line A where the average cotyledon count was a little lower. Cell

lines A, B, and C had a median of five, six, and six cotyledons per

embryo, respectively (Figure 7). Overall, the minimum number per

embryo was 1 and the maximum number was eleven. This shows a

wide variation in the number of cotyledons for Pinus radiata

somatic embryos. Cell lines D, E and F had median cotyledon

counts of six, five, and five respectively, with non-skewed

distributions and almost all embryo having at least one cotyledon

and less than ten (Figure 8).

Table 4 shows the validation and test set counting results from

the cotyledon instances detected by the Mask R-CNN approach.

The network achieved an ME of -0.19 (0.88), MAE 0.48 (0.76), and

MSE of 0.81 for the validation set. For the test set, an ME of -0.31

(0.83) MAE 0.60 (0.66), and MSE of 0.69 was obtained. Small

negative values for the ME show that the network had a small bias

to underpredict the number of cotyledons. The test MAE score of

0.60 is a promising performance as it shows that on average, the
FIGURE 5

Examples of segmentation mask predictions compared with manual annotation of Pinus radiata somatic embryos (on original colour images) for
both semantic segmentation and postprocessed instance segmentation masks for two embryos from each of the three cell lines (A–C) respectively.
TABLE 3 Instance segmentation evaluation metrics for each class on the
test dataset of Pinus radiata somatic embryos.

Classes Precision Recall IoU F1

Cotyledon 0.963 0.896 0.866 0.928

Hypocotyl 0.915 0.959 0.881 0.937
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networks error was less than 1 cotyledon per embryo. The

agreement percentage was 50%, meaning exactly half of the

embryos had the cotyledon count predicted correctly.

For the cotyledon counts of the three unseen cell lines, the

network performed similarly well, demonstrating ME scores of 0.01

(0.70), 0.05 (0.77) and -0.18 (0.91) for cell lines D, E, and F

respectively (Table 5). MAE scores were 0.43 (0.55), 0.47 (0.61),
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and 0.51 (0.78), respectively. The network returned MSE scores of

0.49, 0.60 and 0.86, respectively. Agreement scores obtained were

59.4, 58.1 and 61.5, respectively, which suggests the counting

approach performed better on unseen cell lines than on the test

set. This could be due to the larger sample size allowing for a more

comprehensive evaluation of the approach’s performance.
4 Discussion

4.1 Embryo segmentation

Results from the convolutional neural network approaches

investigated in this study have shown strong suitability for both

segmentation and detection of hypocotyl and cotyledons of somatic

embryos of Pinus radiata. Their ability to consider shape and

textural visual features, in addition to the traditionally used pixel

intensity information, has yielded promising results for these

segmentation-based tasks.

Semantic segmentation demonstrated strong quantitative

performance in segmentation of the hypocotyl and cotyledon

regions as indicated by precision, recall, and F1 scores above 0.91

for all three classes on the test set. IoU values of 0.867 for cotyledon

and 0.872 for hypocotyl indicate a good level of performance, but

also suggests room for improvement. This is backed up by

visualisation of the segmentation predictions, as we can see that
FIGURE 6

Raw images of Pinus radiata somatic embryos and corresponding
instance segmentation masks derived from Mask R-CNN. Displaying
the manually identified number of cotyledons as green text and the
model detected number as orange text, for embryos from three
different cell lines (A-C). Different region colours represent different
instances detected. The largest instance represents the hypocotyl in
each image.
FIGURE 7

Boxplots of the number of manually identified cotyledons of Pinus
radiata somatic embryos for cell lines (A-C) from
microscope images.
FIGURE 8

Boxplots of the number of manually identified cotyledons of Pinus
radiata somatic embryos for cell lines D, E and F which were not
used to train the model.
TABLE 4 Cotyledon count metrics for the 42 Pinus radiata somatic
embryos in the validation and test datasets from cell lines A, B and C.

Data ME (DiC) MAE (ADiC) MSE Agreement %

Validation -0.19 (0.88) 0.48 (0.76) 0.81 64.3

Test -0.31 (0.83) 0.60 (0.66) 0.79 50.0
For mean error (ME), mean absolute error (MAE) and mean squared error (MSE), values
close to zero are best. Standard deviations are shown in brackets.
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sometimes the model struggles with where to segment the boundary

between these two regions. This is a challenging area even for

humans as it is sometimes not obvious where the cotyledons end

and the hypocotyl region begins, so it is not surprising that there is a

degree of confusion when the neural networks segment this region.

Visualisation of the semantic segmentation predictions on the

test set show the model’s performance is comparable to the expert

human annotator. The strong segmentation performance will allow

for accurate automated measurements of morphological features

which can be used in subsequent techniques, such as selection of

high-quality embryos. Previous studies (Hamalainen and Jokinen,

1993; Chi et al., 1996; Find and Krogstrup, 2008; Le et al., 2021)

performing image segmentation of somatic embryos using pixel

intensity-based thresholding methods do not report segmentation

metrics, nor do they distinguish between different regions of the

embryo, so we are unable to provide a comparison to our results.

Instance segmentation gave similarly strong performance

metrics for pixel segmentation of the regions of interest.

However, performance was not as accurate as semantic

segmentation when inspecting the visualized predictions,

particularly in the cases showing separation between the

hypocotyl and cotyledon regions. In semantic segmentation,

the model learns what a general cotyledon region looks like from

the training images, which is a likely reason why it performs better

in the cotyledon metrics compared to instance segmentation. The

instance segmentation approach is learning to detect individual

cotyledon regions and thus is not able to consistently segment a

smoothed lower cotyledon region as in the semantic segmentation

approach. If relying on instance segmentation alone for the region

identification, postprocessing steps such as filling holes within the

cotyledon regions could improve accuracy by a small margin but

they will not address the observed gap regions between the

cotyledon region and hypocotyl. As a result, the semantic

segmentation network is more suitable for embryo segmentation

if accurate identification of hypocotyl and cotyledon boundaries

without any gaps or holes is desired. Overall, the segmentation

approaches show the ability for improved accuracy and consistency

over previous approaches (Uozumi et al., 1993; Chi et al., 1996; Find

and Krogstrup, 2008; Le et al., 2021) increasing the potential for

large scale production of mature somatic embryos.

Although great care was taken by expert annotators, we

acknowledge that there is potential for a small degree of

annotation error. These labelling errors are due to the sometimes-

objective task of deciding where the bottom of the cotyledon region

finishes, and where the bottom of the hypocotyl region finishes.
Frontiers in Plant Science 10
These errors can cause small confusions when training the model

and are likely to be a contributor to pixel misclassifications,

contributing to the performance metrics.
4.2 Cotyledon counts

Cotyledon counting test results (MAE=0.60, MSE=0.79) from

the Mask R-CNN approach showed strong ability to count

individual cotyledons. Agreement percentage score on the test

dataset of 50 illustrates similar techniques can be as effective for

somatic embryo when compared with previous studies in a related

field, leaf counting, which achieved scores below 45 percent using

deep learning (Aich and Stavness, 2017; Giuffrida et al., 2018).

Additionally, similarly strong metrics on unseen cell lines highlights

the model’s ability to generalize to embryos from cell lines that it

has never seen before. The low degree of error, averaging less than

one cotyledon per image, indicates that the number of cotyledons

can be confidently used as an additional feature when performing

subsequent analysis such as correlating germination success with

cotyledon count, or when investigating cotyledon counts

by genotype.

A limitation of our experimental approach is that microscopic

image collection is laborious compared with standard lower

resolution cameras. These lower resolution cameras can often be

combined with robotics or fluidics to fully automate the acquisition

as in Le et al. (2021). However, the network is likely to require fine-

tuning or retraining to work well on images from a lower resolution

source. Lower resolution cameras could reduce costs while

increasing acquisit ion speed, allowing for large scale

quantification of somatic embryos in an automated system such

as the fluidics system or a robotics system with vision cameras.

In addition, we noticed the model sometimes failed to detect

very small or partially occluded cotyledons, suggesting lower

resolution lateral view images could be more challenging as it will

reduce the area of those smaller or occluded cotyledons. In such a

case, an apical view, as in Timmis et al. (2015) and Hirahara and

Spencer (2007), would provide a clearer view of the cotyledons and

their structure (Hirahara and Spencer, 2007). This would also allow

for accurately estimating the true number of cotyledons instead of

the visible number of cotyledons, which is a limitation of using

lateral view images. If lower error is desired, future work could

explore use of regression based CNNs for automating cotyledon

counting which has proven highly successful in the plant counting

literature on the CVPPP Plant Leaf Challenge dataset (Giuffrida
TABLE 5 Cotyledon count metrics for predicting cotyledon count on Pinus radiata somatic embryo from three cell lines which were not used to train
the model.

Cell Line n ME (DiC) MAE (ADiC) MSE Agreement %

D 96 0.01 (0.70) 0.43 (0.55) 0.49 59.4

E 191 0.05 (0.77) 0.47 (0.61) 0.60 58.1

F 96 -0.18 (0.91) 0.51 (0.78) 0.86 61.5
Standard deviations are shown in brackets.
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et al., 2018; Itzhaky et al., 2018). These networks are trained to

directly predict counts, and often don’t require manually annotated

regions, instead, only requiring a count per image as input to train

the network. This can save hours of manually labelling cotyledon

instances in images.

Although instance segmentation allows for both segmentation

and counting, the counts are not directly estimated and learnt by the

network and are instead obtained by postprocessing the instances

detected. Overall, our results indicate benefits to using both

approaches with semantic segmentation enabling more complete

prediction masks with less gaps and holes, and instance

segmentation having the unique ability to infer accurate

cotyledon counts. Future work could consider a fusion approach

which combines segmentation and counting into a single neural

network, with the goal of achieving accurate results for both tasks.

Fan et al. (2022) used such an approach for binary image

segmentation and counting of mature Arabidopsis plant leaves,

achieving good results. Learning both the counts and the pixelwise

segmentations in the same network has the potential to achieve

optimal performance in both tasks, without having to train two

separate CNNs.

Despite using less than 200 images to train the networks, we

have demonstrated robust performance on an independent test set

of 42 images, as well as on a further independent test set comprising

380 images from unseen cell lines. This strong performance on

unseen data, which is considered the gold standard in data science,

underscores the validity of our approach. Our use of ‘transfer

learning’, a widely accepted and popular technique in the field,

further bolsters the credibility of our methodology and its

performance highlights that thousands of images are not required

to achieve results similar to that of a human. However, a larger

training dataset has potential to improve predictions as it provides

the neural network with more examples to learn from. It would also

allow for training the model from scratch instead of using a pre-

trained network. These adjustments have the potential to improve

both semantic and instance segmentation results, potentially

boosting instance segmentation mask prediction performance to a

similar level as semantic segmentation and therefore removing the

need for implementing both approaches.
5 Conclusion

In this study we tested, for the first time, the performance of

convolutional neural networks for the segmentation of P. radiata

somatic embryos into cotyledon and hypocotyl regions. We also

evaluated instance segmentation for the first time to distinguish

individual cotyledons to allow for automated counting. The results

demonstrated promising performance for both tasks, and highlight

advantages over previous approaches, such as the ability to

accurately delineate regions of similar spectral intensity by using

shape and structural features learnt by the CNN. The ability to

count cotyledons with a low degree of error removes the need for

manual counting of cotyledons for any type of analysis such as

genotype comparison, assessment of maturation protocols, unusual
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phenotype detection, and automated embryo sorting. Similarly, the

ability for deep learning to automate the separation of the hypocotyl

and cotyledon regions removes the need for manual image

annotation to obtain these regional boundaries for further

embryo analysis. Our approach of separating the embryo into two

distinct regions provides added information for subsequent

analysis such as quantification of morphological characteristics

which are crucial variables for embryo sorting or predicting

germination success.

Our work marks a crucial step in automating the classification

of somatic embryos based on criteria like morphology,

developmental stage, and genetic characteristics. By developing

germination prediction models using these criteria, we can

potentially reduce the cost of regenerated plantlets, making high-

quality varieties more accessible to forestry owners. Automated

sorting not only expedites the process but also minimizes human

error, ensuring greater accuracy in selecting desired embryos.

Beyond automation, these technologies reveal intricate patterns in

large datasets, providing insights into factors influencing embryo

development. This understanding can optimize culture conditions,

enhancing success rates in somatic embryogenesis and

biotechnologies. The integration of machine learning and

automation accelerates traditional processes, fostering innovation

in biotechnology.

Applying knowledge to automated systems for image

acquisition and sorting (fluidic systems or robotics) is crucial.

Further research should investigate the performance on images

from lower resolution imaging systems which can easily be

embedded into automated sorting systems for somatic

embryogenesis. We believe these techniques could be successfully

used for other coniferous species if species specific images are

collected. Alternative and more recently developed neural

networks, such as vision transformers (Thisanke et al., 2023) or

networks which jointly learn segmentation and regression e.g (Fan

et al., 2022) should also be considered as they may allow for greater

accuracy and remove the need for using two separate approaches.

Additionally, deep learning for computer vision is a rapidly

progressing field and researchers should keep up to date with

recent advancements, not limited to other applications.
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