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Introduction: Soluble solids content (SSC) is a pivotal parameter for assessing tomato

quality. Traditional measurement methods are both destructive and time-consuming.

Methods: To enhance accuracy and efficiency in SSC assessment, this study

employs full transmission visible and near-infrared (Vis-NIR) spectroscopy and

multi-point spectral data collection techniques to quantitatively analyze SSC in

two tomato varieties (‘Provence’ and ‘Jingcai No.8’ tomatoes). Preprocessing of

the multi-point spectra is carried out using a weighted averaging approach,

aimed at noise reduction, signal-to-noise ratio improvement, and overall data

quality enhancement. Taking into account the potential influence of various

detection orientations and preprocessing methods on model outcomes, we

investigate the combination of partial least squares regression (PLSR) with two

orientations (O1 and O2) and two preprocessing techniques (Savitzky-Golay

smoothing (SG) and Standard Normal Variate transformation (SNV)) in the

development of SSC prediction models.

Results: The model achieved the best results in the O2 orientation and SNV

pretreatment as follows: ‘Provence’ tomato (Rp = 0.81, RMSEP = 0.69°Brix) and

‘Jingcai No.8’ tomatoes (Rp = 0.84, RMSEP = 0.64°Brix). To further optimize the

model, characteristic wavelength selection is introduced through Least Angle

Regression (LARS) with L1 and L2 regularization. Notably, when l=0.004, LARS-
L1 produces superior results (‘Provence’ tomato: Rp = 0.95, RMSEP = 0.35°Brix;

‘Jingcai No.8’ tomato: Rp = 0.96, RMSEP = 0.33°Brix).

Discussion: This study underscores the effectiveness of full transmission Vis-NIR

spectroscopy in predicting SSC in different tomato varieties, offering a viable

method for accurate and swift SSC assessment in tomatoes.
KEYWORDS

tomato, soluble solids content, online detection, full transmission, quantitative
analysis model
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1 Introduction

Tomatoes, ubiquitous in global agricultural production,

exhibit noteworthy nutritional significance (Passam et al., 2007). As

an esteemed vegetable within the realm of human dietary practices,

tomatoes assume a pivotal role (Zhu et al., 2015). They bestow a

diverse complement of indispensable organic compounds, thus

exerting a multifaceted influence encompassing pigmentation

modulation, retardation of aging processes, lipid and blood

pressure reduction, safeguarding of prostatic health, as well as

reinforcement of gastric and hepatic functions (Perveen et al.,

2015; Youssef and Eissa, 2017; Salehi et al., 2019). By virtue of

their unique attributes, encompassing edibility, health-enhancing

properties, and therapeutic potential, tomatoes and their derivative

products occupy a prominent and indispensable position within the

global landscape of agricultural production and trade (Guan et al.,

2018; Ali et al., 2020). Soluble solids content (SSC) represents a

pivotal constituent of tomato flavor, holding the potential to

align closely with consumers’ perception of intrinsic quality

attributes in tomatoes (Ponce-Valadez et al., 2016). Nevertheless,

the conventional analytical methodologies employed for

quantifying this quality parameter are beset with challenges

related to protracted analysis durations, substantial costs, and

environmental contamination (Skolik et al., 2019). The imperative

for the tomato production and distribution industry, therefore,

resides in the development of expeditious, facile, cost-effective,

environmentally benign, and non-invasive techniques for batch

quality control assessment, with the ability to extend precision

down to the level of individual fruits (Najjar and Abu-Khalaf, 2021).

In the past few decades, many non-destructive testing

techniques have been used to detect tomato SSC (Mei and Li,

2023). Gómez et al. (2008) used PEN 2 electronic nose (E-nose) to

detect tomatoes with different storage time. The correlation between

the measured value and the predicted value showed that the effect of

using E-nose sensor signal to predict tomato SSC was poor.

Nikbakht et al. (2011) used raman spectroscopy to determine the

SSC of tomato. The root mean square error of predictions (RMSEP)

of SSC measured by partial least squares regression (PLSR) and

principal component regression (PCR) models were 0.30 and 0.38,

respectively. In order to explore the possibility of mid-infrared

spectroscopy for tomato quality detection, Ścibisz et al. (2011) used

the attenuated total reflection accessory of the fourier transform

spectrometer to scan the tomato samples in the wavenumber region

of 4000 to 400 cm-1. The PLSR model has a reasonable ability to

estimate the SSC of tomatoes, with a high determination coefficient

(0.98) and a small prediction error (3%). Mollazade et al. (2015)

used backscattering and multispectral imaging techniques to predict

the quality factors of tomato fruit during storage. The correlation

coefficients between the prediction results of SSC correction model

established by artificial neural network and the reference

measurement results of multispectral and backscatter imaging are

0.736 and 0.561, respectively. Rahman et al. (2017) established a

non-destructive method for the determination of SSC in intact

tomatoes using hyperspectral imaging technology in the range of

1000-1550 nm. The PLSR model based on smoothing pretreatment
Frontiers in Plant Science 02
spectrum has a good prediction effect on SSC of intact tomatoes,

with a correlation coefficient of prediction (Rp) of 0.74 and a

RMSEP of 0.33%.

While the aforementioned methods enable non-destructive

testing, their inherent time-consuming nature and elevated cost

factors constrain their utility when catering to the rigorous

industrial testing requisites characteristic of large-scale tomato

production. In stark contrast, the visible and near-infrared (Vis-

NIR) spectroscopy technique emerges as an expedient solution (a

non-destructive, expeditious, real-time, and cost-effective

approach) to effectuate internal quality appraisal within the

domain of agricultural product evaluation. Torres et al. (2015)

used NIR reflectance spectroscopy to determine the SSC of Raf

tomato based on modified PLSR (coefficient of determination for

cross-validation is 0.75; standard error of prediction is 0.65%).

Acharya et al. (2017) conducted a practical evaluation in the context

of the non-destructive determination of the dry matter content of

intact tomatoes (an indicator of the final mature SSC) using a

handheld visible-short-wave NIR spectrophotometer. By using

populations with different harvest dates or growth conditions for

calibration and prediction, the dry matter prediction coefficient of

determination (R2) is 0.86-0.92, and the deviation is 0.14-0.03%. At

different maturity stages of specific tomato varieties, Zhang et al.

(2021) reported the acceptable prediction results of SSC evaluation

by the self-developed Vis-NIR portable system (Rp = 0.70,

RMSEP = 0.26%) and NIR integrating sphere system (Rp = 0.82,

RMSEP = 0.21%). Aiming at the characteristics of tomato internal

heterogeneous structure, in order to obtain more internal

information of tomato as much as possible, Wang et al. (2018)

built a tomato Vis-NIR diffuse transmission detection system to

detect the SSC of cherry tomato, showing good prediction results

(Rp = 0.93, RMSEP = 0.36%). However, the typical Vis-NIR

spectroscopy is limited to a small area of measurement, and the

spatial information of the sample obtained by single point

measurement is limited. Liu et al. (2019) developed a dynamic

online sorting system based on Vis-NIR diffuse transmission, and

the sorting accuracy of SSC reached 91%. Yang Y. et al. (2022) based

on the Vis-NIR diffuse transmission system, optimized the

detection settings such as light path and light intensity, and

compensated the model according to the height and weight

physiological traits of tomato samples, and achieved good results

(Rp = 0.91, RMSEP = 0.17%). The limitations of traditional single-

point Vis-NIR measurement technology can be overcome by using

on-line full transmission measurement and continuous data

acquisition. Compared with the diffuse transmission mode, the

full transmission mode and tomato multi-point spectral

measurement acquisition can achieve a comprehensive

characterization of the entire tomato information.

The main purpose of this study is to determine the best model

for SSC prediction of tomato based on full transmission Vis-NIR

spectroscopy detection technology. The specific purposes are as

follows: (1) Collecting Vis-NIR spectral data of all tomato samples

using full transmission Vis-NIR online detection equipment; (2)

Processing continuous multi-point spectral data using the weighted

average method; (3) Establishing a PLSR model based on full-
frontiersin.org
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spectrum data, comparing the model’s performance, and selecting

the optimal preprocessing method and the best detection

orientation; (4) Applying the least angle regression method to

extract characteristic wavelengths in tomato SSC detection, and

determining the optimal prediction model by combining prediction

accuracy and stability.
2 Materials and methods

2.1 Experimental samples

In this study, we focused on two prominent tomato varieties,

namely ‘Provence’ and ‘Jingcai No.8’ tomatoes, both of which enjoy

substantial popularity in China. The ‘Provence’ tomato exhibits a thin

skin, with succulent flesh, and attains a rich ruddy hue when reaching

maturity. On the other hand, ‘Jingcai No.8’ tomato often referred to

as strawberry tomato, features an orange-red or red peel with green

shoulder, and its skin possesses a slight thickness. A comprehensive

set of tomato samples encompassing various stages of maturity was

meticulously collected to bolster the robustness of our predictive

model for tomato SSC. These tomatoes were harvested from a farm

located in the Fangshan District of Beijing, China. Tomato samples

were collected from three maturity stages of half-ripe, hard-ripe and

full-ripe, with a ratio of 1: 1: 1. The representative tomato samples

obtained during this collection process are visually depicted in

Figure 1. Moreover, in order to mitigate potential temperature-

induced fluctuations that could influence the precision of our

prediction model, the harvested tomatoes were transported to our

laboratory facility and placed for a 24-hour period at a temperature of

20°C, with a relative humidity level of 60%, prior to the acquisition of

spectral and SSC data (Yang X. et al., 2022).

To ensure the rigor and objectivity of our predictive model, we

employed a systematic approach to partition all collected samples
Frontiers in Plant Science 03
into two distinct subsets: a calibration set and a prediction set. This

division was executed following a consistent ratio of 7:3, wherein

70% of the samples were allocated to the calibration set, responsible

for the construction of the prediction model, while the remaining

30% constituted the prediction set, serving as an independent

dataset for the assessment of model performance. And in order to

mitigate the influence of random variability in sample partitioning

and to provide a robust evaluation of our predictive model’s efficacy,

we undertook a systematic randomization process. Specifically, we

repeated the sample division procedure 100 times, each time

generating a new partition of samples. Subsequently, we

constructed a predictive model based on the results of each of

these 100 divisions. The culmination of these 100 modeling

outcomes was then leveraged to derive an average, which serves

as the foundational basis for evaluating the overall performance of

our predictive model (Tian et al., 2022). This approach ensures a

comprehensive and reliable assessment of the model’s

predictive capabilities.
2.2 Full transmission spectrum and real
SSC acquisition

The full transmission Vis-NIR detection system, developed by

the Intelligent Equipment Research Center of Beijing Academy of

Agriculture and Forestry Sciences (Beijing, China), was used to

acquire spectral data for all samples. This system, as depicted in

Figure 2A, primarily comprises a highly sensitive spectrometer

covering a wavelength range from 560 to 1072 nm and offering a

spectral resolution of 0.5 nm. Furthermore, it is equipped with a

conveyor platform featuring adjustable speed, a position sensor, and

an illumination device consisting of a reflective halogen lamp (FUJI,

JCR, 150W, 15V, Tokyo, Japan) with a focusing lens. The system is

fortified with a shielding mechanism to prevent stray light
FIGURE 1

Tomato samples and cross sections.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1324753
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1324753
interference and is under the control of a computer-based system.

Both the illumination device and the spectrometer are positioned

on opposite sides of the conveyor belt.

To assess the influence of spectral measurement orientation on

the accuracy of online SSC detection in tomatoes, spectral data for

all tomato samples were collected in two orientations known as O1

and O2. In the O1 orientation, the tested tomato’s stem-calyx axis

was oriented perpendicular to the conveyor belt, with the stem

facing upward. The sample received illumination from a halogen

lamp at the equatorial position and was detected by the

spectrometer on the opposite side. Conversely, in the O2

orientation, the stem-calyx axis of the tested tomato was parallel

to the conveyor belt, with the stem directed towards the

spectrometer. Schematic representations of these two detection

orientations can be seen in Figure 2B. During each spectral

measurement, the tomato sample was initially positioned on a

fruit tray and moved at a consistent speed of 0.8 m/s. After the

tomato sample passes through the sensor and the specified delay

time, the spectrometer (integration time is 5ms) begins to

continuously collect the spectral signals at each position on the

sample. The multi-point spectra of each sample are roughly:

‘Provence’ tomato: 17-31 spectral curves; ‘Jingcai No.8’ tomato:

20-29 spectral curves.

Tomato SSC determination reference NY/T 2637-2014, using

refractometer method, measuring instrument for digital Abbe

refractometer. SSC measurements were performed immediately

using the traditional method of destruction. Each complete

tomato sample was first cut into pieces and squeezed into

tomato juice in a wall-breaking machine. Then filter the tomato

juice with gauze and squeeze into the beaker. After full shaking,

the tomato juice was dropped on a hand-held digital

refractometer, and the SSC value was manually recorded. Each

measurement was repeated three times, and the average value was

taken as the experimental value.
Frontiers in Plant Science 04
2.3 Data pre-processing

2.3.1 Multi-point spectrum weighted average
When the online full transmission mode collects the spectral

signal of the sample, the incomplete signal is collected at both ends,

so they are first eliminated before further data processing. The use

of a weighting method signifies an effective strategy for spectral

analysis (Somers et al., 2011; Zhu et al., 2019). In this study, distinct

weights are assigned to individual data acquisition locations based

on either the signal-to-noise ratio (SNR) (quality assessment

metric). The spectrometer is placed in an environment without

the sample to be tested, and the spectral signal in the environment is

recorded to obtain the background. The operational process can be

outlined as follows:

Firstly, an evaluation of the SNR is performed, enabling the

quantitative characterization of SNR for each data acquisition point.

SNR serves as a quantitative metric for signal quality assessment.

Following this, weight factors are calculated, with each data

acquisition point being assigned a weight based on the SNR, also

referred to as the quality assessment metric. This study employs an

inverse relationship where the weight factor increases with a higher

quality assessment metric. In conclusion, a weighted average is

carried out, involving the multiplication of spectral data associated

with each acquisition point by its respective weight factor. This

shows the derivation process of the final effective spectral

representation. Through the application of the weighting method,

high-quality spectral data significantly impacts the final effective

spectrum, while the influence of low-quality spectral data

is minimized.

2.3.2 Pretreatment of spectral data
To improve the correlation between tomato transmittance

spectra and SSC and reduce the impact of unwanted signals and

noise, it is customary to conduct preprocessing on the raw spectra.
A

B

FIGURE 2

(A) Online full transmission spectroscopy and (B) detection orientations.
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Among the common preprocessing methods, the application of

Savitzky-Golay smoothing (SG) is instrumental in making spectral

curves more conducive to the recognition of features and

localization of peaks, thus enhancing precision (Zhao et al., 2022).

Furthermore, the use of standard normal variable transformation

(SNV) serves to emphasize the positions of spectral peaks,

streamlining the analysis of both spectral shape and peak

locations (Bázár et al., 2016). In this study’s context, two specific

preprocessing techniques, a 13-point SG and SNV, have been

implemented to refine the spectral data.
2.4 Prediction model and evaluation

An effective method for multivariate data analysis frequently

employed in spectral analysis is PLSR. In this research, we

constructed a PLSR model to delineate the quantitative relationship

between the spectral matrix (X) and the matrix of SSC values in

tomatoes (Y). To evaluate the mathematical approach’s performance,

we utilized metrics such as the calibration correlation coefficient (Rc),

root mean square error of calibration (RMSEC), prediction correlation

coefficient (Rp), and root mean square error of prediction (RMSEP).

The specific calculation formula can be seen in Equations 1, 2. A

robust model demonstrates correlation coefficients approaching 1 and

lower root mean square error values (Li L. et al., 2022; Tian et al.,

2023). In the process of model development, the optimal number of

latent variables (LVs) is a critical consideration to prevent underfitting

or overfitting issues (Diniz et al., 2015). To address this concern, we

adopted a 5-fold cross-validation approach to determine the ideal

number of LVs based on the minimum root mean square error of

cross-validation (Li et al., 2023). The model was constructed using

Matlab 2022b (Mathworks, Natick, MA).

RC , RP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −o

n
i=1(yi − by i)

2

on
i=1(yi − yi)

2

s
(1)

RMSEC , RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − by i)

2
s

(2)

In this context, yi and ŷ i denote the measured value and the

predicted value for the ith tomato sample within either

the calibration or prediction dataset. Additionally, y represents

the mean value of the measured values for samples within the

calibration or prediction dataset, and n signifies the total number of

samples in either the calibration or prediction dataset.
2.5 Wavelength selection methods

Within the domain of full spectrum modeling, a total of

2047 wavelengths are present, including a substantial number

of irrelevant and collinear variables. These extraneous

wavelengths, in addition to complicating the model, have the

potential to introduce interference, which could result in a

reduction in model accuracy (Luo et al., 2022). Thus, to address
Frontiers in Plant Science 05
this, the least angle regression (LARS) technique was

implemented for the purpose of identifying and selecting

pertinent wavelengths.

Efron et al. (2004) introduced the LARS algorithm, a method

that functions as a feature selection technique applicable to both

linear regression and sparse regression. Its primary aim is to

pinpoint features with strong correlations to the response

variables (SSC) and to retain only these essential features within

the model. This approach effectively simplifies the model, thus

enhancing its capacity for generalization. LARS proceeds by

incrementally integrating features and moving along the gradient

direction of these features in each step. What sets LARS apart is its

utilization of the regression coefficient path, allowing the

simultaneous addition of multiple features. At the core of LARS is

the consistent alignment with the prevailing gradient direction at

each step, coupled with the allocation of suitable step sizes between

features. This approach enables LARS to promptly and reliably

identify characteristic wavelengths highly correlated with SSC.

Nonetheless, LARS may face efficiency challenges when handling

extensive feature sets. To tackle this limitation, the present study

introduces regularization terms in the form of the L1 norm (Lasso

penalty) and L2 norm (Ridge penalty). The L1 norm penalty

streamlines feature selection by reducing coefficients of irrelevant

features to zero, resulting in the construction of a sparse model. This

feature is particularly advantageous when dealing with high-

dimensional data and problems involving the selection of

essential wavelengths for SSC analysis. Conversely, the L2 norm

penalty trims model parameters to prevent overfitting and enhance

model generalization. Differing from L1 regularization, L2

regularization refrains from entirely zeroing out parameters,

offering controlled adjustment of model complexity. This feature

proves beneficial in addressing issues related to collinearity and

augmenting model stability.

In this study, the specific regularization term is denoted by l. A
range of l values is systematically selected, typically starting with a

smaller value and gradually increasing it. Model performance is

monitored, and an appropriate l value is selected accordingly.

Characteristic wavelength selection was carried out using Matlab

2022b (Mathworks, Natick, MA).
3 Results and discussion

3.1 SSC values of all samples

In this experiment, tomato samples with different maturity were

collected to establish SSC prediction model. The SSC values of all

samples measured are shown in Table 1. The SSC range of ‘Provence’

tomato is 3.8-8.7°Brix, and that of ‘Jingcai No.8’ tomato is 4.5-9.8°

Brix. The standard deviations (SD) were 1.1 and 1.2°Brix,

respectively. SSC has a wide range of distribution. Combined with

the characteristics of different maturity samples, a more

comprehensive and accurate SSC prediction model can be

established. This method can enhance the robustness of the model

and improve the accuracy of the prediction results (Li Y. et al., 2022).
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At the same time, it can also better cope with the different maturity of

tomato samples that may occur in practical applications.
3.2 Analysis of tomato spectral feature

Figure 3A shows that the multi-point spectral curves collected

by each sample have problems such as low SNR and intensity

supersaturation due to the acquisition method of online full

transmission measurement, which may be caused by the texture

color characteristics of tomatoes and the online acquisition

method of spectrum. According to the spectral contribution of

different parts, we can see the curve shown in Figure 3B. After the

weighted average method, the noise in the data is effectively

reduced, the SNR is improved, and the characteristic peak is

enhanced, which is more conducive to the establishment of the

subsequent prediction model. In Figure 3C, we can observe that

the spectral curve characteristics of the same variety in different

directions are basically similar. The main difference is the

intensity, which may be due to the influence of the internal

cavity structure of the sample on the propagation light path.

Because the optical path of O2 orientation is simpler, the optical

path distance is shorter, and the flesh tissue is less penetrated, the

spectral curves of both varieties show that the intensity of O2

orientation is higher than that of O1.
3.3 Prediction of tomato SSC with
full spectra

Table 2 presents the outcomes derived from PLSR modeling

applied to spectral data with the utilization of diverse preprocessing

techniques. Notably, whether considering the ‘Provence’ tomato or

‘Jingcai No.8’ tomato, the results consistently manifest superior O2

performance as opposed to O1. This intriguing phenomenon is

likely attributed to the inherent simplicity of the optical propagation

pathway or the shortened propagation distance in the O2 direction.

Conversely, the trajectory of incident light in the O1 direction

necessitates traversal through discrete cavities, often yielding a more

intricate optical pathway and extended propagation distances. In

this study, the application of the SG method yields results

marginally less favorable than the unprocessed data. This

discrepancy could be ascribed to the potential obfuscation of

essential spectral features by the SG method. Enhanced results are

attainable through the adoption of preprocessing methodologies

such as SNV. SNV preprocessing methods adeptly ameliorate

scattering influences within the spectra, thereby endowing the
Frontiers in Plant Science 06
data with increased stability, consistency, and diminished

variability, consequently yielding a positive influence on modeling

and quantitative analytical outcomes. The findings indicate that,

subsequent to optimal preprocessing, the samples exhibit Rp = 0.81,

RMSEP = 0.69°Brix (‘Provence’ tomato) and Rp = 0.84, RMSEP =

0.64°Brix ( ‘Jingcai No.8 ’ tomato). Obviously, the SNV

preprocessing process magnifies the spectral attributes, making

the spectrum clearer, more consistent and more prominent,

thereby improving the quality of the spectral data set. In

summary, this study established a robust PLSR model for SSC

prediction. The model is founded on the determination of the

optimal detection orientation (O2) in synergy with the

implementation of the most effective preprocessing method (SNV).
3.4 Determination of the optimal model

While the full-spectrum PLSR model can effectively predict SSC

quantitatively, most full-spectrum models exhibit instability due to

notable disparities between Rc and Rp. Given that an excessive

number of spectral variables employed in modeling can lead to

overfitting, this study implemented characteristic wavelength

selection to optimize the model. Through the selection of

wavelengths, superfluous features are reduced, rendering the

model more concise and efficient. Since O2 represents the optimal

detection orientation, and SNV serves as the most effective

preprocessing method, variable selection was exclusively based on

the spectral data acquired in the O2 orientation and after

preprocessing using SNV.

During the deployment of the LARS method for characteristic

wavelength selection, initialization is initiated at the outset. The

model begins by not selecting any characteristic wavelengths, with

all coefficients set to zero. Subsequently, in each step, the

system identifies the characteristic wavelength displaying the

highest correlation with SSC and calculates the absolute value of

this correlation. The selection of characteristic wavelengths follows

a path along the minimum angle. Then, the coefficients are

updated, with the coefficient of the selected characteristic

wavelength gradually increasing until its correlation with another

characteristic wavelength equals it. The regularization parameter l
is then progressively adjusted to achieve a balance between

characteristic wavelength selection and model sparsity. Ultimately,

the steps following the initializations are reiterated until the

selection outcome converges.

A series of selected l values and the corresponding Rp

relationship are shown in Figure 4. It can be seen that LARS-L1

and LARS-L2 are significantly different in the selection range of l,
TABLE 1 SSC values (°Brix) of tomato samples.

Variety Range No. of samples Mean SD

Provence 3.8-8.7 92 5.8 1.1

Jingcai NO.8 4.5-9.8 96 7.4 1.2
The SSC values (°Brix) were measured by refractometer.
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TABLE 2 Prediction results of SSC of two varieties of tomatoes based on PLSR model established using full-spectrum data combined with different
detection orientations and preprocessing methods.

Varieties Orientations Methods LVs Rc RMSEC Rp RMSEP

Provence O1 RAW 11 0.91 0.44 0.66 0.89

SG 11 0.88 0.51 0.65 0.88

SNV 9 0.95 0.31 0.70 0.84

O2 RAW 10 0.89 0.50 0.73 0.82

SG 11 0.88 0.52 0.74 0.80

SNV 9 0.94 0.36 0.81 0.69

(Continued)
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FIGURE 3

Spectral curve from (A) multi-point raw data, (B) weighted average and (C) two detection orientations.
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which may be due to the encouragement of L1 regularization to

sparsity: L1 regularization encourages sparsity by punishing the

absolute value of the coefficient, that is, encouraging the model to

reduce the coefficient of most features to zero, so as to select the

most important features, which usually requires a relatively small l
to achieve. L2 regularization encourages smoothness: L2

regularization reduces the magnitude of the coefficients by

penalizing the square of the coefficients, thereby encouraging the

coefficients of the feature to be evenly distributed, but it does not

compress the coefficients to zero. Therefore, in order to achieve an
Frontiers in Plant Science 08
effective L2 regularization effect, a relatively large l is usually

required. Although there are some fluctuations in the model Rp

results obtained under different l values, the changes are also

around 0.01-0.03, and the results are relatively good (Rp > 0.90).

In the prediction model results of LARS-L1 method, the Rp of

‘Provence’ tomato and ‘Jingcai No.8’ tomato were both above 0.93.

When the regularization parameter l = 0.004, the effect was the best

(‘Provence’ tomato: Rc = 0.98, RMSEC = 0.23°Brix, Rp = 0.95,

RMSEP = 0.35°Brix; ‘Jingcai No.8’ tomato: Rc = 0.98, RMSEC =

0.20°Brix, Rp = 0.96, RMSEP = 0.33°Brix). L1 regularization tends
TABLE 2 Continued

Varieties Orientations Methods LVs Rc RMSEC Rp RMSEP

Jingcai NO.8 O1 RAW 9 0.94 0.39 0.62 1.04

SG 11 0.89 0.53 0.62 1.10

SNV 10 0.98 0.25 0.79 0.73

O2 RAW 10 0.91 0.47 0.74 0.81

SG 10 0.88 0.55 0.74 0.81

SNV 9 0.96 0.31 0.84 0.64
fro
FIGURE 4

The process of Rp changing with l in the process of characteristic wavelength selection.
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to generate sparse solutions, so that some weights are zero, and a

small number of characteristic wavelengths that have a significant

impact on SSC prediction can be selected to filter out wavelengths

that are not important for prediction. The best performance of the

LARS-L1 method is due to its sparseness of L1 regularization and

better capture of the correlation between wavelength and SSC.

LARS-L2 obtained the best effect of ‘Provence’ tomato at l = 0.1

(Rc = 0.97, RMSEC = 0.26°Brix, Rp = 0.93, RMSEP = 0.42°Brix).

‘Jingcai No.8’ tomato achieved the best results at l = 0.9 (Rc = 0.97,

RMSEC = 0.28°Brix, Rp = 0.93, RMSEP = 0.45°Brix). The penalty of

L2 regularization on feature weights is balanced, and the weight of

ownership is relatively evenly reduced without deleting some

features too much. When there are some relatively weak

wavelengths in the data that still contribute to the prediction, L2

regularization preserves these wavelengths. This may be the reason

that the performance of LARS-L2 is slightly lower than that of

LARS-L1. The LARS-L1 and LARS-L2 methods have less influence
Frontiers in Plant Science 09
on the correlation of features because they constrain the feature

weights through regularization and exhibit a degree of stability.

The best results of the two characteristic wavelength selection

methods for the two varieties were placed in Table 3.

In practical applications, aside from predictive accuracy, model

stability is also a crucial consideration. Figure 5 illustrates the error

bar chart for the prediction results of SSC for two tomato varieties

based on 100 modeling iterations, incorporating the optimal feature

wavelength selection from two methods. Each data point in the

figure is associated with an error bar, and the central mark denotes

the mean value, reflecting the data’s central tendency. These error

bars signify the data’s dispersion or uncertainty. It is evident that the

results of both methods align with the trends depicted in Figure 4.

The LARS-L1 method exhibits the highest mean Rp value, consistent

with the central tendency of the data, and features shorter error bars,

indicative of lower dispersion. Therefore, overall, the model

demonstrates a heightened level of stability.
TABLE 3 SSC prediction results obtained by characteristic wavelength PLSR models.

Varieties Wavelength selection methods l LVs No. of variables Rc RMSEC Rp RMSEP

Provence LARS-L1 0.004 9 29 0.98 0.23 0.95 0.35

LARS-L2 0.1 10 53 0.97 0.26 0.93 0.42

Jingcai NO.8 LARS-L1 0.004 9 63 0.98 0.20 0.96 0.33

LARS-L2 0.9 11 45 0.97 0.28 0.93 0.45
fro
0.94735 0.92523 0.96145 0.93018

LARS-L1 LARS-L2 LARS-L1 LARS-L2
0.0
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FIGURE 5

The error bar graph of 100 iterations under optimal l.
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4 Conclusions

In this study, the SSC of tomato was successfully determined using

the full transmission Vis-NIR spectroscopy online detection equipment.

The results show that the weighted average method can improve the

spectral quality of multi-point spectral data. The prediction

performance of O2 is better than that of O1 in the detection

orientation, and the prediction performance of the full-spectrum

PLSR model constructed after SNV pretreatment is significantly

improved. For the samples in the prediction set, the results of the two

varieties of tomatoes were ‘Provence’ tomato: Rp = 0.81, RMSEP = 0.69°

Brix; ‘Jingcai No.8’ tomato: Rp = 0.84, RMSEP = 0.64°Brix. In addition,

in order to reduce the number of variables involved in modeling, the

LARS method combined with L1 and L2 regularization is used to select

the characteristic wavelengths to construct the PLSR model. The results

show that the prediction accuracy of the characteristic wavelength

selection model is better than that of the full spectrum model. When

l was set to 0.004, the characteristic wavelengths selected by the LARS-

L1method achieved the best results on the SSC predictionmodels of the

two varieties of tomatoes (‘Provence’ tomato: Rp = 0.95, RMSEP = 0.35°

Brix; ‘Jingcai No.8’ tomato: Rp = 0.96, RMSEP = 0.33°Brix). Under the

condition of optimal l, 100 modeling calculations were carried out to

further verify the stability of the model. Finally, O2-SNV-LARS-L1-

PLSR was determined as the best model for quantitative detection of

tomato SSC, and it showed that this method combined with full

transmission Vis-NIR spectroscopy had the potential for non-

destructive detection of SSC in tomato.
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