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Zhijun Tong1, Jianduo Zhang2, Qian Gao2, Zhong Wang3,
Xueyi Sui1, Bingguang Xiao1 and Changjun Huang1*

1Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological
Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China, 2Technology
Center, China Tobacco Yunnan Industrial Co. LTD, Kunming, China, 3China Tobacco Gene Research
Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated

protein 9 (CRISPR-Cas9) system has been widely applied in cultivated crops, but

limited in their wild relatives. Nicotiana alata is a typical wild species of genus

Nicotiana that is globally distributed as a horticultural plant and well-studied as a

self-incompatibility model. It also has valuable genes for disease resistance and

ornamental traits. However, it lacks an efficient genetic transformation and

genome editing system, which hampers its gene function and breeding

research. In this study, we developed an optimized hypocotyl-mediated

transformation method for CRISPR-Cas9 delivery. The genetic transformation

efficiency was significantly improved from approximately 1% to over 80%. We

also applied the CRISPR-Cas9 system to target the phytoene desaturase

(NalaPDS) gene in N. alata and obtained edited plants with PDS mutations with

over 50% editing efficiency. To generate self-compatible N. alata lines, a

polycistronic tRNA-gRNA (PTG) strategy was used to target exonic regions of

allelic S-RNase genes and generate targeted knockouts simultaneously. We

demonstrated that our system is feasible, stable, and high-efficiency for

N. alata genome editing. Our study provides a powerful tool for basic research

and genetic improvement of N. alata and an example for other wild

tobacco species.
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1 Introduction

Crop wild relatives (CWRs) harbor untapped genetic diversity

and resilience, serving as a genetic reservoir to improve resistance,

yield, quality and adaptability of cultivated crops. However, during

the process of domestication, with the main purpose of increasing

crop yield and biomass, a treasure trove of genes was lost in

cultivated crops (Sang et al., 2011; Tirnaz et al., 2022). As the

demands of a burgeoning global population escalate alongside the

multifaceted challenges posed by environmental stresses, scientists

have turned to explore the key functional genes that control

beneficial traits in CWRs and are lost in cultivated crops, and

applied them to molecular breeding (Bohra et al., 2022).

Consequently, the modern agricultural paradigm is undergoing a

transformation from concentrating on staple crops to interplaying

between cultivated crops and their wild progenitors. In recent

decades, several ‘game-changing’ genes that can offer beneficial

traits, such as resistance to pests and diseases, abiotic stress

tolerance, quality improvements and yield increases, have been

reintroduced into cultivated varieties to enhance their resilience and

yield (Engels and Thormann, 2020). Growing evidence has also

demonstrated the value of CWRs in agricultural breeding programs,

with the annual contribution of these traits to agriculture estimated

at USD 115 billion globally, but they still remain a relatively under-

utilized and under-estimated resource (Dempewolf et al., 2017).

Many valuable traits have not yet been explored and most of the

important functional genes in CWRs have not yet been studied.

With the rapid development of sequencing technology and the

sharp decrease of sequencing cost, the genomic information of

important CWRs has been uncovered in the last decade (Weigel and

Nordborg, 2015; Purugganan and Jackson, 2021). Integrated with

large-scale transcriptome, metabolome and/or proteome

information, candidate genes that determine important traits are

now readily predicted. To maximize these potential valuable assets,

candidate gene validation and function identification by using

genetic engineering approaches, such as gene overexpression,

gene silencing and gene knockout mediated by genetic

transformation methods, could facilitate the deployment of wild

alleles into new cultivars. However, in contrast to the well-

developed systems in the cul t ivars , e fficient genet ic

transformation systems have not yet been established in amounts

of the CWRs (Chen et al., 2022).

Clustered regularly interspaced short palindromic repeats

(CRISPR)-associated protein (CRISPR-Cas) based genome editing

technology is a recently developed powerful tool and has been

widely utilized in plant molecular biology (Manghwar et al., 2019;

Zhu et al., 2020). Compared to the conventional strategies used for

functional characterization of plant genes and genetic improvement

of agricultural crops, which are complicated and laborious-, time-

consuming, CRISPR-Cas, especially CRISPR-Cas9 from

Streptococcus pyogenes, has been proved in plant biology and

provides more effective and time-saving methods with precise

genetic manipulation of target genes (Hsu et al., 2014; Liu et al.,

2016). However, while CRISPR-Cas9 has enabled various genome

editing applications, such as indels production, precise nucleotide

substitution, gene-expression regulation, multiplexed and high-
Frontiers in Plant Science 02
throughput gene editing in a variety of model plants and crop

species, the recalcitrance of efficient genetic transformation severely

hinders the application of CRISPR-Cas9 in the CWRs (Rahman

et al., 2023). Consequently, due to the lack of efficient CRISPR-Cas9

editing system, gene function verification of most CWRs in situ still

cannot be carried out.

Nicotiana alata is a perennial species native to Brazil, Paraguay,

and northeastern Argentina, belonging to the genus Nicotiana

section Alatea. It has been introduced to other regions as an

ornamental plant for its attractive and fragrant flowers that vary

in color (Zheng et al., 2021; Zhang et al., 2023). As an important

horticultural plant, the genes involved in the secondary metabolism

pathway that regulate the fragrance and color of the flowers need to

be further addressed (Raguso et al., 2003, 2006; Fahnrich et al., 2011;

Guo et al., 2020; Zheng et al., 2021). In its native wild habitats, N.

alata encounters a range of biotic and abiotic stresses. To survive

these challenges, it has evolved a suite of adaptive systems that

confer protection against specific threats. Several resistance loci

have been identified in N. alata, including but not limited to,

resistance to Tomato spotted wilt virus (RTSW), Tobacco mosaic

virus (N’ala) and black root rot (Yuan et al., 2015; Trojak-Goluch

et al., 2016; Huang et al., 2018; Berbeć and Doroszewska, 2020;

Czubacka, 2022; Li et al., 2023). More important, N. alata is a model

species used to study gametophytic self-incompatibility (SI),

controlled by the S-locus (Bredemeijer and Blaas, 1981). The first

cloning and sequencing of a cDNA encoding an S-RNase protein

that co-segregates with an S allele was obtained in N. alata

(Anderson et al., 1986; Mcclure et al., 1989). The S-locus gene of

N. alata has subsequently been extensively studied by molecular

biologists and geneticists, as it provides a model system to

understand the molecular mechanisms of SI, as well as its

evolution, diversity, and plasticity (Cruz-Garcia et al., 2003, 2005;

Roldan et al., 2015; Fujii et al., 2016). In addition, the interaction

between N. alata and its pollinator, the hawkmoth Manduca sexta,

is also a fascinating example of coevolution and mutualism (Kessler

et al., 2015; Haverkamp et al., 2016). In summary, the diverse roles

and significance of N. alata in research, from reproductive biology

to environmental interactions, underline it is not only an

ornamental plant but also a model organism.

Despite its pivotal role in scientific inquiries, researchers

working with N. alata faced a significant technological hurdle.

The most significant challenge posed by N. alata, particularly its

recalcitrance to conventional genetic transformation techniques like

the leaf disk method (Ebert and Clarke, 1990; Taheri-Dehkordi

et al., 2017), has been a major obstacle for researchers. The lack of

highly efficient genetic transformation has led to the revolutionary

CRISPR/Cas9 genome-editing system, which has transformed

genetic research in myriad organisms, but has not been

established in N. alata. In this study, we optimized the approach

centered on hypocotyl transformation. This innovative shift not

only circumvented the longstanding challenges but also set the stage

for new genome-editing endeavors in N. alata. By using the

phytoene desaturase (PDS) gene as a proof of concept, we

validated the efficacy of our CRISPR-Cas9 system in N. alata. For

further breeding and basic research in future, we aimed to disrupt

the S-RNase gene and thereby obtain self-compatible N. alata.
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Therefore, we not only established an efficient genome editing

system but also obtained an important germplasm for future study.
2 Materials and methods

2.1 Cloning of the first exon of the N. alata
PDS (NalaPDS) coding sequence

The annotated PDS sequences of N. tabacum (XM_016642616),

N. benthamiana (EU165355), and N. attenuata (JX185751) were

retrieved from the National Centre for Biotechnology Information

(NCBI) database and used as queries for a Basic Local Alignment

Search Tool-Nucleotide (BLASTn) search against the draft genome

sequences of N. tabacum, N. benthamiana, and N. attenuata,

respectively (available at https://solgenomics.net). The obtained

genomic DNA and coding sequences (CDs) were aligned

(Supplementary Figure 1) using the MEGA software (Tamura

et al., 2021). Primer pairs, NalaPDS1stExon-F/-R (Supplementary

Table 1), were designed based on the conserved regions in the exonic

region to isolate the partial PDS coding sequence from N. alata. Total

RNA was extracted from N. alata leaf tissue using the RNeasy Plant

Mini Kit (Qiagen, CA, USA) and the first strand of cDNA was

synthesized using The PrimeScript 1st strand cDNA Synthesis Kit

(Takara, Dalian, China) according to the manufacturer’s instructions.

Polymerase chain reaction (PCR) amplification was carried out using

100 ng of cDNA as a template and the Q5 High-Fidelity DNA

Polymerase, following the recommended cycling conditions provided

by the manufacturer (NEB, MA, USA). The PCR amplification

consisted of an initial denaturation step at 94°C for 2 minutes,

followed by 30 cycles of denaturation at 94°C for 30 seconds,

annealing at 60°C for 30 seconds, and extension at 72°C for 1

minute. The amplified product was recovered from a low-melting

point agarose gel and subsequently sequenced.
2.2 S-RNase allele identification in N. alata

To identify the S-RNase allele in N. alata, degenerate primers

C2F/C4R (Supplementary Table 1) were used to amplify the S-RNase

candidates. Genomic DNA was extracted from N. alata leaf tissue

using the Plant Genomic DNA Miniprep Kit protocol (Tiangen,

Tianjin, China). Genomic PCR was performed using the Q5 High-

Fidelity DNA Polymerase, as described above. The amplified PCR

product was cloned into the pCE2-TA-Blunt-Zero vector (Vazyme,

Nanjing, China) following the manufacturer’s instructions. 10 Clones

of each plant were sequenced using Sanger sequencing platform

(Generay, Shanghai, China), and the obtained sequences were

subjected to BLAST search against the non-redundant NCBI

database to determine the candidate S-RNase allele.

To confirm the S2/Sc10 bi-allele distribution result in the family,

specific primer pairs S2F/R and Sc10F/R (Supplementary Table 1) were

used to examine the same population. The PCR products displaying

expected size unique bands were subjected to electrophoresis using the

ZAG DNA Analyzer (Agilent, Santa Clara, USA).
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2.3 Guide RNA design and
plasmid construction

Cas9-PF vector was digested using the BsaI enzyme (NEB) for

vector linearization. The online CRISPR software (http://

crispor.tefor.net/) was utilized to identify sgRNA sequences in the

gene’s first exon (Concordet and Haeussler, 2018). For NalaPDS,

the oligonucleotides of sgRNA (Supplementary Table 1) were

annealed and ligated into BsaI-digested Cas9-PF plasmids to

generate the Cas9-PF-NalaPDS structure. For S-RNase, a

polycistronic tRNA-gRNA (PTG) cassette (Supplementary

Table 1) containing S2-RNase and Sc10-RNase gRNAs was

synthesized (Generay, Shanghai, China). The synthesized PTG

polynucleotides were inserted into BsaI-digested Cas9-PF

plasmids through homologous recombination to generate the

Cas9-PF-SRNase structure.
2.4 Sterilization seeds preparation of
N. alata plants

The N. alata plants (accession PI42334), used in this study, were

provided by Prof. Hanhui Kuang (Huazhong Agriculture

University) (Yuan et al., 2015). The seeds of the N. alata line

were harvested after crossing from different plants. Sterilization of

the seeds was carried out by placing them in a 1.5-mL microfuge

tube with 70% ethanol for 1 minute, followed by treatment with a

bleach solution containing 10% sodium hypochlorite for 10

minutes. After five rinses with sterilized deionized water, the

sterilized seeds were sown on agar plates containing plant growth

media (Table 1).
2.5 Agrobacterium culture preparation

Target plasmids were transformed into A. tumefaciens using

electroporation. For each transformation, 100 ml of competent cells

were mixed with 50 ng of plasmid DNA and suspended in an

electroporation cuvette with an electrode distance of 1 mm (Bio-

Rad, USA). Electroporation was carried out using MicroPulser

Electroporator (Bio-Rad, USA) with 2.5 kV, 25 mF capacitance,

and 400 Ohm resistance. To screen for transformants of the target

plasmid, colony PCR was performed using specific primers. Each

colony was suspended in 20 ml of 1 X Taq DNA polymerase Master

Mix (Vazyme, Nanjing, China) and subjected to PCR amplification.

Positive single colonies were transferred to 50 mL centrifuge tubes

containing 5 mL of liquid LB medium supplemented with 50 mg/L

rifampicin and 100 mg/L kanamycin. The bacterial cultures were

incubated on a shaker overnight at 220 rpm and 28°C until the OD

at 600 nm (OD600) reached 0.8. The Agrobacterium cultures were

then centrifuged at 2500 × g for 5 minutes, washed two times with

MS medium containing 30 g/L sucrose. The bacterial pellet was

resuspended in 4 mL of MS medium containing 30 g/L sucrose and

supplemented with 100 µM acetosyringone to achieve an OD600 of

0.3 - 0.4.
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2.6 Agrobacterium strains screening

To screen for the most efficient Agrobacterium strain, we

performed the transformation using four A. tumefaciens strains:

GV3101, C58C1, EHA105 and LBA4404. All strains harbored the

same Cas9-PF-SRNase plasmid as described above. This plasmid

contained the hygromycin B phosphotransferase gene as a selectable

marker for plant selection (conferring hygromycin resistance)

under the control of the 35S promoter and CaMV poly(A) signal

terminator. We evaluated the transformation efficiency by

measuring the callus proliferation and shoot regeneration rates.
2.7 Explants preparing and
Agrobacterium infection

The sterilized seeds were germinated for 3 days in the dark (25 °C)

and then transferred to long-day condition (16-h light/8-h dark, 25 °C)

for another 7 days. The seedlings (15-20 mm in length) were excised

below the apical meristem and above the roots. The hypocotyl part was

subsequently cut into 4-5 segments (about 3–5 mm in length) and the

segments were placed on cocultivation medium (Table 1). The

hypocotyl preparing and Agrobacterium infection could be achieved

simultaneously by dipping the scalpel into Agrobacterium suspension

before each cut.
2.8 Callus induction and
shoots regeneration

After 3 days of co-cultivation with Agrobacterium, explants were

taken out and transferred to callus induction medium (Table 1)

containing the antibiotic (cefotaxime or timentin) to inhibit growth

of Agrobacterium and subsequently sub-cultured at second week.

After 2-3 weeks, when explants had developed swelling callus with
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shoot primordia, the calli were transferred onto regeneration

medium (Table 1), which contained both Agrobacterium and plant

antibiotics. The calli with shoots were subsequently sub-cultured

every 3 weeks until plantlets were formed. These plantlets were

separated into single plants and cultured on rooting medium

without selectable antibiotics (Table 1). At this stage, clean cut of

callus from the base of the plantlet was essential. Plantlets were sub-

cultured on rooting media every 3 weeks until roots developed.

When the roots are 2-3 cm long, plants were carefully removed from

the gel and transplanted into soil. These transgenic plants were

subsequently maintained in growth chambers at long-day condition

(16-h light/8-h dark, 25 °C).
2.9 Effect of antibacterial antibiotics on
Agrobacterium growth

To identify the most suitable antibiotic and its concentrations for

the Agrobacterium growth inhibition, different ranges of cefotaxime

and timentin concentrations were evaluated according to the ones

described in the literature for other nicotiana species. Agrobacterium

infected hypocotyl explants were transferred into co-cultivation and

callus induction plates containing MS medium with cefotaxime alone

at concentrations of 50, 100, 200 and 300 mg/L and timentin alone at

concentrations of 50, 125, 200 and 300 mg/L. Data were statement as

the callus proliferation and shoot regeneration rate.
2.10 Detection of genome editing events

The genomic DNA of the stable transgenic N. alata plants from

hygromycin selection and wild-type plants were extracted from leaf

tissue using the Plant Genomic DNA Miniprep Kit protocol

(Tiangen) to assess targeted mutagenesis using PCR amplification

and Sanger sequencing. The genomic region spanning the CRISPR
TABLE 1 Optimized steps, medium used and culture conditions in Agrobacterium-mediated transformation of Nicotiana alata.

Type
of

Medium
Medium content

Antibiotics
applicaiton

Culture
conditions

Culture
time

Washing
medium

MS basal medium (4.41 g/L), 6-Benzyladenine (6-BA) 1 mg/L,
IAA 0.02 mg/l, 30 g/L sucrose, adjust the pH to 5.8 with 1
M KOH.

None None None

Co-
cultivation

MS basal medium (4.41 g/L), 6-BA 1 mg/L, IAA 0.02 mg/l, 30 g/
L sucrose, and 5 g/L Bacto agar, adjust the pH to 5.8 with 1
M KOH.

None Dark, 25°C 3 days

Callus
induction

MS basal medium (4.41 g/L), 6-BA 1 mg/L, IAA 0.02 mg/l, 30 g/
L sucrose, and 5 g/L Bacto agar, adjust the pH to 5.8 with 1
M KOH.

Timentin (125 mg/L) for Agrobacterium
inhibition and hygromycin (35 mg/L) for

selectable antibiotic

Long-day condition
(16-h light/8-h dark,

25 °C)
3-5 weeks

Shoot
regeneration

MS basal medium (4.41 g/L), 6-BA 1 mg/L, 30 g/L sucrose, and
5 g/L Bacto agar, adjust the pH to 5.8 with 1 M KOH.

Timentin (125 mg/L) for Agrobacterium
inhibition and hygromycin (35 mg/L) for

selectable antibiotic

Long-day condition
(16-h light/8-h dark,

25 °C)
3 weeks

Rooting
1/4 X MS basal medium (4.41 g/L), 0.8 mg/L 4-(3-Indolyl)
butyric acid, 30 g/L sucrose, and 6 g/L Bacto agar, adjust the pH
to 5.8 with 1 M KOH

Timentin (125 mg/L) for
Agrobacterium inhibition

Long-day condition
(16-h light/8-h dark,

25 °C)
3-5 weeks
fr
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target sequences were amplified by PCR (primer sequences in

Supplementary Table 1) using Q5 High-Fidelity DNA Polymerase

(NEB). The PCR products were sequenced and then subjected to

SnapGene software assay (www.snapgene.com) according to the

manufacturer’s instructions. PCR fragments of putative editing

events were then cloned into pCE2-TA-Blunt-Zero vector

(Vazyme) and 10 clones each plant were sequenced to further

measure the frequencies of CRISPR induced mutations. The

mutation rate was calculated based on the ratio of mutated plants

versus total transgenic plants.
3 Results

3.1 Optimization of Agrobacterium-
mediated transformation and regeneration

Two methods of Agrobacterium-mediated transformation in N.

alata have been previously described (Ebert and Clarke, 1990;

Schroeder and Stimart, 1996). Leaf discs and seedling hypocotyls

were utilized as explants for plantlet regeneration, respectively.

Initially, we strictly followed the methodology described by

Schroeder and Stimart (1996) for leaf discs-mediated

transformation, as it is a conventional method applied in multiple

Nicotiana species. However, our attempts were unsuccessful. We

made efforts to adjust various parameters, including different

Agrobacterium strains, selectable antibiotic concentrations, and

callus and shoot induction media compositions, in order to

achieve improved outcomes. Unfortunately, none of the tested

parameters resulted in the formation of well-developed callus and

regeneration shoots in N. alata. Instead, friable and disorganized

tumors were observed (data not shown). Therefore, we speculated

that the use of leaf explants may not be suitable for generating

transgenic lines of our owned N. alata (PI42334) line.

Although the regeneration of transformed N. alata using

hypocotyl explants was established, the low transformation

frequency (<1%) was identified as a bottleneck (Ebert and Clarke,

1990). To enhance the transformation frequency, we aimed to

optimize the Agrobacterium strains, co-culture reagents. Four

Agrobacterium tumefaciens strains, namely GV3101, C58C1,

EHA105, and LBA4404, were tested to evaluate the effects of

strain types on the transformation efficiency in N. alata.

Hypocotyls from 10-day-old seedlings were cut into 3-5 mm

segments as explants. The explants were then transferred to

callus-induction medium (Figures 1A, B) and cultured in

darkness for 2 days to increase infection efficiency before being

transferred to a long-day condition (16-hour light/8-hour darkness,

26°C). After 2 weeks on the callus induction plates and one month

on the regeneration induction plates, containing 100 mg/L

cefotaxime and 35 mg/L hygromycin, the hypocotyl segments

gave rise to calli and shoots. The results demonstrated successful

transformation of N. alata using GV3101, EHA105, and LBA4404

(Table 2). A. tumefaciens EHA105 and GV3101 exhibited higher

transformation efficiency, with 12.5% and 8.33% regeneration

shoot, respectively. Consistent with previous studies by Ebert and

Clarke (1990), LBA4404 showed successful transformation but low
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efficiency (2.08%) among the four strains, whereas C58C1 failed to

transform N. alata.

During the screening of A. tumefaciens strains, we found that

the primary cause of low transformation efficiency was

Agrobacterium contamination (Figure 1A). Therefore, we next

investigated the impact of antibiotics on Agrobacterium during

the transformation process. Cefotaxime, commonly used in tissue

culture of N. tabacum and N. benthamiana, is known to effectively

eliminate any remaining Agrobacterium after co-cultivation.

However, our study on N. alata transformation revealed a

conflicting relationship between calli/shoots induction and the

anti-agrobacterial effect of cefotaxime (Table 3). Upon screening,

bacterial growth was observed at concentrations below 200 mg/L of

cefotaxime (Table 3). Conversely, concentrations higher than 200

mg/L exhibited effective antibacterial properties against surface-

growing bacteria, but severely impaired calli induction and shoots

regeneration (Table 3). Recent studies have demonstrated the

efficacy of timentin in suppressing A. tumefaciens, comparable to

carbenicillin and cefotaxime, with minimal impact on shoot

regeneration (Cheng et al., 1998; Krügel et al., 2002). Hence, we

explored the effects of timentin on calli induction, shoot

regeneration of N. alata hypocotyls, and its inhibitory ability on

Agrobacterium growth. As presented in Table 3, timentin alone

exhibited more efficient bacteria elimination than cefotaxime. After

two weeks in the presence of these antibiotics, calli induction on

timentin plates with concentrations higher than 125 mg/L

proliferated normally without observable negative effects. Our

findings indicate that timentin, with its broad spectrum of

concentrations for suppressing A. tumefaciens in Agrobacterium-

mediated genetic transformation, enabled successful regeneration,

whereas cefotaxime significantly hindered regeneration.

After investigating different Agrobacterium strains and

antibacterial antibiotics, we determined that genetic transformation

using the EHA105 strain and timentin at a concentration of 125 mg/L

resulted in higher values for N. alata calli induction and shoot

regeneration. Ultimately, we summarized the optimized

Agrobacterium-mediated transformation of N. alata with media

composition used, culture conditions, and average duration in

different steps in Table 1.
3.2 Cas9−induced mutagenesis of NalaPDS
in N. alata

The PDS gene is responsible for encoding one of the crucial

enzymes involved in the carotenoid biosynthesis pathway. Mutant

plants with an albino phenotype, resulting from disruptions in this

gene, have been widely utilized as a model gene for virus-induced

gene silencing and CRISPR/Cas9-mediated gene editing (Qin et al.,

2007; Huang et al., 2009; Ma et al., 2020). Due to the absence of

sequence information for the PDS gene in N. alata (referred to

NalaPDS), conserved primers were designed based on the

homologous nucleotide sequences of the PDS gene in N. tabacum,

N. benthamiana, and N. attenuate (Edwards et al., 2017; Xu et al.,

2017; Ranawaka et al., 2023). These primers were employed to

amplify the NalaPDS partial CDs region from total RNA.
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Subsequently, a guide RNA (gRNA) targeting the first exon of

NalaPDS was selected and integrated into the Cas9-PF system (Liu

et al., 2019). The resulting construct (Figure 2A) was then

introduced into N. alata plants using the optimized

Agrobacterium-mediated genetic transformation protocol

mentioned earlier.

Total 43 transformed seedlings were recovered with

hygromycin selecting from 50 explants. Among them, 9 plants

exhibited albino leaf phenotype which was recognized as completely

disrupted NalaPDS, loss-of-function mutants (Figure 2B).

Interestingly, the visual selection marker system mediated by the

PAP gene in this CRISPR system (Liu et al., 2019) was ineffective in
TABLE 2 Transformation efficiency of callus and regenerated shoots by
different Agrobacterium strain.

Agrobacterium
strain

No.
of

explants

No. of resis-
tant
calli

induction

No. of
resistant
shoots

induction

GV3101 48 20 4

C58C1 48 0 0

EHA105 48 23 6

LBA4404 48 12 1
B

A

FIGURE 1

Agrobacterium-mediated transformation of Nicotiana alata using hypocotyl explants. (A) Inhibition of Agrobacterium growth by 100 mg/L
cefotaxime and 125 mg/L timentin. (B) Regeneration frequency of N. alata based on optimized transformation method. Representative
transformation steps are shown: hypocotyl segments were co-cultured with Cas9-PF-SRNase, callus formation and shoot regeneration on selection
medium with hygromycin (35 mg/L) and timentin (125 mg/L), in vitro culture and transgenic seedling on root induction medium. Scale bars = 5 mm.
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N. alata, none of the transformed seedlings exhibited purple

phenotype in this study (Figure 2B). Specific primers were

designed to amplify the target regions and sequenced to detect

the mutant plants with NalaPDS. Mutations in NalaPDS were

identified in 23 of 43 independent transgenic plants with the

percentage of 53.5%. To further dissect the type of mutation,

we also cloned and sequenced (10 random selected clones each

plant) from the amplification of genomic DNA extracted

from mutants (Figure 2C). We found that two and seven of
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nine displayed albino leaves are homozygous editing and bi-allele

gene editing respectively and remaining 14 mutations in

NalaPDS which show green leaf as wild type (WT) are

heterozygous editing with indel on one allele (Figure 2D).

Notably, the efficient mutations were generated in the NalaPDS

locus of transgenic plants with indel rates more than 50% at T0

generation. These results showed that the CRISPR/Cas9 system

could be used to modify genome and have high efficiency for

targeted mutagenesis in N. alata.
B

C D

A

FIGURE 2

Agrobacterium-mediated CRISPR/Cas9 genome editing of NalaPDS in N. alata. (A) T-DNA constructs for Cas9-PF-NalaPDS. Cas9-PF-NalaPDS
consists of a PF Cassette, which contains anthocyanin synthesis regulation gene PAP1 and early flower NtFT5 gene, as a visible marker, a Cas9 gene
driven by 35S promoter, an sgRNA targeting the NalaPDS gene under the control of a U3 promoter, and a hygromycin resistance gene. The first
exon of the N. alata PDS gene was selected as the target site for the gRNA. (B) Phenotypes of the pds mutants. Seedlings displayed albino phenotype
are homozygous or bi-allele gene editing of NalaPDS. Scale bar=1 cm. (C) PCR product sequencing results of PDS mutant plants in (B) are aligned to
the reference genome sequence. Different chromatograms of target position indicate different types of editing events, e.g., homozygous (Ho), bi-
allele (Bi) and heterozygous (He) type editing. WT, wild-type; inserts and deletions are indicated as ‘i’ and ‘d’ respectively. (D) Total precise editing
events categorized by different editing types, including homozygous (Homo), bi-allele (Bi-allel) and heterozygous (Heter) and wild-type (WT).
TABLE 3 Antibiotic effect screening on Agrobacterium EHA105.

Antibiotics
Concentrations

(mg/L)

No.
of

explants

No of
calli

induction

No of calli without
Agrobacterium

growth

No of
shoots

induction

No. of resistant shoots
without

Agrobacterium growth

Cefotaxime

50 48 26 0 0 0

100 48 32 11 8 5

200 48 8 8 3 1

300 48 0 0 0 0

Timentin

50 48 34 26 18 18

125 48 43 43 40 40

200 48 38 38 38 38

300 50 24 24 16 16
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3.3 Targeted mutagenesis of S-RNase
results in self-compatibility

The SI in N. alata is controlled by the highly polymorphic S-

locus. To identify the S allele in our owned line, the degenerate

primer pair C2f/C4r (Supplementary Table 1) was used to amplify

the conserved domains of S-RNases (Roldan et al., 2010).

Fragments amplified from random selected 7 plants of the

population of N. alata were cloned and sequenced. Among 70

sequences (10 clones per plant), 29 and 41 were 100% identical to

Sc10- and S2-RNase respectively, which were previously

characterized as functional SI alleles (Anderson et al., 1986;

Murfett et al., 1996). To further confirm the allelic variants of S-

RNases, specific primers for Sc10- and S2-RNase were used to

examine the same population. As Figure 3A shown, a single band

with the expected size was amplified in each case, suggesting the

presence of Sc10- and S2-RNases alleles in plants.

To test whether the developed CRISPR/Cas9 system could be

used to target two S-RNases alleles simultaneously, we designed and

armed pairs of gRNA targeting the Sc10- and S2-RNase first exon to

an endogenous tRNA processing system (Figure 3B). This system

could dramatically enhance the processing efficiency and function
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of dual sgRNAs transcribed from a single transcript (Xie et al.,

2015). According to our optimized transformation method, we

generated 26 regeneration plants from 30 explants. To evaluate

the efficiency of the target gene editing, we amplified and sequenced

the first exons sequences of Sc10- and S2-RNases gene in all T0

plants. In total, we obtained 12 plants containing mutations in Sc10-

and S2-RNases. Among them, two plants contain bi-allelic

mutations of both S-RNases, one contains mutations in S2-RNase

and four contain mutations in Sc10-RNase allele (Figure 3C).

However, the remaining five mutations were heterozygous in

Sc10- or S2-RNases, which showed overlapping peaks starting at

17th nucleotide of gRNA. We speculated these plants are chimeric

editing, which is a common phenomenon in somatic cells

gene editing.

To investigate the self-compatibility of the S-RNase gene editing

plants, we transferred two bi-allelic mutants to the greenhouse

under a 16-h light/8-h dark cycle. We performed artificial

pollinations at the open flower stage. After self-pollination,

compare to the small and shriveled fruit of WT plants, two bi-

allelic mutant lines (#11 and #23) produced big and well-stacked

fruits (Figure 3D). In contrast to the complete sterility of WT plants,

self-pollination of two mutant lines produces large amounts of seeds
B

C D

A

E

FIGURE 3

CRISPR/Cas9-mediated S-RNase mutations result in self-compatible N. alata. (A) S-RNase allele identification in N. alata. Primer sets S2F/R and
Sc10F/R were used for PCR analysis to determine the presence of S2 and Sc10 alleles in the population used for gene editing. (B) Cas9-PF was
armed with a polycistronic tRNA-gRNA (PTG) cassette consisting of S2 and Sc10 gRNAs. (C) Mutation patterns in T0 transgenic plants. sgRNA, single
guide RNA; PAM, the protospacer adjacent motif; WT, wild type; inserts and deletions are indicated as ‘i’ and ‘d’ respectively. (D) compared to the
sterility of WT, well-stacked fruits and mounts of seeds were harvested in two bi-allele edited N. alata plants. Scale bar=1 cm. (E) Segregation ratio of
Cas9-PF-free plants and S2 and Sc10 alleles in T1 generation of two bi-allele edited N. alata lines respectively.
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per fruit, ranging from 137 to 349 seeds per fruit. These results

demonstrate that inducing loss-of-function mutations in S-RNase

genes resulted in self-compatibility in N. alata.

To seek for the Cas9 cassette free offspring and determine

whether the mutations could be inherited to the next generation, we

sowed the T1 seeds. The germination rate was > 80% for two lines.

The segregation ratio of T1 plants of lines 11 and 23 without the

Cas9 cassette is 18.7% and 21.8% respectively (Figure 3E). The Chi-

square test showed that these two lines contained a single copy of

the Cas9 cassette. We further detected mutations in the S-RNase

genes and genotyping of Sc10- and S2- allele in all Cas9-free T1

generation plants. The sequencing result showed that bi-allele

mutations of Sc10- or S2-RNases in lines 11 and 23 were

transmitted to the T1 generation and all T1 plants harbored

mutations in S2- and/or Sc10-allele. The ratios of S2S2, S2Sc10

and Sc10Sc10 in the two lines are 19-22%, 52-56% and 22-29%,

corresponding to a predictable Mendelian ratio of 1:2:1 (Figure 3E).

In addition, these mutants have similar plant morphology and

growth vigor as the WT (Supplementary Figure 3), indicating that

they can directly be used for breeding or basic research.
4 Discussion

Leaf disk transformation is a widely used method for

introducing foreign DNA into plant cells, leading to the

development of transgenic plants (Curtis et al., 1995). However,

this method may not work for all plant species, even within a plant

species, different genotypes or varieties may respond differently to

leaf disk transformation. The success of leaf disk transformation is

sensitive to the specific parameters of the protocol, such as the

choice of tissue culture medium, antibiotics, hormones, and

environmental conditions. Variations in these parameters can

affect the outcome, and it may be difficult to find the optimal

conditions for recalcitrant species. The hypocotyl, located below the

cotyledons in the embryonic stem region of a plant, often has

characteristics that make it more amenable to transformation.

Therefore, hypocotyl transformation is considered a valuable

alternative to leaf disk transformation for several reasons. It tends

to be less recalcitrant than leaves, making it easier for

Agrobacterium to infect and introduce foreign DNA. Hypocotyl

tissue typically exhibits a higher regeneration potential than leaf

tissue in many plant species (Wang and Xu, 2008; Mahto et al.,

2018; Muto et al., 2021; Xiao et al., 2022). In this study, we failed to

induce callus formation by using leaf disks as explants. However, we

observed abundant swelling tissue in Agrobacterium-infected

hypocotyl segments. By screening different strains of A.

tumefaciens, we found that EHA105 and GV3101 had relatively

high infection efficiency, which is consistent with previous reports

in other species.

During the hypocotyl-mediated transformation using EHA105,

another challenge was to control Agrobacterium contamination in

the induced callus and regenerated shoots. Induced calli were easily

obtained when we used low concentration cefotaxime, but most of

these calli did not survive to the rooting stage due to the

incomplete inhibition of Agrobacterium. On the other hand, high
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concentration cefotaxime to control Agrobacterium infestation after

transformation dramatically suppressed callus induction and shoot

regeneration. As timentin is a novel antibiotic that has been utilized

in other species’ genetic transformation (Cheng et al., 1998; Krügel

et al., 2002), we tested whether timentin could replace cefotaxime in

our N. alata transformation. We found that timentin dramatically

inhibited Agrobacterium growth and allowed for regeneration

within a wide range of concentrations (Table 1). After

optimization, the efficiency of genetic transformation achieved

more than 80% from <1% as described (Ebert and Clarke, 1990).

These results indicate that efficient and repeatable transformation

systems were established in N. alata. More important, the

efficiencies of our optimized transformation system should be

high enough to test Agrobacterium-delivered CRISPR/Cas9

system for N. alata genome editing.

Due to the obvious albino phenotypes associated with pds

mutation, we selected the first exon and designed a single guide

RNA (sgRNA) targeting NalaPDS to arm our Cas9-PF vector.

According to our optimized transformation method, 23 NalaPDS

editing events with different size indels were obtained from 43

independent transgenic lines. The percentage of the independent T0

transgenic lines that generated mutations in NalaPDS was more

than 50% (Figure 2D). Moreover, 9 transgenic lines of Cas9-PF-

NalaPDS showed obvious albino leaf phenotypes. Sequencing

results demonstrated that 2 plants harbored homozygous

mutations and 7 plants harbored biallelic mutations (Figure 2D).

These results indicated that targeted mutagenesis using

Agrobacterium-delivered CRISPR/Cas9 system in N. alata

is feasible.

N. alata is a model species to study gametophytic SI, which is a

reproductive barrier that prevents self-fertilization and promotes

outcrossing and genetic diversity. SI is controlled by a single

polymorphic S-locus, which encodes two products: the S-RNase in

the pistil and the SLF in the pollen. If the pollen and pistil share the

same S-haplotype, the pollen tube growth is arrested by the

cytotoxic effect of the S-RNase, resulting in an incompatible

reaction. SI plays an important role in genetic diversity in

flowering plant evolution, but poses some challenges and

limitations to fix useful genetic variation. SI makes the plant

always have a highly heterozygous genome, which presents a big

challenge to perform high quality haploid genome assembly.

Moreover, SI makes it difficult to produce pure lines, which

interferes with both basic research and breeding. SI prevents the

plant from producing homozygotes, which hampers the

development of transgenic or genome-edited plants. SI also

complicates the genetic analysis and functional characterization of

plant genes, as it can affect the segregation and inheritance patterns

of genes in self-incompatible populations (Ye et al., 2018; Enciso-

Rodriguez et al., 2019; Lee et al., 2023). Therefore, beyond the

NalaPDS gene, our research ventured into breaking the SI in N.

alata by targeting the S-RNase gene. As it has at least two different

S-RNases in S-alleles, we additionally wanted to test whether we can

edit two genes simultaneously in N. alata by using our gene editing

system. With a PTG system, we armed the Cas9-PF vector with

both S2 and Sc10 gRNAs. Ultimately, we obtained two lines with bi-

allelic editing events at S2- and Sc10-RNase from 30 explants.
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To test whether the bi-allelic S-RNase mutations are enough to

break the SI and whether the targeted gene mutagenesis passes to

the next generations, two lines were artificially pollinated. Well-

stacked fruits and abundant seeds were harvested from both two s2/

sc10 mutation lines, indicating that the mutations were self-

compatible. Further analysis of the target gene demonstrated that

the mutations had been stably inherited to T1 generation in N.

alata. The successful knockout of S-RNase and the subsequent

breakdown of SI in N. alata is particularly noteworthy. These S-

RNase edited lines will be a powerful tool to accelerate basic

research and breeding. These self-compatible diploid N. alata can

be used to produce inbred lines, such as recombinant inbred lines

(RILs) or near isogenic lines (NILs), which can be further used for

gene mapping and breeding. As more than half of the species of

genus Nicotiana are SI, the strategy presented should be beneficial

for researchers and breeders of other SI wild tobacco.

It is worth mentioning that unlike gene editing in N. tabacum

and other species by using Cas9-PF, purple phenotype did not occur

in N. alata (Figures 1, 2B; Supplementary Figure 2). As Cas9-PF

vector contains a visual selection marker mediated by the

constitutive overexpression of PAP1 gene, it was supposed to

display distinct purple color in leaf, stem and flower (Liu et al.,

2019). However, our results indicated that the PAP1 gene-mediated

visual selection marker was ineffective in N. alata. Compared with

other N. alata lines that showed colorful flowers, the line (PI42334)

we used had pure white flowers. Therefore, we speculate that this N.

alata line may have intrinsic genetic mutation in anthocyanidin

synthase pathway that renders the PAP1-mediated phenotype less

effective. Considering that the anthocyanidin synthase pathway has

been proved to be important for biotic and abiotic stress tolerance,

it is worth exploring which gene controls the anthocyanidin defect

phenotype and whether this gene plays a role in biotic and abiotic

stress tolerance in N. alata.

The aim of this study was to demonstrate the applicability of the

CRISPR-Cas9 system by performing gene knockout of the single

NalaPDS and allelic S-RNase genes using an improved N. alata

transformation protocol for the first time. A single gRNA was found

to be successful to achieve high efficiency editing, resulting in PDS

mutants with albino phenotypes. Dual gRNA was also proved to be

efficient to produce bi-allelic editing, resulting in self-compatible N.

alata. A rapid, easily operated, highly reproducible, and stable

transformation and CRISPR-Cas9-based genome editing system

for N. alata was established. We expect that the established

CRISPR-Cas9 system, with self-compatible lines and improved

genetic transformation approach, will enable functional genomics

and trait improvement in N. alata. In conclusion, this study lays the

foundation for a new era of genetic research in N. alata.
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SUPPLEMENTARY FIGURE 1

Alignment of genomic DNA and CDs sequences of PDS gene in N. tabacum,

N. benthamiana, and N. attenuata using the MEGA software. The position of
the translation initiation codon is indicated by a black arrow. Conserved

primers used for amplifying the first exon of NalaPDS are shown by blue
arrows. gRNA and the first intron of NalaPDS are indicated by red and black

underlines, respectively.

SUPPLEMENTARY FIGURE 2

Genetic transformation of the same Cas9-PF-SRNase plasmid in N. tabacum
by leaf disk and N. alata by hypocotyl segments. In contrast to N. tabacum
Frontiers in Plant Science 11
overexpressing PAP1, which results in purple-colored calli, leaf and shoot
tissue due to the accumulation of anthocyanin, Agrobacterium-mediated

Cas9-PF-SRNase in N. alata does not exhibit any purple coloration. Scale bars

= 5 mm.

SUPPLEMENTARY FIGURE 3

Comparison of morphology and growth vigor between wild type and S-

RNase gene-edited Nicotiana alata plants. WT shows a representative wild
type N. alata plant, highlighting its standard morphology and growth

characteristics under our experimental conditions. S2Sc10 Gene-edited N.

alata (s2sc10) displays a representative S-RNase gene-edited N. alata plant,
demonstrating the plant’s morphology and growth vigor post-editing. The

randomly selected T1 plants of line 11 harbored mutations both in S2- and
Sc10-allele edited plant exhibits characteristics similar to the WT, indicating

that the editing did not adversely affect its overall growth and development.
Bar = 10 cm.

SUPPLEMENTARY TABLE 1

Oligonucleotides using in this study.
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