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University, Yamagata, Japan, 9Bioproduction Research Institute, National Institute of Advanced
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Chemical priming has emerged as a promising area in agricultural research. Our

previous studies have demonstrated that pretreatment with a low concentration

of ethanol enhances abiotic stress tolerance in Arabidopsis and cassava. Here, we

show that ethanol treatment induces heat stress tolerance in tomato (Solanum

lycopersicon L.) plants. Seedlings of the tomato cultivar ‘Micro-Tom’ were

pretreated with ethanol solution and then subjected to heat stress. The survival

rates of the ethanol-pretreated plants were significantly higher than those of the

water-treated control plants. Similarly, the fruit numbers of the ethanol-

pretreated plants were greater than those of the water-treated ones.

Transcriptome analysis identified sets of genes that were differentially

expressed in shoots and roots of seedlings and in mature green fruits of

ethanol-pretreated plants compared with those in water-treated plants. Gene

ontology analysis using these genes showed that stress-related gene ontology

terms were found in the set of ethanol-induced genes. Metabolome analysis

revealed that the contents of a wide range of metabolites differed between

water- and ethanol-treated samples. They included sugars such as trehalose,

sucrose, glucose, and fructose. From our results, we speculate that ethanol-

induced heat stress tolerance in tomato is mainly the result of increased
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expression of stress-related genes encoding late embryogenesis abundant

(LEA) proteins, reactive oxygen species (ROS) elimination enzymes, and

activated gluconeogenesis. Our results will be useful for establishing

ethanol-based chemical priming technology to reduce heat stress damage

in crops, especially in Solanaceae.
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1 Introduction

Heat stress is one of the most serious problems in agriculture. A

recent report by Intergovernmental Panel on Climate Change

(IPCC) 2022 shows that the average global surface air

temperature in 2030s will be 1.5°C higher than the average in

1850-1900 (Pörtner et al., 2022). The frequency of heat stress

conditions has increased with global climate change. Heat stress

decreases crop productivity, leading to negative impacts on society

and the economy. Therefore, enhancing the heat stress tolerance of

crops is an important goal for plant researchers.

Chemical priming is one of the useful techniques that can

increase the stress tolerance of plants (Savvides et al., 2016; Sako

et al., 2021b). A wide variety of chemical compounds can elicit

molecular mechanisms governing environmental stress tolerance

(Savvides et al., 2016; Sako et al., 2021b; Zulfiqar et al., 2022). In the

practical use of chemical priming in agriculture, it is important to

optimize the method for each situation. For different crop species,

for example, the application of different concentrations of the

chemical priming compound will be critical for achieving the

desired physiological traits.

Recent studies have confirmed that application of ethanol to

plants can enhance environmental stress tolerance. We previously

showed that ethanol treatment enhanced heat stress tolerance in

Arabidopsis through the activated unfolded protein response (UPR)

mechanism (Matsui et al., 2022). Ethanol-treated Arabidopsis plants

also showed enhanced drought tolerance through activated stomatal

closure and gluconeogenesis (Bashir et al., 2022). In addition, ethanol

treatment enhanced drought tolerance in wheat and rice (Bashir et al.,

2022), soybean (Rahman et al., 2022) and cassava (Vu et al., 2022),

salt stress tolerance in Arabidopsis and rice (Nguyen et al., 2017) and

soybean (Das et al., 2022), and high-light stress tolerance in

Arabidopsis (Sako et al., 2021a). Ethanol is readily available and is

considered to be environment- and human-friendly. From these

perspectives, it is expected that farmers might prefer ethanol
nding 2A protein;

IP28, basic leucine

02
chemical priming over other chemical options, and ultimately

social acceptance of the method is likely.

Heat stress damages plant growth and yield (Hoshikawa et al.,

2021; Ahmad et al., 2022). Extensive research has elucidated how

photosynthesis is highly sensitive to heat stress (Hu et al., 2020).

The damaged photosynthetic processes include electron transport,

CO2 assimilation, chlorophyll biosynthesis, and thylakoid

membrane fluidity (Hu et al., 2020). Impaired photosynthesis

leads to growth retardation. Heat stress also causes oxidative

damage by reactive oxygen species (ROS) such as superoxide

radical, singlet oxygen, hydroxyl radical and hydrogen peroxide

(Fortunato et al., 2023). To cope with ROS molecules, organisms

activate specific enzymes that reduce or inactivate ROS, including

peroxidase, ascorbate peroxidase, glutathione reductase, superoxide

dismutase, and catalase. Under severe heat stress conditions,

proteins are denatured and functionally damaged. Heat shock

proteins (HSPs) are induced by high temperatures and protect

against protein denaturation through transcriptional cascades

(Ohama et al., 2017).
Tomato (Solanum lycopersicum L.) is one of the most valuable

vegetable crops because the fruit contains important nutrients for

humans, such as vitamin A, vitamin C and lycopene. Tomato is also

a representative species in the Solanaceae family. The plant has been

used extensively in research. In particular, the model tomato

cultivar ‘Micro-Tom’ has been widely studied. The superiority of

‘Micro-Tom’ is evident in its short generation time, small genome

size, and stable genetic modification (Meissner et al., 1997).

Genome-wide full-length cDNAs (Aoki et al., 2010) and the

complete genome sequence (Kobayashi et al., 2014) of ‘Micro-

Tom’ are available.
In the case of tomato, there have been no previous reports that

ethanol priming can improve plant growth performance or survival

under environmental stress conditions. In addition, little is known

about the effects of ethanol treatment on fruit quality in crops. In

this paper, we investigated whether ethanol application enhances

heat stress tolerance in tomato ‘Micro-Tom’. We show that ethanol

pretreatment alleviated heat damage to both vegetative growth and

reproductive development. Transcriptome analysis identified the

genes differentially expressed between water- and ethanol-treated

seedlings and fruits. Furthermore, metabolome analysis unraveled

the dynamics of changes in metabolites following ethanol
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application. Our results give new insight into ethanol-mediated heat

stress tolerance in tomato and improve the understanding of such

mechanisms more widely in plants.
2 Materials and methods

2.1 Plant materials and growth conditions

Seeds of tomato (Solanum lycopersicum L.) cultivar ‘Micro-

Tom’ were obtained from the National Bioresource Project (MEXT,

Japan) through the TOMATOMA database (Saito et al., 2011).

Tomato seeds were imbibed in tap water at 22°C overnight under

dark conditions. The imbibed seeds were sown into pots (70 mm

diameter, 60 mm height, Yamato Plastic Co., Ltd., Nara, Japan)

containing water-retaining horticultural clay granules (Seramis,

Westland Horticulture Ltd. Tyrone, UK). After sowing, the pots

were placed in a growth room set at 22°C with a 16-h light (110 to

140 µmol m−2 s−1 photosynthetic photon flux density)/8-h

dark cycle.
2.2 Ethanol pretreatment and heat
stress treatment

Sixteen-day-old plants grown in pots were used for ethanol

pretreatment. The bottoms of the pots were placed in ethanol

solution for 3 d. We selected 20 mM concentration of ethanol in

pretreatment solution. This is based on the result of Arabidopsis and

lettuce plants (Matsui et al., 2022). After ethanol pretreatment, the

pots were placed in an air incubator (Sanyo incubator MIR 153,

Sanyo Electric Co. Ltd, Osaka, Japan) set at 50 °C and maintained for

the indicated time periods as heat stress treatment. During the heat

treatment, the pots were electrically rotated in the air incubator to

avoid location effects. After the heat treatment, the pots were returned

to the growth room and maintained for the indicated time periods.
2.3 Estimation of green leaf areas

Green leaf areas were estimated by OpenCV (version 4.0.1) on

Python 3.8.5. Photographs were taken above each plant. The hue,

saturation, and value (HSV) color threshold range was set from [31,

70, 10] to [95, 255, 255].
2.4 Quantitative PCR

Six biological replicates for each treatment were used. One replicate

of shoot or root samples consisted of three leaves or one root from one

plant, respectively. Samples were put into a 10-mL tube, frozen in liquid

nitrogen, and pulverized using a Multi-Beads Shocker system (Yasui

Kikai, Osaka, Japan). Total RNA extraction, cDNA synthesis and PCR

were performed as previously described (Matsui et al., 2022). Primer

sequences are shown in Supplementary Table S1.
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2.5 Transcriptome analysis

For the RNA-seq analysis, the sequencing library was prepared

using the Lasy-Seq method (Kamitani et al., 2019). Specifically, 200

ng of total RNA was used per sample. The library was sequenced

using the 151-bp paired-end mode of the HiSeq X Ten (Illumina,

San Diego, CA, USA). RNA-seq analyses were performed with R1

reads. Low-quality reads and adapters were trimmed using

Trimmomatic version 0.39 (http://www.usadellab.org/cms/?

page=trimmomatic) with settings ‘ILLUMINACLIP : TruSeaq3-

SE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36’. HISAT2 (http://daehwankim-lab.github.io/hisat2/)

version 2.2.1 was used to map the reads to the Solanum

lycopersicum SL4.0 reference genome with the ‘–max-intronlen

5000’ option. Aligned reads within gene models were counted

using featureCounts version 2.0.1 (http://subread.sourceforge.net/)

with the ‘–fracOverlap 0.5 -O -t gene -g ID -s 1 –primary’ options.

Differentially expressed genes were identified using R version 4.0.4

(https://www.r-project.org/) and DESeq2 version 1.30.1 (https://

bioconductor.org/packages/release/bioc/html/DESeq2.html)

package. Genes with false discovery rate < 0.05 in each comparison

were identified as differentially expressed. Gene ontology

enrichment analysis was performed on the web tool (https://

www.geneontology.org/).
2.6 Metabolome analysis by gas
chromatography–time of flight/
mass spectrometry

GC–TOF/MS analysis was carried out using the procedures

described previously (Jonsson et al., 2005; Kusano et al., 2007a;

Kusano et al., 2007b; Redestig et al., 2009) with slight modifications.

Approximately 20 mg fresh weight of tissue per mL extraction

medium containing ten stable isotope reference compounds was

used in the extraction of metabolites.
3 Results

3.1 Effects of ethanol pretreatment on heat
stress tolerance in tomato seedlings

Previously, we found that pretreatment with high concentrations

of ethanol decreased shoot growth in Arabidopsis (Matsui et al.,

2022). Therefore, we checked whether the 20 mM concentration of

ethanol adversely affected shoot growth in tomato. The green leaf area

of seedlings pretreated with 20 mM ethanol for 3 d and 6 d were not

significantly different from those of the control seedlings pretreated

with water (Supplementary Figure S1). These results suggested that

20 mM ethanol treatment did not inhibit shoot growth in tomato and

so we proceeded to use that concentration in ethanol pretreatments of

tomato thereafter.

Next, we investigated the effects of ethanol pretreatment on heat

stress tolerance in tomato seedlings. After ethanol pretreatment for
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3 d or 6 d, the seedlings were subjected to heat stress treatment of

50°C for 4 h then grown under normal growth conditions for 7 d.

The green leaf areas of seedlings pretreated with ethanol for 3 d

were greater than those of seedlings pretreated with water

(Figures 1A, B). A similar result was observed in the seedlings of

ethanol pretreatment for 6 d (Figures 1C, D). These results

suggested that ethanol pretreatment reduced the leaf growth

damage caused by heat stress in tomato seedlings.
3.2 Effects of ethanol pretreatment and
heat stress treatment on tomato
fruit development

To investigate the effects of ethanol pretreatment and heat stress

treatment on tomato fruit development, plants were grown until the

mature fruit stage after ethanol pretreatment and heat stress

treatment (Figure 2A). The appearance of plants after 1 d and 41 d

of the heat treatment (seedling stage and flower developmental stage)

was also shown in Supplementary Figure S2. The fruit numbers of the

plants treated with ethanol were higher than those of the plants
Frontiers in Plant Science 04
treated with water (Figure 2B). The fresh weight per fruit was not

different between ethanol- and water-treated plants (Figure 2C).

These data suggested that ethanol pretreatment might be effective

for alleviating heat damage to fruit development.
3.3 Effects of ethanol pretreatment and
heat stress treatment on water
use efficiency

WUE is an important parameter that shows a relationship

between plant growth and water use. To investigate the effects of

ethanol pretreatment and heat stress treatment on WUE, we first

estimated transpiration volumes during those periods. The

transpiration volume during ethanol pretreatment was lower than

that during water pretreatment (Supplementary Figure S3A). Next

we checked transpiration volumes and leaf areas before heat stress

treatment and after 9 d of heat stress treatment. During 9 d after the

heat stress treatment, the transpiration volume and leaf area of

ethanol-pretreated seedling were greater than those of water-

pretreated seedling (Supplementary Figures S3B, C). Using these
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FIGURE 1

Heat tolerance of tomato ‘Micro-Tom’ seedlings treated with water or ethanol. Sixteen-day-old seedlings were pretreated with water or 20 mM
ethanol for 3 d or 6 d then subjected to heat stress treatment (50 °C, 4 h). After the heat treatment, the seedlings were grown under normal
conditions for 7 d. (A) Appearance of seedlings with 3 d pretreatment. (B) Box plot of green leaf areas of seedlings in (A). (C) Appearance of seedlings
with 6 d pretreatment. (D) Box plot of green leaf areas of seedlings in (C). (B, D) n = 8. Different letters indicate significant differences at P < 0.05
(t-test).
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data, we calculated WUE during 9 d after the heat stress treatment

by the formula: difference in green leaf area/transpiration volume.

The result showed that the WUE of ethanol-pretreated seedling was

not different from that of water-pretreated seedling (Supplementary

Figure S3D). Finally, it was shown that the fresh weight of shoot of

ethanol-pretreated seedling was higher than that of water-

pretreated seedling (Supplementary Figure S3E).
3.4 Effects of ethanol pretreatment and
heat stress treatment on plant biomass

Next we investigated the effects of ethanol pretreatment and

heat stress treatment on plant biomass. The fresh and dry weights of

shoots of seedlings pretreated with water were significantly

decreased by heat stress treatment (Supplementary Figures S4A,

C). On the other hand, the fresh and dry weights of shoots of
Frontiers in Plant Science 05
seedlings pretreated with ethanol were not significantly decreased

by the same stress treatment (Supplementary Figures S4A, C).

These results suggest that ethanol pretreatment alleviated the

shoot growth damage. In the case of roots, a similar result was

acquired in the samples of dry weight, not in the samples of fresh

weight (Supplementary Figures S4B, D).
3.5 Effects of ethanol pretreatment on
stomatal aperture in tomato

Previous studies showed that ethanol treatment caused stomatal

closing in Arabidopsis (Bashir et al., 2022) and cassava (Vu et al.,

2022). We checked stomatal apertures in tomato plants treated with

ethanol or water. As expected, the stomatal apertures of the

seedlings treated with ethanol were smaller than those of the

seedlings treated with water (Supplementary Figure S5).
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3.6 Temporal and spatial gene expression
profiles of ethanol-pretreated and heat
stress-treated tomato plants

To elucidate the temporal and spatial gene expression profiles of

ethanol-pretreated and heat stress-treated tomato plants, we

performed transcriptome analysis using various organs at
Frontiers in Plant Science 06
different developmental stages. First, we performed RNA-seq

analysis using seedlings. Figure 3A indicates the diagrams of the

sampling time points. Principal component analysis showed that

each sample was mostly separated from the others, suggesting

different gene expression profiles among these treatments

(Figure 3B). We then analyzed differentially expressed genes

(DEGs) between water- and ethanol-treated samples (Figure 3,
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Supplementary Figure S6, Supplementary Tables S2–S9). For

example, in the shoot, 157, 562 and 603 genes were found as up-

regulated DEGs in the comparisons E3d vs W3d, E3d_H30m vs

W3d_H30m, and E3d_H90m vsW3d_H90m, respectively. In roots,

414, 241, 470 genes were found as up-regulated DEGs in the same

comparisons. Venn diagrams for each DEG set showed that some of

the DEGs overlapped among E3d vs W3d, E3d_H30m vs

W3d_H30m, and E3d_H90m vs W3d_H90m (Figure 3C). For

example, among the shoot up-regulated DEGs, 63% (99/157

genes) of the DEGs of E3d vs W3d overlapped with the DEGs of

E3d_H30m vs W3d_H30m and/or E3d_H90m vs W3d_H90m. We

also compared the DEGs between shoot and root, indicating that

most DEGs did not overlap in the comparisons (Figure 3D). Gene

ontology (GO) analysis showed that various GO terms were

enriched in the DEGs (Supplementary Tables S10–S22). Figure 3E

shows the representative enriched GO terms in the up- and down-

regulated DEGs. Stress-related GO terms such as “defense

response”, “water deprivation”, “ROS metabolic process”, and

“jasmonic acid biosynthesis” were found in the up-regulated

DEGs while photosynthesis-related GO terms were included in

the down-regulated DEGs.

We also performed RNA-seq analysis using samples of mature

green fruits (MGFs) and leaves at the developmental stage of MGF

after the ethanol pretreatment and heat stress treatment

(Figure 4A). In the MGF, 191 and 12 genes were identified

as up- and down-regulated DEGs, respectively (Figure 4B,

Supplementary Table S8). In the leaf, only four and three genes

were identified as up- and down-regulated DEGs, respectively

(Figure 4B, Supplementary Table S9). For further analysis, we

focused on the up-regulated DEGs of MGF. Venn diagrams

showed that most of the up-regulated DEGs of MGF did not

overlap with the DEGs of shoot and root (Figure 4C). The up-

regulated DEGs of MGF included the enriched GO terms involved

in seed development and seed components such as lipids

(Figure 4D, Supplementary Table S22).

To confirm the results of the RNA-seq analysis, we performed

RT–qPCR analysis regarding two SlLEAs (Solyc02g085150 and

Solyc09g014750) and SlDREB2A (Solyc05g052410). Similar results

were acquired in the RT–qPCR analysis (Supplementary Figure S7),

which validated the results of the RNA-seq analysis.
3.7 Metabolites that were increased or
decreased after ethanol pretreatment and
heat stress treatment in tomato seedlings
and fruits

To reveal the metabolites that increased or decreased after

ethanol pretreatment and heat stress treatment in tomato

seedlings and fruits , we analyzed metabolites by gas

chromatography–mass spectrometry (GC–MS). Figure 5A shows

the time points for this analysis and the codes denoting the different

samples. We measured the contents of 81 metabolites (23 amino

acids, 9 amines, 18 organic acids, 10 sugars, 3 alcohols, and 18

others) (Supplementary Tables S23–S29). Using these data, we

identified metabolites differentially accumulated between water-
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and ethanol-pretreated samples (Supplementary Tables S30–S37).

In the comparisons of shoot (E3d_H150m vs W3d_H150m) and

root (E3d_H150m vs W3d_H150m), it was found that 17 and 25

metabolites were differentially accumulated, respectively

(Supplementary Tables S32, S33). Clustering analysis showed that

some of the ethanol-induced metabolites overlapped between shoot

E3d_H150m vs W3d_H150m and root E3d_H150m vs

W3d_H150m (Figure 5B). They included fructose, sucrose,

glucose, fructose-6-phosphate, and glucose-6-phosphate

(Supplementary Tables S32, S33). The contents of putrescine in

root E3d_H150m and mature red fruit (MRF) E3d_H150m_MRF

were also higher after ethanol pretreatment than in the water-

pretreated samples (Supplementary Tables S33, S36).

We also measured the starch contents in the samples at the

MGF stage. The contents in ethanol-pretreated fruit and leaf

samples were not significantly different from those in water-

pretreated ones (Supplementary Figure S8).
3.8 Enrichment of intrinsically disordered
region proteins in up-regulated DEGs

Our previous paper discussed that ethanol treatment might

affect the formation of biomolecular condensates driven by liquid–

liquid phase separation (LLPS) (Matsui et al., 2022). Because

intrinsically disordered region (IDR) proteins have been

recognized as an important factor of the LLPS event (Field et al.,

2023; Liu et al., 2023), we estimated the enrichment of IDR proteins

in the up-regulated DEGs identified by the present RNA-seq

analysis. While the proportion of IDR proteins in total tomato

proteins was 47.3%, significantly higher proportions of IDR

proteins were found in the DEGs of root E3d vs W3d (54.1%),

shoot E3dH30m vs W3dH30m (57.1%), and shoot E3dH90m vs

W3dH90m (60.7%) (Table 1).
4 Discussion

The purpose of this paper was to investigate whether ethanol

application enhances heat stress tolerance in tomato. As in other

plant species reported previously, our results in tomato showed that

ethanol pretreatment alleviated heat damage to vegetative growth

(Figure 1). In addition, we demonstrated that ethanol pretreatment

was also effective for improving reproductive development after

heat damage (Figure 2). Although the fresh weight per fruit was not

different between ethanol- and water-treated plants, the fruit

number per plant was higher in ethanol-treated plants than in

water-treated control plants (Figure 2). This suggests that ethanol

pretreatment can improve yield of fruits or seeds under heat

stress conditions.

Previously, we reported that ethanol pretreatment enhanced

heat stress tolerance in Arabidopsis (Matsui et al., 2022). That study

showed that ethanol treatment increased the expression level of

Binding Protein 3 (BIP3), a marker gene for endoplasmic reticulum

(ER) stress (Matsui et al., 2022). We also observed that unfolded

protein response (UPR)-related metabolites such as polyamines
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accumulated in ethanol-treated Arabidopsis plants (Matsui et al.,

2022). These results raised the possibility that ethanol treatment

might activate UPR signaling in Arabidopsis. This hypothesis was

supported by the results that UPR inducer treatment increased heat

stress tolerance while UPR inhibitor treatment decreased heat stress

tolerance; furthermore, the reduced heat stress tolerance was found

in the mutant bzip60 (Matsui et al., 2022). The protein bZIP60 has

been shown to function as an upstream regulator of BIP3 (Humbert

et al., 2012; Pastor-Cantizano et al., 2020). In the present study, the

expression levels of tomato BIP family genes (Solyc01g099660,

So l y c01g150132 , So l y c03g082920 , So l y c06g052050 ,

Solyc08g082820, and Solyc12g055687), bZIP60 (Solyc10g078290),

and also bZIP28 (Solyc04g082890), which is another upstream
Frontiers in Plant Science 08
regulator of BIP3 (Fragkostefanakis et al., 2015; Löchli et al.,

2022), were not different between water- and ethanol-treated

samples at seedling stages (Supplementary Tables S2–S7).

However, it is interesting to note that the content of the

polyamine putrescine was higher in some comparisons between

ethanol- and water-treated samples (Figure 5). Although

the expression levels of BIP3, bZIP60 and bZIP28 were not

increased by ethanol application, we found that expression levels

of several genes encoding molecular chaperones other than BIP

family genes were increased in shoot E3H90m vs W3H90m

(Solyc09g092260), in root E3 vs W3 (Solyc05g015470,

Solyc07g065970, and Solyc08g005300), and in root E3H90m vs

W3H90m (Solyc03g115140, Solyc05g050820, and Solyc08g005300)
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(Supplementary Tables S3, S6, S7). These chaperones might play a

role in the UPR machinery of ethanol-treated tomato plants.

Physicochemical properties of ethanol molecules affect liquid–

liquid phase separation (LLPS) (Hansen et al., 2021). LLPS has

received much attention in biological regulatory processes, not only

in yeasts and animals but also in plants (Londoño Vélez et al., 2022;
Frontiers in Plant Science 09
Field et al., 2023; Liu et al., 2023). In the biological aspects of LLPS,

accumulating evidence has demonstrated that intrinsically

disordered region (IDR) proteins function as important molecules

involved in the formation of biomolecular condensates (Han et al.,

2023). For example, the yeast prion protein Sup35 functions in the

formation of biomolecular condensates to rescue the translation
TABLE 1 Enrichment of intrinsically disordered region proteins in up-regulated DEGs.

Up-regulated DEGs

IDR

Ratio (%)+ -

E3d vs W3d (shoot) 157 83 74 52.9

E3d vs W3d (root) 414 224 190 54.1 *

E3dH30m vs W3dH30m (shoot) 562 321 241 57.1 *

E3dH30m vs W3dH30m (root) 241 101 140 41.9

E3dH90m vs W3dH90m (shoot) 603 366 237 60.7 *

E3dH90m vs W3dH90m (root) 470 215 255 45.7

E3dH150m_MGF vs W3dH150m_MGF (MGF) 191 75 116 39.3

Total genes 34074 16132 17942 47.3
f

*The significance of enrichment was calculated by Fisher's exact test (P < 0.05) as compared to the ratio of total genes in Solanum lycopersicum.
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factor from stress-induced injury (Franzmann et al., 2018). We

checked the enrichment of IDR proteins in the up-regulated DEGs

identified by the RNA-seq analysis (Table 1). The proportions of

IDR proteins in the up-regulated DEGs (root E3d vs W3d, shoot

E3dH30m vs W3dH30m, and shoot E3dH90m vs W3dH90m) were

significantly higher than the proportion of IDR proteins among

proteins as a whole in tomato (Table 1). The observed high

proportion of IDR proteins in the up-regulated DEGs suggest that

ethanol treatment might induce a cellular state where biomolecular

condensates can be easily formed by LLPS. We also found that the

GO term “red or far-red light signaling” was enriched in the up-

regulated DEGs in shoots (Figure 3E). This raises a possibility that

phytochrome B regulatory pathways are affected by ethanol

application. It is intriguing that phytochrome B functions as one

of the thermosensors (Legris et al., 2016; Piskurewicz et al., 2023)

and is involved in the formation of the biomolecular condensate

photobody in the nucleus (Chen et al., 2022; Shi and Zhong, 2023).

Furthermore, we noticed that the expression levels of some of the

late embryogenesis abundant (LEA) genes were up-regulated by

ethanol application. For example, the expression level of

Solyc02g085150 in the shoot E3d sample was higher than that in

the shoot W3d sample (log2 fold change = 2.28) (Supplementary

Table S2). This expression difference was confirmed by quantitative

RT–PCR analysis (Supplementary Figure S7A). Our RNA-seq

analysis showed that 3, 6, and 3 LEA genes were up-regulated in

shoot E3d vs W3d, shoot E3dH30m vs W3dH30m, and shoot

E3dH90m vs W3dH90m, respectively (Supplementary Tables S2,

S4, S6). LEA proteins function as protective molecules that bind

directly to client proteins and prevent aggregation not only under

drought stress conditions but also under heat stress conditions

(Dirk et al., 2020; Hernández-Sánchez et al., 2022). The shrimp LEA

protein AfrLEA6 is involved in desiccation tolerance through LLPS

(Belott et al., 2020). If LLPS in the ethanol-treated plants is

activated, we suggest that the accumulation of LEA proteins by

LLPS might be one of the factors that contribute to enhanced stress

tolerance. To elucidate the involvement of ethanol-mediated

cellular status in LLPS, further analysis is needed. We are

investigating whether ethanol application affects the formation of

biomolecular condensates by LLPS.

Bashir et al. (2022) showed that, in ethanol-treated Arabidopsis

plants, the ethanol incorporated into cells was converted to sugars via

the gluconeogenesis pathway. In our RNA-seq analysis, we found that

the expression levels of some genes encoding enzymes associated with

ethanol metabolism were up-regulated following ethanol application.

The expression levels of the genes (Solyc02g084640, Solyc02g086970,

and Solyc05g005700) encoding aldehyde dehydrogenase, which

converts aldehyde into acetic acid, were increased in the root

E3dH90m (Supplementary Table S7). The expression level changes

of these genes might reflect the incorporation of the applied ethanol

into sugars in the root cells. Because aldehyde molecules are toxic for

organisms, the increased expression of genes encoding aldehyde

dehydrogenase might be preferred. Our metabolome analysis

showed that the contents of sugars, including sucrose, glucose,

fructose, glucose-6-phosphate, and fructose-6-phosphate, were

increased in ethanol-treated shoots and roots (E3d_H150m)

compared with those in water-treated shoots and roots
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(W3d_H150m) (Supplementary Tables S32, S33). This supports the

view that ethanol application activates the gluconeogenesis pathway.

The GO terms related to photosynthesis were enriched in the down-

regulated DEGs (Figure 3E), suggesting that sugar accumulation after

ethanol application might cause the down-regulation of

photosynthesis-related genes and so save photosynthetic effort.

Trehalose is one of the compatible solutes that contribute to

modulating osmotic imbalance and stabilizing macromolecules

(Dabravolski and Isayenkov, 2022). Our metabolome analysis

showed that the contents of trehalose in root E3d, shoot

E3d_H150m and root E3d_H150m were higher than those in the

water-treated samples (Supplementary Tables S31–S33). This

suggests that ethanol-pretreated tomato plants might also show

improved tolerance to drought stress. The notion was supported by

our finding that GO terms such as “water deprivation” were

enriched in the DEGs (Figure 3E).

In the present study, ethanol pretreatment was applied at the

seedling stage. Although the number of fruit was increased by the

ethanol pretreatment, the fruit qualitative traits were not greatly

altered. We found only one metabolite was increased in MRF

(Supplementary Table S36). Ethanol treatment at a later

developmental stage might alter the dynamics of metabolite

accumulation in MRF. Because ethanol pretreatment at the

seedling stage increased the sugar contents in seedlings, ethanol

treatment at a later developmental stage might cause sugars to

accumulate in MRF, giving sweeter fruits. Furthermore, trehalose

might also accumulate in the MRF. Because trehalose has

therapeutic effects against neurodegenerative diseases in mammals

(Yap et al., 2023), trehalose-enriched tomato fruit might

prove valuable.

In conclusion, we discovered that ethanol pretreatment

alleviated heat-stress-induced damage in tomato, not only during

seedling growth but also in fruit development. Transcriptome

analysis revealed sets of genes that were differentially expressed in

shoots and roots of seedlings and in mature green fruits of ethanol-

pretreated plants compared with those in water-treated plants. The

sets included genes encoding LEAs and ROS-related enzymes.

Metabolome analysis revealed that the contents of some sugars,
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Biomolecular
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FIGURE 6

Model for mechanism governing ethanol-mediated heat stress
tolerance in tomato.
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including trehalose, sucrose and fructose, were increased in the

ethanol-pretreated seedlings after heat stress.

From these results, we hypothesize a model for ethanol-induced

heat stress tolerance mechanisms in tomato (Figure 6). Ethanol

application increases the contents of sugars, as a result of ethanol

incorporation and its conversion into sugars via gluconeogenesis

activation. Although environmental stress generally inhibits

photosynthesis and growth, in the ethanol-pretreated plants the

accumulated sugars improve growth under stress conditions,

compensating for reduced photosynthesis. Concurrently, ethanol

treatment up-regulates stress-related genes encoding LEAs and

ROS-related enzymes. LEAs most likely involve the formation of

biomolecular condensation driven by LLPS while ROS-related

enzymes decrease the content of toxic ROS molecules. These

processes occur cooperatively in the ethanol-treated plants and so

increase their heat stress tolerance. The knowledge presented here

will encourage the development of ethanol-based chemical priming

technology that would reduce heat stress damage and enhance fruit

quality in crops, especially in the Solanaceae. At present, regarding

this technology, there is a gap on how to apply for agriculture.

Research practices in field and horticultural facility using the

knowledge presented here will be important for the feasibility.
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