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In the field of plant breeding, variousmachine learningmodels have been developed

and studied to evaluate the genomic prediction (GP) accuracy of unseen

phenotypes. Deep learning has shown promise. However, most studies on deep

learning in plant breeding have been limited to small datasets, and only a few have

explored its application in moderate-sized datasets. In this study, we aimed to

address this limitation by utilizing a moderately large dataset. We examined the

performance of a deep learning (DL) model and compared it with the widely used

and powerful best linear unbiased prediction (GBLUP) model. The goal was to assess

the GP accuracy in the context of a five-fold cross-validation strategy and when

predicting complete environments using the DL model. The results revealed the DL

model outperformed the GBLUP model in terms of GP accuracy for two out of the

five included traits in the five-fold cross-validation strategy, with similar results in the

other traits. This indicates the superiority of the DLmodel in predicting these specific

traits. Furthermore, when predicting complete environments using the leave-one-

environment-out (LOEO) approach, the DL model demonstrated competitive

performance. It is worth noting that the DL model employed in this study extends

a previously proposed multi-modal DL model, which had been primarily applied to

image data but with small datasets. By utilizing a moderately large dataset, we were

able to evaluate the performance and potential of the DL model in a context with

more information and challenging scenario in plant breeding.
KEYWORDS

GBLUPmodel, genomic prediction, multi-modal deep learningmodel, machine learning
methods, relationship matrices
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Introduction

Wheat holds immense importance globally as a vital crop that

serves as a staple food source for a significant portion of the world’s

population (Poland et al., 2012). It is cultivated in diverse

agroclimatic regions and plays a critical role in ensuring global

food security (FAO, 2021). The primary objective of wheat breeding

programs is to develop superior varieties with enhanced traits such

as higher yield potential, improved disease resistance, and better

end-use quality. To expedite the breeding process and maximize

genetic progress, genomics selection (GS) has emerged as a

powerful tool (Crossa et al., 2017). In this context, genomic

prediction has been extensively studied to enhance the efficiency

of wheat breeding programs. It incorporates genomic relationship

matrices to estimate the genetic variance and predict breeding

values based on marker information.

Researchers have developed various statistical models to

predict the performance of wheat lines based on genomic data.

One fundamental and widely used model in genomic prediction is

the Genomic Best Linear Unbiased Prediction (GBLUP) model,

due in part to its simplicity and effectiveness in accounting for

genetic relationships and accurately predict breeding values.

GBLUP has demonstrated promising results in predicting

complex traits in wheat, including yield, disease resistance, and

quality attributes (Heffner et al., 2011; Poland et al., 2012; Rutkoski

et al., 2016).

In recent years, deep learning models have gained attention for

genomic prediction tasks in wheat. These models leverage the

power of neural networks to learn complex patterns and

relationships in genomic data (Crossa et al., 2017; Montesinos-

López et al., 2018). The convolutional neuronal and the multilayer

perceptron networks are the most common architecture applied in

GS (Jiang and Li, 2020), and to reduce the number of weights to

estimate during the training process more often a compressed

version of the matrix of genomic relationship is used to feed the

network instead of directly using the thousands of single nucleotide

polymorphisms (SNP) available (Montesinos-López et al., 2018,

Montesinos-López et al., 2021).

More recently, multi-modal deep learning models have

emerged as an alternative that leverages multiple data modalities

to improve prediction and analysis tasks (Liu et al., 2018). These

models integrate multiple types of data inputs, such as genomic,

phenotypic, and image environmental data, to improve prediction

accuracy and robustness. By combining information from various

sources, multi-modal models capture the interactions and

correlations between different data modalities, leading to more

accurate predictions and a better understanding of the underlying

genetic architecture (Rahate et al., 2022).

Multi-modal deep learning has been explored and applied in

diverse research fields, including the field of healthcare (Huang

et al., 2020; Venugopalan et al., 2021; Kline et al., 2022;

Stahlschmidt et al., 2022), agriculture (Danilevicz et al., 2021;

Garillos-Manliguez and Chiang, 2021; Zhou et al., 2021), material

sciences (Muroga et al., 2023), natural language processing

(Morency and Baltrusǎitis, 2017; Zadeh et al., 2018), social media
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analysis (Balaji et al., 2021; Chandrasekaran et al., 2021), robotics

and autonomous perception (Melotti et al., 2020; Duan et al., 2022).

For an early overview on deep multi-modal learning models see

Ngiam et al. (2011) and Srivastava and Salakhutdinov (2012), and

for a survey of recent advances in multi-modal machine learning see

Ramachandram and Taylor (2017); Summaira et al. (2021) and

Jabeen et al. (2023). In wheat genomic prediction, multi-modal deep

learning models have been explored and applied as a promising

approach (Kick et al., 2023; Montesinos-López et al., 2023). These

studies have demonstrated the potential of multi-modal deep

learning in enhancing the accuracy of genomic prediction for

wheat traits.

Based on the previous considerations on how DL can be

employed for genomic prediction in this study we follow a similar

network structure as the previous study of Montesinos-López et al.

(2023), up to the output layer. However, instead of directly

combining the final outputs of individual networks from each

modality to create the final output, we introduced an additional

layer under a multi-layer perceptron network. This network has a

similar architecture to the individual networks in each modality but

with its own set of hyperparameters, which are also part of the

tuning process. Furthermore, this study involves a moderately large

dataset (4,464 wheat lines), allowing for a comprehensive evaluation

of prediction accuracy. We compared the performance of our multi-

modal deep learning model with the powerful GBLUP model,

widely used in this field. This comparison enables us to assess the

effectiveness of the multi-modal approach and its potential for

enhancing genomic prediction accuracy in this specific context.
Materials and methods

Phenotypic data

The phenotypic data corresponds to the measurement of five

traits (Yield, Germination, Heading, Height, and Maturity) in 4,464

wheat lines grown during the 2021/2022 crop season at the Norman E

Borlaug Experiment Station, Ciudad Obregon (27°20′N, 109°54′W),

Sonora, Mexico. The complete set of lines was tested under four

different environments: (1) Beds with five irrigations (B5IR):

genotypes were grown on raised beds with about 500 mm of

available water and optimal sowing date during late November–

early December, (2) Beds with two irrigations (B2IR): genotypes were

grown on raised beds with about 250 mm of available water and

optimal sowing date, (3) Bed Drought-Drip stress (BDRT): genotypes

were grown on raised beds with about 120 mm of available water and

optimal sowing date, and (4) Bed late heat stress (BLHT): genotypes

were grown on raised beds with about 500 mm of available water and

late sowing date (mid-February). Yield was measured in all

environments, while Germination, Heading, Height and Maturity

were determined in three out of four (B5IR, B2IR, and BDRT).

Recently this data set was employed by Montesinos-López et al.

(2023) for assessing the benefit of applying sparse phenotype field

trials for genomic prediction at early testing generation of the

population improvement (occurring at F4 or F5)>.
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Genotypic data

The genotypic information comprised a total of 18,239 SNP

markers. Genotyping was performed using the Genotyping-by-

Sequencing (GBS) method, employing an Illumina HiSeq2500

sequencer at Kansas State University (Poland et al., 2012). Quality

control was conducted using TASSEL v5.0 software (https://

tassel.bitbucket.io). Raw data underwent filtration based on a

minor allele frequency (MAF) cut-off of less than 5% and a

missing data threshold of less than 50%. Subsequently, the

HapMap file was converted into a numerical matrix to enable

compatibility with the genomic prediction software. For the

numerical representation, TASSEL assigned a value of 1 for

homozygous major alleles, 0 for homozygous minor alleles, and

0.5 for heterozygous genotypes. To align the numerical matrix with

the analysis tools utilized, substitution coding was applied,

substituting the values with -1, 1, and 0, respectively. Finally,

mean imputation was employed to address any missing values in

the numerical matrix.
Statistical models

Bayesian GBLUP model
One of the statistical models used assumes that each response

variable follows the relation:

Yij = m + Ei + ɡj + ɡEij + ϵij (1)

where Yij is the response variable for line j in environment i, m is

the general mean, Ei are the fixed effects of environment, ɡj and ɡEij
are the random effects of lines and random interaction effects of

environment and line, respectively, and ϵij are the random error

terms assumed to be independents normal random variables with

mean 0 and variance s 2
ϵ . In addition, the random effects of lines and

random genotype by environment interaction are assumed

independently each other with the following distribution: ɡ =

(ɡ1,…,ɡJ)
T ∼ NJ (0J ,s 2

ɡG) and ɡE = (Eɡ11,…, EɡIJ )
T ∼ NIJ(0IJ ,

s 2
Eɡ(II ⊗G)) with 0J and II the null vector of size J and the

identity matrix of dimensions I �   I, and ⊗ the Kronecker product.

A Bayesian estimation of these models was performed using a

flat prior for the general mean and the fixed effects. For the variance

components (s2
ϵ , s 2

ɡ and s 2
Eɡ) a scale inverse chi-squared

distribution was employed. The model was implemented using

the BGLR R package (Pérez-Rodrıǵuez and de los Campos, 2014)

with the default hyperparameter values.
DL model
The same information used in Equations 1 was employed to

make predictions under the following multi-modal deep learning

model (DL) with single output (Ouyang et al . , 2014;

Ramachandram and Taylor, 2017):

Yij = f (xij;W) = fO w(O)
0 + x*

(L)T
ij w(O)

1  
� �

(2)
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where fO is the output activation function with associated

weights w(O)
0 and w(O)

1 . x*
(L)T

ij is the transpose of the vector with

the neurons of last hidden layer (x*
(L)

ij ) for a multilayer perceptron

(MLP) neural network with L hidden layers, each layer with N (l)

neurons and activation function fl(l = 1, :, L), that use as input the

concatenated outputs of the Q separately neural networks apply to

each modality. That is, x*
(L)

ij is computed recursively from:

x*
(l)

ij = x*
(l)T

ij1 ,…, x*
(l)T

ijN (l)

h iT
=   fl z*

(l)
ij1

� �
,…, fl z*

(l)

ijN (l)

� �h iT

= fl w(l)
01 + x*

(l−1)T
ij w(l)

11

� �
,…, fl w(l)

0N (l) + x*
(l−1)T

ij w(l)
1N(l)

� �h iT

whereW(l)
k = w(l)

1 ,…,w(l)
N (l)

h iT
is the matrix of weights for layer l

with w(l)
k = w(l)

0k,w
T(l)
1k

h iT
for   k = 1, :,N (l). Here x*

(0)
ij is defined as

x*
(0)

ij = ½x(L1)Tij(1) ,…, x
(LQ)T
ij(Q) �T with x

(Lq)
ijq   denoting the transpose of the

vector x
(Lq)
ij(q) that contain the outputs of the last hidden layer of the q-

th MLP neural network (with Lq hidden layers, each layer with N (l)
q

neurons and activation function f (q)l , l = 1, :, Lq) corresponding to

the q-th modality (q = 1,…,Q), which in turn are computed

recursively as:

x(l)ij(q) = x(l)ij1(q),…, x(l)
ijN (l)

q (q)

� �T
= f (q)l z(l)ij1(q)

� �
,…, f (q)l z(l)

ijN (l)
q (q)

� �� �T

where z(l)ijk(q) = w(l)
0k(q) + x(l−1)Tij(q) w(l)

1k(q), k = 1,…,N (l)
q , are linear

transformations of the N (l−1)
q neurons in layer l − 1 that define the

neurons in layer l after applying the activation function f (q)l , x(l)ijkq =

f (q)l (z(l)ijkq), W
(l)
k(q) = w(l)

1(q),…,w(l)
N (l)(q)

h iT
is the matrix of weights for

the hidden layer l (l = 1, :, Lq) for the q-th neural network, w(l)
k(q) =

½w(l)
0k(q),w

T(l)
1k(q)�T for   k = 1, :,N(l)

q , and x(0)ij(q) = xij(q) are the inputs

corresponding to q-th modality.

In the implemented models, all applied deep learning models

are versions of Equation 2 that utilized a stacked residual network

(ResNet) composed of 2 sequence layers (He et al., 2016). These

were implemented with library TensorFlow in Python software,

using a Batch_size value equal to 32, 48 epochs and the Adam

optimizer (a stochastic gradient descend method to minimize the

penalized loss function in DL) and using callback options of the fit

keras function and specifying an adaptative exponential decay

learning scheduler.

In all, for each modality (type of input) the number of units

after the second hidden layer was equal to half of the units in the

preceding layer, for example, for the neural network for the q-th

modality,

N (l)
q   =  ⌊ N (1)

q

2l−1
⌋,   l   =   2,   :   :   :  ,   Lq

where x denotes the largest integer less than x, and N(1)
q is the

required number of units for the first hidden layer. Similarly, for the

multilayer perceptron network after concatenating the outputs of

the Q individual MLP neuronal networks, for a specified neurons in
frontiersin.org
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its first layer (N (1)), the neurons of the latter layers was taken as

N(l)   =   ⌊ N (1)

2l−1
⌋,   l   =   2,   :   :   :  ,   L.

The rectified linear unit (ReLU) activation function was utilized

in all hidden layers of the model, except for the output layer. For the

output layer, a linear activation function was employed, assuming

the conditional distribution of each trait follows a normal

distribution. After each dense layer and prior to applying the

activation function, a batch normalization layer was inserted. This

layer help in approximately standardizing the outputs, ensuring a

mean close to 0 and a standard deviation close to 1. For more

detailed information, please refer to Figure 1.

For the training process, we employed an inner 10-fold cross-

validation strategy. To expedite the training, only two out of the ten

folds are utilized for validation. An early stopping rule is

implemented through the callback option. The rule specifies

monitoring the ‘loss’ function, with a mode of ‘min’ and a

patience of ‘Pat’. This rule checks whether the loss function on

the training data stops decreasing at the end of each epoch. If it

continues for an additional ‘Pat’ epochs, the training is halted.

To mitigate overfitting, dropout and L2 regularization were

incorporated at each hidden layer, while only L2 regularization

applied to the output layer. L2 regularization penalizes the loss

function (e.g., sum of squared error loss) by adding the sum of

squared weights multiplied by a regularization parameter (l). This
parameter controls the extent to which the weights are shrunk

toward zero, reducing the model’s complexity and preventing
Frontiers in Plant Science 04
excessive fitting to the training data. Dropout involves randomly

setting a fraction of the weights to 0 at each training step.

Hyperparameters tuned in the experiment included learning

decay (wd), patience values (Pat), dropout rate (DO), and

regularization parameters (l). The optimization of these

hyperparameters was performed using the bayes_opt library with

50 iterations. The objective was to find the combination of

hyperparameter values that minimized the mean squared error on

the validation set. Table 1 provides a complete list of the

hyperparameters and their corresponding search space.

Themodels were executed on a single computer node with 32GB of

RAM and 16 cores, together with a 20 GB GPU, and the experiments

were conducted using Python version 3.8.10 and TensorFlow 2.11.0. On

average, training each time a DLmodel with the specified characteristics

described in the paper took approximately between 8 and 15 hours. In

subsequent references within this manuscript, DL will be used to denote

the specific deep learning (DL) model given in Equation 2, except in the

LOEO evaluation where only the line effect is used.

Specifically, for the 5-fold cross-validation (5FCV) strategy

described in the next section, the multi-modal DL Equation 2

was trained with 3 modalities corresponding to the information

of the matrix design of environment (XE), the genotype information

(XL = ZLLG) and the environment-genotype interaction

information (XEL = ZELLEG), where ZL  and ZEL are the matrix

design of lines and the matrix design of the environment-line

interaction, and LG and LEG are respectively the upper triangular
FIGURE 1

Top diagram: Multi-modal deep learning model (DL) with Q modalities (types of input). Bottom diagram: Stacked Residual Network (ResNet)
composed of two sequential dense layers (FCL) applied in each MLP Neural Network. FCL(L2) + BN + ReLU denotes the successive application of a
fully connected layer (FCL) with L2 regularization, batch normalization layer, and a ReLU activation function. Similarly, FCL(L2) + BN indicates the
application of a fully connected layer with L2 regularization and batch normalization, while “DO” indicates the application of dropout regularization.
The final output is produced by using the concatenated outputs of the Q networks as input to another MLP Neural Network. The output layer of this
network consists of one neuron with a linear activation function and L2 regularization for its weights (concatenated outputs of all Q MLP Neural
Networks + FCL + L2).
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part of the Cholesky decomposition of the genomic relationship

matrix G   (G = LTGLG) and the upper triangular part of the Cholesky

decomposition of the “environment-genomic” relationship matrix

GEG = II ⊗G   (GEG = LTEGLEG).

To evaluate the DL models for predicting the performance of an

entire environment using the lines from all other environments

(LOEO), the same DL model was employed. However, in this case,

only the information of the matrix design of environment (XE) and

the genotype information were utilized as inputs. As a result, in the

first predictor (GID) the DL is reduced to a single-modal DL model.
Assessment of prediction accuracy

Two strategies were used to evaluate and compare the models’

predictive performance. The first strategy, 5FCV, involved dividing

the dataset into five balanced subsets. Four subsets were used for

training the model, while the remaining subset was reserved for

testing. This process was repeated, ensuring each subset served as

the testing set once. The model’s performance was assessed by

calculating the average Normalized Root Mean Squared Error

(NRMSE) and Pearson’s correlation coefficient across all five

partitions. The standard deviation was also computed to judge

performance variability.

The second strategy, LOEO, is focused on predicting an entire

environment using data from the other environments as training.

During training, the models excluded the effects of environment (E)

and the interaction between environment and lines (Eg). NRMSE

and Pearson’s correlation coefficient were calculated for each

predicted environment separately, allowing a detailed evaluation

of the model’s performance in predicting specific environments.
Frontiers in Plant Science 05
By employing these strategies, the models’ predictive accuracy

was assessed using NRMSE and Pearson’s correlation coefficient.

The 5FCV approach provided an overall performance evaluation

across the five cross-validation partitions, while LOEO enabled the

evaluation of performance in individual environments.
Data availability

The phenotypic and genomic wheat data employed in this study

can be downloaded from the following link https://hdl.handle.net/

11529/10548813 (Montesinos-López et al., 2023).
Results

The results are provided in three sections. First, for evaluating

the prediction performance under tested lines in tested

environments under a 5FCV, second, under tested lines in

untested environments under the LOEO strategy and third, a

summary of the hyperparameter values used in the trained models.
Tested lines in tested environments under
a 5FCV strategy

The fitted models for each of the four traits separately included

the GBLUP Equation 1 and the deep learning Equation 2, along

with sub-models of these primary models. Specifically, the first

assessment of these models regarding its genomic prediction ability

was conducted using the 5FCV strategy with the predictors E + G +

GE and E + G. The results are presented in Table 2 with the first,

second and third columns indicating the model (GBLUP or DL),

the trait and the predictor, respectively, and the last two columns

the average and standard deviations values of the evaluated metrics

(NRMSE and Cor). The results are also displayed in Figures 2 and 3.

From Table 2, it can be observed that the GBLUP model performed

best on average under the two evaluated metrics for three out of the

five studied traits: Yield, Height, and Germination. The DL models

showed an average NRMSE between 0.27% and 1.76% higher than

the corresponding GBLUP models. However, the difference in

performance was less pronounced for the Germination trait. In

terms of the average correlation (Cor), the GBLUP model had

values between 0.15% and 1.13% higher than those observed with

the DL models. With this metric, the difference in performance was

less pronounced for the Yield trait.

For Maturity and Heading, the DL models demonstrated better

performance under the two evaluated metrics; the GBLUP model

yielded an average NRMSE between 1.6% and 7.68% higher

compared to the values obtained with the DL models, and in

terms of the average Pearson’s correlation (Cor), the DL models

provided between 0.33% and 2.33% higher values compared to

those obtained with the GBLUP model. Furthermore, we can

observe the GBLUP model exhibited a slightly better performance

in all traits when using the predictor that involved environment,

line, and environment-line interaction effects (E+G+GE) compared
TABLE 1 Hyperparameters of the DL model and their respective
domain space.

Hyperparameter Notation Bounds

Hidden layers for the MLP NN
for each modality
Hidden layer for the MLP after
concatenating the outputs of the
NN of the 3 modalities

L1,   L2 and L3 (1,4), (1,6) and (1,6)

L (0,4)

Number of neurons for the first
layer in each modality

Number of neurons for the first
layer in the MLP after
concatenating the outputs of the
NN of the 3 modalities

N (1)
1 ,    N (1)

2 ,  N (1)
3

(0, 128), (1,1024)
and (1, 1024)

N(1) (0, 200)

Regularization parameter for L2 l (1e-8,1e-2)

Dropout DO (1� 10−4,0.5)

Log weight decay lwd = ln(wd)
( ln (4�

10−5), ln (4� 10−1))

Patience Pat (0, 128)

Log learning rate llr = ln(lr)
( ln (1�

10−8), ln(1� 10−2))
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TABLE 2 Average normalized root mean squared error of prediction (NRMSE) and average Pearson’s correlation (Cor) in a 5-fold cross-validation strategy
when predicting each one of the five traits (Yield, Maturity, Height, Heading and Germination) with GBLUP and DL models using E+G and E+G+EG
as predictors.

Model Trait Predictor NRMSE (SD) Cor (SD)

GBLUP Yield E+G 0.0932(0.0008) 0.9203(0.0024)

GBLUP Yield E+G+GE 0.0908(0.001) 0.9245(0.0023)

GBLUP Maturity E+G 0.0259(0.0002) 0.9181(0.001)

GBLUP Maturity E+G+GE 0.0256(0.0002) 0.9199(0.0008)

GBLUP Height E+G 0.0536(0.0006) 0.7674(0.0091)

GBLUP Height E+G+GE 0.0532(0.0006) 0.7711(0.0093)

GBLUP Heading E+G 0.0405(0.0006) 0.8683(0.006)

GBLUP Heading E+G+GE 0.0399(0.0006) 0.8725(0.0058)

GBLUP Germination E+G 0.082(0.0024) 0.5721(0.0141)

GBLUP Germination E+G+GE 0.082(0.0025) 0.5727(0.0142)

DL Yield E+G 0.094(0.0011) 0.9189(0.0032)

DL Yield E+G+GE 0.0923(0.0014) 0.922(0.0029)

DL Maturity E+G 0.0249(0.0002) 0.9249(0.0011)

DL Maturity E+G+GE 0.0252(0.0003) 0.9229(0.0012)

DL Height E+G 0.0545(0.0013) 0.7588(0.0163)

DL Height E+G+GE 0.0541(0.0006) 0.7628(0.0088)

DL Heading E+G 0.0376(0.0011) 0.8885(0.008)

DL Heading E+G+GE 0.0389(0.0008) 0.8798(0.0062)

DL Germination E+G 0.0823(0.0025) 0.5689(0.0166)

DL Germination E+G+GE 0.0825(0.0024) 0.5685(0.016)
F
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SD represents the standard deviation of the metric across the folds.
FIGURE 2

Average Pearson’s correlation (Cor) across five-fold cross-validation for each of the five traits (Germination, Heading, Height, Maturity, and Yield) for
GBLUP and deep learning (DL) models using two predictors (E+G and E+G+GE). The limits of the vertical lines in each bar indicate the average
minus and plus one standard deviation (SD) values of Cor obtained across folds. E, G, and GE represent the environment, lines, and environment-
lines interaction effects, respectively.
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to the predictor with only the first two effects (E+G). However, with

DL, this situation was observed only for the traits Yield, Height, and

Germination with NRMSE, and only for the first two of these traits

(Yield, Height) with the Cor metric. This indicates the importance

of the environment-line interaction effect in the mentioned traits.

We observed an overlap of the intervals formed by subtracting

and adding one standard deviation (SD) to the average metric

values obtained in each model for each trait and predictor. From

this, we can infer a very similar performance of both evaluated

models in the 5FCV strategy. In fact, the average values across the

five traits and all predictors (E+G, E+G+GE) for the average metrics

presented in Table 2 are very similar, approximately 0.0587 for

NRMSE and 0.81 for Cor.
Tested lines in untested environments
LOEO strategy

In the LOEO strategy, the information of a complete

environment was predicted with the rest of the environments in

each trait. This was done with the GBLUP Equation 1 and DL

Equation 2 under two predictors, the first with only line effect (G)

and the second with environment plus line effect (E+G). The results

are presented in Table 3 and Figures 4, 5. The first column indicates

the trait to be predicted, the second column represents the predictor

used, the third column denotes the environment to predict, and the

last two columns display the NRMSE and Cor values obtained with

the GBLUP and DL models, respectively.

Considering the 32 prediction scenarios, which correspond to

all combinations of trait-predictor-environment (5 traits, 4 of these

traits with three environments, and 1 trait with 4 environments, and

2 predictors (E and E+G)), we compared the performance of the

models. In 11 out of 32 combinations, the DL model exhibited
Frontiers in Plant Science 07
smaller NRMSE values, while in another 11 out of 32 combinations,

the DL model achieved higher Pearson’s correlation values (Cor).

Conversely, the GBLUP model outperformed the DL model in the

remaining combinations.
Yield

GBLUP and DL showed better Cor performance when using only

the line effect (G) compared to the predictor E+G. However, the

NRMSE results exhibited a different pattern. In the GBLUP model, the

G predictor outperformed E+G in three out of the four environments

(B2IR, B5IR, and BLTH), while for the DL model, the more complex

predictor (E+G) was only better than G predictor in one environment

(B2IR) out of four. For this trait, the DL model outperformed the

GBLUP model in two out of the four predicted environments.

Specifically, the DL model performed better than the GBLUP model

in the BLTH environment when considering the NRMSE metric, and

in the B2IR environment when considering the Cor metric.
Maturity

GBLUP and DL showed better performance in terms of

correlation (Cor) when using the E+G predictor compared to the

G predictor. However, when considering the NRMSE metric, the

results were opposite. The G predictor performed better in both

models across all environments, exhibiting lower NRMSE values.

Additionally, the DL model consistently showed higher correlation

values than the GBLUP model in all environments. The DL model

outperformed the GBLUP model in terms of NRMSE only in the

B2IR environment.
FIGURE 3

Average normalized mean squared error (NRMSE) across five-fold cross-validation for each of the five traits (Germination, Heading, Height, Maturity,
and Yield) for GBLUP and deep learning (DL) models using two predictors (E+G and E+G+GE). The limits of the vertical lines in each bar indicate the
average minus and plus one standard deviation (SD) values of Cor obtained across folds. E, G, and GE represent the environment, lines, and
environment-lines interaction effects, respectively.
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Height

The GBLUP model displayed better performance with the E+G

predictor compared to the G predictor in two out of three

environments for NRMSE and in all environments for Cor

metric. However, the DL model exhibited a different pattern. For
Frontiers in Plant Science 08
NRMSE, the G predictor outperformed E+G in two out of the three

environments, while for Cor, the DL model achieved better

performance with the E+G predictor in all environments. When

comparing the models, the DL model showed better NRMSE

performance in the B2IR environment, while the GBLUP model

outperformed in the other environments. In terms of correlation
TABLE 3 Normalized root mean squared error of prediction (NRMSE) and average Pearson’s correlation (Cor) in LOEO evaluation strategy when
predicting each one of the five traits (Yield, Maturity, Height, Heading and Germination) with GBLUP and DL models.

Trait

Model GBLUP DL

Predictor Env NRMSE Cor NRMSE Cor

Yield G B2IR 0.2244 0.1151 0.2344 0.0688

Yield E+G B2IR 0.58 0.196 0.2226 0.2072

Yield G B5IR 0.3678 0.2025 0.3679 0.1323

Yield E+G B5IR 0.3757 0.2242 0.3679 0.2183

Yield G BDRT 0.3343 0.1682 0.3345 0.0444

Yield E+G BDRT 0.1183 0.2004 0.3366 0.1612

Yield G BLHT 0.1087 0.1979 0.108 -0.0262

Yield E+G BLHT 0.137 0.3071 0.1094 0.259

Maturity G B2IR 0.065 0.4312 0.066 0.1832

Maturity E+G B2IR 0.1242 0.6294 0.0614 0.6697

Maturity G B5IR 0.114 0.5775 0.1133 0.6127

Maturity E+G B5IR 0.1092 0.5846 0.1146 0.6216

Maturity G BDRT 0.0789 0.3197 0.0801 0.2058

Maturity E+G BDRT 0.0307 0.5376 0.076 0.6061

Height G B2IR 0.0482 0.2779 0.0502 0.0721

Height E+G B2IR 0.0888 0.3433 0.0482 0.29

Height G B5IR 0.1178 0.2243 0.1171 0.1943

Height E+G B5IR 0.0873 0.2493 0.1189 0.2629

Height G BDRT 0.1392 0.1805 0.1392 0.0875

Height E+G BDRT 0.1047 0.2097 0.1403 0.1894

Heading G B2IR 0.0708 0.5594 0.0754 0.5039

Heading E+G B2IR 0.1232 0.7642 0.0568 0.8158

Heading G B5IR 0.1197 0.7412 0.121 0.7732

Heading E+G B5IR 0.1097 0.7558 0.1202 0.7894

Heading G BDRT 0.097 0.4528 0.1051 0.4359

Heading E+G BDRT 0.0512 0.6449 0.0953 0.6551

Germination G B2IR 0.1004 0.0907 0.1012 0.0447

Germination E+G B2IR 0.0723 0.0895 0.1002 0.0352

Germination G B5IR 0.0735 0.0308 0.0726 0.0184

Germination E+G B5IR 0.0651 0.0314 0.073 0.0134

Germination G BDRT 0.1727 0.0685 0.1728 0.0357

Germination E+G BDRT 0.1823 0.068 0.169 0.1063
The best predictor (G or G+E) for each combination (model/trait) is indicated in bold.
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(Cor), the DL model exhibited better performance in the B5IR

environment, while in the rest of environments the GBLUP model

was superior.
Heading

The GBLUP model performed better with the E+G predictor

compared to G in two out of the three environments for NRMSE

and in all environments for Cor metrics. However, the DL model

consistently showed better performance with the E+G predictor in

terms of both NRMSE and Cor in all environments. In this case, the
Frontiers in Plant Science 09
DL model outperformed the GBLUP model in all environments

when considering the Cor metric, and for the NRMSE metric, the

DL model was better in only one environment (B2IR).
Germination

Both models showed better performance with the E+G predictor

compared to the G predictor in two out of three environments in

terms of NRMSE. However, the results were opposite in terms of Cor,

where the G predictor exhibited better performance in the other two

environments. In this case, the DL model outperformed the GBLUP
FIGURE 4

Pearson’s correlation obtained in each environment when applying LOEO strategy for each of the five traits (Germination, Heading, Height, Maturity,
and Yield) for GBLUP and multi-modal deep learning (DL) models using two predictors (G and E+G).
FIGURE 5

Normalized mean squared error (NRMSE) obtained in each environment when applying LOEO strategy for each of the five traits (Germination,
Heading, Height, Maturity, and Yield) for GBLUP and multi-modal deep learning (DL) models using two predictors (G and E+G).
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model in the BDRT environment for both NRMSE and Cor metrics,

and in the remaining two environments the GBLUP was better.
Summary of the hyperparameter values
used in the trained models

A summary of the optimal hyperparameter values used in the

trained models for the 5FCV and LOEO evaluation strategies is

provided in Tables 4 and 5. The descriptions of Table 4 are:
Fron
• For the modality corresponding to environment effects (E),

the optimal number of hidden layers more frequently found

across the 5 partitions by the Bayesian optimization was 1

and 2 for models with predictor E+G and E+G+GE,

respectively. This pattern was observed in the Germination

and Height. In Heading and Maturity, the most frequently

observed optimal number of hidden layers were 2 for the E

+G predictor and 3 for the E+G+GE predictor. For Yield, the

optimal number of hidden layers varied, with 1 being the

most frequently observed for the E+G predictor, and 3 being

the most frequently observed for the E+G+GE predictor.

Regarding the optimal number of units, for Germination and

Heigh, the most frequently observed values were 128 units for

the E+G predictor and 89 units for the E+G+GE predictor.

For Yield, Maturity, and Heading with predictor E+G+GE

the units required were 60, and were 128, 114 and 114 for the

same traits but under predictor E+G.

• For the modality corresponding to the Line effect (Z_L �
L_G), the most frequently observed number of units was

around 796 units for all traits in the model with the predictor

E+G+GE. For the predictor E+G, the most frequently

observed number of units varied across the traits, with 179,
tiers in Plant Science 10
183, 302, 302, and 472 units for the Yield, Height, Maturity,

Heading, and Germination, respectively. Regarding the

hidden layers in this modality, 3 and 1 were the most

frequently observed values used in the models with both

predictors (E+G and E+G+GE) for the Heading and

Maturity traits. For the Height and Yield, regardless of the

predictor (E+G and E+G+GE), the most frequently observed

value was 1. Lastly, for Germination, the most frequently

observed values for the number of hidden layers found by

Bayesian optimization across the 5 partitions (5FCV) were 6

for the E+G predictor and 1 for the E+G+GE predictor.

• For the line-environment interaction modality effect, in all

traits the most frequently optimal number of hidden layers

observed was 1, and the corresponding optimal number of

units varied depending on the trait. For Yield, Maturity, and

Heading, the most frequently observed optimal number of

units was 285, and for Germination and Height, the most

frequently observed optimal number of units was 869.

• For 3 out of the 5 traits (Yield, Germination, and Height), in

many of the folds, the DL model did not require hidden

layers after the concatenation of the individual neural

networks (nHLB2
=0) when using the predictor E+G. In

cases where more than one hidden layer was required, the

most frequently observed optimal number of units (N2)

was 200 and 100 for Yield, and approximately 100 for

Height and Germination. For the other two traits, the

required number of hidden layers was 3. For the model

using the predictor E+G+GE, the most frequently observed

number of hidden layers was 2 for three traits (Yield,

Maturity, and Heading), and 1 for Germination and

Height. For model with predictor E+G+GE, the more

often hidden layers observed were 2 for traits Yield,

Maturity and Heading, and for these three traits the most
TABLE 4 Summary of the hyperparameter values used in the DL models for the 5-fold cross-validation (5FCV) performance evaluation strategy.

Trait Predictor l llr lwd DO N
1ð Þ

1 N
1ð Þ

2 N
1ð Þ

3 N 1ð Þ
L1 L2 L3 L Pat

Yield E+G 0.0044 -4.8609 -0.9982 0.0046 1 1 0 128 179 200,100 1

Yield E+G+GE 0.0003 -5.0740 -1.1720 0.1943 3 1 1 2 60 796 285 32 120

Maturity E+G 0.0046 -7.4161 -5.6717 0.3997 2 3 3 114 302 76 42

Maturity E+G+GE 0.0019 -5.5868 -1.5065 0.2521 3 1 1 2 60 796 285 32 120

Height E+G 0.0078 -4.6052 -0.9163 0.0001 1 1 0 128 183 1 1

Height E+G+GE 0.0045 -4.7462 -3.1049 0.3120 2 1 1 1 89 797 869 108 35

Heading E+G 0.0023 -6.2648 -4.1796 0.1873 2 3 3 114 302 76 42

Heading E+G+GE 0.0002 -5.1912 -1.2001 0.2250 3 1 1 2 60 796 285 32 120

Germination E+G 0.0088 -4.6052 -0.9163 0.2001 1 6 0 128 472 200 128

Germination E+G+GE 0.0075 -4.8166 -4.2082 0.3415 2 1 1 1 89 797 869 108 35
frontiers
The first two columns indicate the trait and the predictor used in the evaluation. Columns 3 to 6 represent the average values of the regularization (l), the logarithm of the learning rate (llr), the
logarithm of the weight decay (lwd) and the dropout rate (DO), respectively. In the columns 7 to 14 the most frequently observed optimal values (mode) across the 5 partitions in the 5-fold cross-

validation (5FCV) for the hidden layers (L1 , L2, L3) and the number of units (N(1)
1 , N(1)

2 ,N(1)
3 ) in the respective networks for each modality in the model. These columns also include the

information of the number of hidden layers (L) and number of units (N(1)) for the network created by concatenating the outputs of the individual networks before the output layer. The final
column indicates the most frequently observed optimal value for the patience (Pat) hyperparameter registered in the early stopping criteria across the partitions.
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frequently optimal number of units was 32. For

Germination and Height, the most frequently number of

hidden layers used was 1 and the most frequently optimal

number of units was 797.

• The most frequently optimal values for the patience

hyperparameter (Pat) ranged between 1 and 128 across the

5 traits and the two evaluated predictors. The most observed

value was 120. Regarding the rest of the hyperparameters, the

regularization parameter (l) ranged between 0.0003 and 0.0088

across all traits and predictors, with an average optimal value

of 0.004. The logarithm of the learning rate (llr), logarithm of

the weight decay (lwd), and dropout regularization (DO)

values ranged between (-7.4161, -4.6052), (-5.6717, -0.9163),

and (0.0001, 0.3997) respectively. The average values of the

most frequently observed values were -5.3167 for llr, -2.3874

for lwd, and 0.2117 for DO.
When predicting a complete environment using the rest

(LOEO), the most frequently optimal values of the integer

hyperparameters (hidden layers, units, and patience) for the

trained DL models are presented in Table 5. Additionally, the

table includes the average values of the optimal real-valued

hyperparameters (across environments) for the described

Equation 2. While there are variations in the configurations of the

NN models across traits and predictors, certain patterns can be

observed. Across all traits and predictors, the average optimal values

(across predicted environments) for the regularization parameter

(l), the logarithm of the learning rate (llr), the logarithm of the

weight decay (lwd), and dropout regularization (DO) fall within the

intervals (0.0015, 0.01), (-7.08, -4.6051), (-8.1574, -0.9162), and

(0.0001, 0.4942), respectively. The average values of these average

optimal values are approximately in the middle of these intervals.
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We observed the following patterns for the models with

different predictors.
• For models with the predictor G, the most frequently optimal

number of hidden layers (column L2) for the corresponding

neuronal networks were 5, 1, 1, 2, and 6 for traits Yield,

Maturity, Height, Heading, and Germination, respectively.

The corresponding number of units (N (1)
2 ) were 552, 709,

101, 101, and 127, with none reaching the upper bound of

1024 set in the search bounds (Table 1).

• For models with predictor E+G, in the individual NN of the

modality of GID effect, the most frequently optimal number

of hidden layers was 1 for Yield, Height, Heading, and 3 for

traits Germination and Maturity. The corresponding most

frequently optimal number of units used across the predicted

environments were 183, 905, 302, 302, and 302 for Yield,

Height, Germination, Maturity, and Heading, respectively.

• For models with the predictor E+G, in DL model with the

modality corresponding to the Env effect (E), the most

frequently optimal number of hidden layers were 4 in two

traits (Heading and Height), 2 in two traits (Germination

and Maturity), and 1 in the remaining trait (Yield). The

corresponding most frequently optimal values of units were

128, 128, 114, 114, and 128 for traits Heading, Height,

Germination, Maturity, and Yield, respectively. In Yield, no

hidden layers were used in most of the fitted models after

concatenating the outputs of the NNs of the involved inputs

(Env and G), and for Heading were required 0, 3 and 4

hidden layers for the three predicted traits with none (not

apply), 76 and 119 units, respectively. However, for

Maturity, Height, and Germination, the most frequently

optimal values for the number of hidden layers were 3, 4,
TABLE 5 Summary of the hyperparameter values used in the DL models for the LOEO performance evaluation strategy.

Trait Predictor l llr lwd DO L1 L2 L N
1ð Þ

1 N
2ð Þ

1 N 1ð Þ
Pat

Yield GID 0.0046 -5.6924 -6.8825 0.3364 5 552 51

Yield GID+Env 0.0099 -4.6052 -0.9163 0.0001 1 1 0 128 183 107 1

Maturity GID 0.0039 -7.0800 -6.6678 0.4942 1 709 30

Maturity GID+Env 0.0030 -6.4791 -4.0866 0.2665 2 3 3 114 302 76 42

Height GID 0.0094 -4.7878 -6.3700 0.2604 1 101 1

Height GID+Env 0.0100 -4.6052 -0.9163 0.0001 4 1 4 128 905 140 128

Heading GID 0.0085 -6.6059 -8.1575 0.2615 2 101 110

Heading GID+Env 0.0015 -5.5421 -5.5715 0.1333 4 1 0, 3, 4 128 302 NA, 76, 119 37

Germination GID 0.0028 -5.0766 -3.2896 0.2616 6 127 1

Germination GID+Env 0.0064 -6.4791 -4.0866 0.2665 2 3 3 114 302 76 42
frontiers
The first two columns indicate the trait and the predictor used in the evaluation. Columns 3 to 6 represent the average values of the regularization (l), the logarithm of the learning rate (llr), the
logarithm of the weight decay (lwd) and the dropout rate (DO), respectively. In the first 6 columns of the last 7 columns correspond to the most frequently observed optimal values (mode) across

the predicted environments for the hidden layers (L1, L2) and the number of units (N(1)
1 , N(1)

2 ) in the respective networks for each modality in the model. In these columns also is include the

information of the number of hidden layers (L) and number of units (N(1)) for the network created by concatenating the outputs of the individual networks before the output layer. The final
column indicates the most frequently observed optimal value for the patience (Pat) hyperparameter registered in the early stopping criteria across the partitions.
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and 3, respectively, as determined by the Bayesian

optimization algorithm. When required at least one

hidden layer (nHLB > 1) in the trained model for

predicting an environment, the most frequently optimal

number of units for the first layer after concatenating the

outputs of the individual NNs for Env and GID, were 107,

76, 140, 69, and 76 for Yield, Maturity, Height, Heading,

and Germination, respectively.
An impact evaluation of the data size
on accuracy

An evaluation of the impact of the dataset size in the accuracy

prediction but with less computational time was done using a

reduced search space bounds as the specified in the shared code

example. The search space includes the interval [1,2] for all hidden

layers, [4,8] for the units of the environment effect, [32, 128] for the

units in the line and effect, and the same interval for the units in the

hidden layer for the MLP after concatenating the outputs of the

neural networks of the two modalities (Environments and Lines

effects). Additionally, we utilized the same search space for the rest

of the hyperparameters, as described in Table 1.

This evaluation for both models (DL and GBLUP both with

predictor E+G) was conducted by retaining 5%, 10%, 50%, 66.6%,

and 80% (Percentage_tr) of the dataset for the training set, with the

remainder used for the testing set. In all cases, we adhered to the

spirit of the K-fold cross-validation strategy. For the first two cases

(20-Fold and 10-Fold), the training and testing roles were inverted

(1 fold for training and the rest of the folds for testing). For the last

three cases, the traditional K-fold cross-validation strategy (2-Fold,
tiers in Plant Science 12
3-Fold, and 5-Fold) was implemented, where K-1 subsets were used

for training, and the remaining subset was used for testing.

Furthermore, the K-Folds in the third and fourth cases were

repeated two times to obtain more representative results.

The obtained results are summarized in Figures 6 and 7, where

the height of the bars represents the average metric values across

folds. The vertical lines within each bar indicate the average minus

and plus one standard deviation (SD) values of Cor obtained across

folds. In the first of these figures (Figure 6), a deterioration in the

normalized root mean squared error is observed as the training size

decreases (moving right to left on the Percentage_tr axis) in both

explored models. This deterioration is more pronounced in the

Heading and Maturity traits. However, in all traits, this effect tends

to be slightly smaller in the GBLUP model. A similar behavior is

observed in Figure 7 concerning the average Pearson’s correlation.

These results are also very similar to those reported in the 5FCV

strategy with the larger explored search space.
Discussions

In this study, we utilized and expanded upon a recently

proposed multi-modal DL model (Montesinos-López et al., 2023)

for genomic prediction. Our extended model incorporated a neural

network that takes as input the concatenated outputs of the

individual NNs for each modality (E, G, and GE, for example).

The improved performance of the DL models can be attributed, in

part, to the novel architecture employed and to the availability of a

moderately larger dataset.

Within the application of multi-modal deep learning in the

context of genomic selection, it is important to take advantages of

the virtues of multi-modal deep learning:
FIGURE 6

Average normalized mean squared error (NRMSE) across folds for each of the five traits (Germination, Heading, Height, Maturity, and Yield) for
GBLUP and deep learning (DL) models using the predictor E+G. Percentages represent the portion of the dataset used for training. The bars for the
first two values (5% and 10%) correspond to results in a 20-Fold and 10-Fold cross-validation strategy, with one-fold for training and the rest for
testing. The remaining bars for the last three Percentage values correspond, respectively, to the traditional 2-Fold, 3-Fold, and 5-Fold cross-
validation strategies, with the first two being repeated two times.
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(1) Enhanced representation learning, by integrating different

modalities, since multi-modal deep learning can learn

richer and more comprehensive representations of data.

This allows for a more holistic understanding of the input,

capturing both complementary and redundant information

across modalities.

(2) Improved performance because multi-modal deep learning

outperforms single-modal approaches in various tasks,

including image captioning, video understanding, speech

recognition, and more. By leveraging multiple modalities,

the model can exploit the strengths of each modality to

improve overall performance.

(3) Robustness to data limitations because multi-modal

learning can mitigate the limitations of individual

modalities by leveraging complementary information. If

one modality lacks sufficient data or exhibits noise or

ambiguity, the model can rely on other modalities to

compensate for these shortcomings, resulting in improved

robustness and generalization.

(4) Richer context understanding, since combining different

modalities allows for a more comprehensive understanding

of context. For example, in natural language processing

tasks, incorporating visual information alongside text can

provide valuable visual context that enhances language

understanding and generates more accurate responses.

(5) Cross-modal transfer learning since multi-modal deep

learning models can transfer knowledge between different

modalities. Pretraining on one modality and fine-tuning on

another can accelerate the learning process and improve

performance, even with limited labeled data in the

target modality.

(6) Better human-like perception, since humans naturally

integrate information from multiple senses to perceive and

interpret the world. Multi-modal deep learning aims tomimic
tiers in Plant Science 13
this human-like perception by fusing information from

diverse modalities, enabling machines to understand and

interact with the environment in a more human-centric way.

(7) Discovering hidden relationships because multi-modal

learning can uncover hidden relationships and

correlations between different modalities that may not be

apparent in isolation. This can lead to new insights and

discoveries, especially in domains where the data is

inherently multi-modal , such as in healthcare,

autonomous driving, and social media analysis.
These virtues make multi-modal deep learning a promising

approach for a wide range of tasks and domains, allowing for richer

and more nuanced data analysis, understanding, and decision-

making and our findings provide further evidence of the

competitiveness of multi-model deep learning models, particularly

when leveraging more sophisticated architectures that incorporate

late fusion strategies (Ramachandram and Taylor, 2017;

Baltrusǎitis et al., 2018), as seen in the extension of the model

used by Montesinos-López et al. (2023). Additionally, our study

benefits from the utilization of larger datasets.

The results of our study demonstrate the multi-modal DL

models proposed outperform GBLUP models in certain traits and

exhibit similar performance in others. However, when predicting

for an entire year, the performance, while still comparable, is

slightly reduced compared to the GBLUP model. This could be

attributed to the relatively smaller training size available for the

models in these scenarios, in which more exploration can be done

where other strategy tuning parameters and loss function could

be evaluated.

Our results agree with the growing evidence that multi-modal

deep learning models are a powerful tool for predicting more

efficiently in the context where multiple-inputs capture different

portions of the signal of the response variable. Because the

modelling process trains a particular deep neural network for
FIGURE 7

Average Pearson’s correlation (Cor) across folds for each of the five traits (Germination, Heading, Height, Maturity, and Yield) for GBLUP and deep
learning (DL) models using the predictor E+G. Percentages represent the portion of the dataset used for training. The bars for the first two values
(5% and 10%) correspond to results in a 20-Fold and 10-Fold cross-validation strategy, with one fold for training and the rest for testing. The
remaining bars for the last three Percentage values correspond, respectively, to the traditional 2-Fold, 3-Fold, and 5-Fold cross-validation strategies,
with the first two being repeated two times.
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each input (modality), at the end, all the outputs of these deep

neural networks are concatenated in a final deep neural network

that produces the final predictions. The multi-modal deep learning

for its architecture (Figure 1) facilitates the training process to

efficiently capture the signal of the response and control of the

overfitting. For these reasons, application of multi-modal deep

learning models continues growing in many fields like health

care, bioinformatics, computer vision, etc.

Finally, it is important to note that by leveraging the power of

multi-modal deep learning, genomic prediction can benefit from the

integration of diverse data sources, improved prediction accuracy,

robustness to missing data, and enhanced interpretability, ultimately

advancing our understanding of genetic traits and their implications

in various applications, including precision medicine and agricultural

breeding programs.
Conclusions

Using a moderately large dataset comprising 4464 lines

evaluated for 5 agronomic traits under 3 or 4 different

environments, we conducted a comparative analysis between

GBLUP models implemented in the BGLR R package and a novel

multi-modal deep learning (DL) model developed in this study. The

results demonstrate the extended DL model presented achieved

higher accuracy in predicting certain traits, specifically Maturity

and Heading, when evaluated using the 5FCV. The DL model

exhibited comparable accuracy to the GBLUP models for the

remaining traits: Yield, Height, and Germination.

The DL approach utilized in this study extends and

complements the previously proposed model, resulting in

significant improvements in prediction accuracy for new

environments. This finding further supports the notion that

constructing individual networks for each modality and

subsequently combining their outputs to feed into another

network can yield more flexible and accurate models.
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Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Gianola, D., Hernández-
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