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Improving the accuracy of
cotton seedling emergence rate
estimation by fusing UAV-based
multispectral vegetation indices
Tiansheng Li1, Haijiang Wang1*, Jing Cui1, Weiju Wang1,
Wenruiyu Li1, Menghao Jiang1, Xiaoyan Shi1, Jianghui Song1,
Jingang Wang1, Xin Lv1 and Lifu Zhang1,2*

1College of Agriculture, Shihezi University, Shihezi, China, 2Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing, China
Timely and accurate estimation of cotton seedling emergence rate is of great

significance to cotton production. This study explored the feasibility of drone-

based remote sensing in monitoring cotton seedling emergence. The visible and

multispectral images of cotton seedlings with 2 - 4 leaves in 30 plots were

synchronously obtained by drones. The acquired images included cotton

seedlings, bare soil, mulching films, and PE drip tapes. After constructing 17

visible VIs and 14 multispectral VIs, three strategies were used to separate cotton

seedlings from the images: (1) Otsu’s thresholding was performed on each

vegetation index (VI); (2) Key VIs were extracted based on results of (1), and the

Otsu-intersection method and three machine learning methods were used to

classify cotton seedlings, bare soil, mulching films, and PE drip tapes in the

images; (3) Machine learningmodels were constructed using all VIs and validated.

Finally, the models constructed based on two modeling strategies [Otsu-

intersection (OI) and machine learning (Support Vector Machine (SVM),

Random Forest (RF), and K-nearest neighbor (KNN)] showed a higher accuracy.

Therefore, these models were selected to estimate cotton seedling emergence

rate, and the estimates were compared with the manually measured emergence

rate. The results showed that multispectral VIs, especially NDVI, RVI, SAVI, EVI2,

OSAVI, and MCARI, had higher crop seedling extraction accuracy than visible VIs.

After fusing all VIs or key VIs extracted based on Otsu’s thresholding, the binary

image purity was greatly improved. Among the fusion methods, the Key VIs-OI

and All VIs-KNN methods yielded less noises and small errors, with a RMSE (root

mean squared error) as low as 2.69% and a MAE (mean absolute error) as low as

2.15%. Therefore, fusing multiple VIs can increase crop image segmentation

accuracy. This study provides a newmethod for rapidly monitoring crop seedling

emergence rate in the field, which is of great significance for the development of

modern agriculture.
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1 Introduction

Natural disasters such as sandstorms are prone to occur during

cotton emergence stage in China’s main cotton growing areas,

causing germination failure and even death (Knowles and Knowles,

2016; Chen et al., 2018; He et al., 2020). Xinjiang is the largest cotton

growing base in China (Wang et al., 2018), with cotton yield

accounting for 89.50% of China’s total in 2021. Timely and

accurate estimation of cotton seedling emergence rate is of great

significance for post-disaster agricultural management and yield

assessment. Traditionally, manual counting has been used to

monitor crop emergence (Jin et al., 2017), which is time-

consuming, labor-intensive, making it unsuitable for large-scale

monitoring (Wiles and Schweizer, 1999). Therefore, there is an

urgent need for fast, convenient and accurate monitoring methods.

Remote sensing technology has been widely applied in the

monitoring of crop growth, insect pests and diseases, and yield

estimation (Duan et al., 2017). Thorp et al. (2006) and Liu et al.

(2017a) used satellites and ground vehicles equipped with optical

sensors to monitor crop seedling emergence rate in farmlands, and

found that the accuracy of satellite monitoring was not high due to

the influences of spatial resolution, cloud cover, and revisit period

(Varela et al., 2018). Besides, due to the influences of ground flatness,

soil humidity, and driving speed (Banerjee et al., 2021), the accuracy

of ground vehicle-based monitoring was also unsatisfactory. Drones

(Zhou et al., 2021), a flexible and portable platform, are less affected

by aerosols and ground conditions, and can address the shortcomings

of satellite and ground vehicle platforms in agricultural monitoring

(Kasampalis et al., 2018). The use of drones has achieved accurate

monitoring of crop nutrition status (Liu et al., 2017a), growth

parameters (Zhu et al., 2019), diseases (Ballester et al., 2017), and

yield estimation (Feng et al., 2020b).

At present, template matching is widely used in the monitoring

of crop seedling emergence based on drone-based remote sensing

(Banerjee et al., 2021). Specifically, VI is constructed to highlight

crop information. Then, crop seedlings are separated from images

using Otsu thresholding algorithm (Varela et al., 2018). After that,

crop morphological characteristics (such as axis length, roundness,

and area) are extracted, to construct a standard template of crop

seedling morphology (Garcıá-Martıńez et al., 2020). Finally, crop

seedlings are identified by comparing all objects in the image with

the standard template (Li et al., 2019). Li et al. (2019) used six

morphological features as inputs of a random forest model to

estimate potato seedling emergence rate, and found that the

correlation coefficient was as high as 0.96. Zhao et al. (2018)

extracted 15 features of rapeseed, and found that these features

had a strong correlation with the measured number of seedlings,

with a coefficient of determination (R2) of 0.867 and a MAE of

5.11%. However, with the growth of crops, the morphological

characteristics of crop seedlings continue to change, leading to a

decrease in the timeliness of standard templates (Garcıá-Martıńez

et al., 2020). This ultimately affects the segmentation accuracy.

Visible sensors have been widely used in monitoring crop

seedling emergence because of cheapness (Li et al., 2019).

However, visible sensors only has three channels [Red, Green,

Blue (RGB)], causing difficulty in distinguishing surface features
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with similar colors (Banerjee et al., 2021). To extract the

information of RGB images, some researchers have constructed

visible VIs based on the color of crop leaves, with ExG (Excess

Green Index) widely praised (Liu et al., 2018). Some scholars have

converted RGB color spaces to other color spaces, such as HSV

(Hue, Saturation, Value) and CIELAB components (Dai et al.,

2020), to highlight the features of crop seedlings in images. These

methods can increase the estimation accuracy of emergence rate

based on visible images, but they are limited by the number of

channels in images and the wide band of visible sensors. However,

multispectral sensors have a narrow band and can extract more

information (Li et al., 2019). Besides, the VIs constructed based on

multispectral sensor data are less affected by light changes. Thus,

multispectral sensors present a higher accuracy in crop seedling

emergence monitoring (Feng et al., 2020a).

Separating crops from images based on differences in spectral

reflectance of different image features is the key to improving seedling

emergence monitoring accuracy. In the segmentation of features in

satellite multispectral images, researchers usually use machine learning

to perform pixel-level segmentation based on differences in reflectance.

For example, Xun et al. (2021) constructed a model based on the fusion

of spectral data to monitor the main cotton growing areas of China,

and the R2 of the estimates and measured values was 0.83. Zhang et al.

(2019) constructed a random forest model to monitor wheat growing

areas in northern and central Anhui Province, showing an accuracy of

93% ~ 97% for northern Anhui and 80% for central Anhui. Different

from the segmentation of satellite multispectral images, researchers

tend to use machine vision technology to segment drone-based remote

sensing images to extract crop information (Meyer and Neto, 2008).

For example, Varela et al. (2018) used Otsu thresholding algorithm to

extract maize information from ExG images. Liu et al. (2017b)

converted RGB images of wheat farmland into CIELAB color space

and performed threshold segmentation on vector a to extract wheat

seedling information.

At present, there are few researches on the use of drones to

monitor crop seedling emergence. While some studies have applied

machine vision technology to crop canopy image segmentation and

classification, there are few studies using multispectral sensors for

crop canopy image segmentation. Therefore, there is a huge space to

improve crop image segmentation. In this study, remote sensing

images of cotton fields in Xinjiang, China were acquired during

seedling stage (2 - 4 leaves) to construct 31 VIs. Then, the effects of

single VI and multiple VI fusions on cotton seedling image

segmentation accuracy by Otsu thresholding algorithm were

compared. Finally, the cotton seedling emergence rates in the

study area were visualized. This study will provide a new

technical tool for monitoring crop seedling emergence.
2 Materials and methods

2.1 Study site

The experiment was conducted at the Erlian Experimental Site

of Shihezi University, Xinjiang, China (44°18’ N, 86°03’ E, a.s.l.

440 m) (Figure 1A) in 2021. The region has a temperate continental
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climate, with large evaporation and little rainfall. The average

annual precipitation was 180 - 270 mm and the average annual

temperature was 7°C in 2021. On May 1, 2021, a dust storm hit the

area, reducing the visibility to a minimum of 590 m. During the dust

storm, the seed holes were highly susceptible to wind erosion,

resulting in a decrease in seedling emergence. The widely planted

cotton (Gossypium spp) cultivar in Shihezi, Xinluzao No. 64, was

used in this experiment. The planting pattern designed for machine

harvest was adopted (Figure 1B), that is, six rows were irrigated with

three drip tapes under the mulching of one film. The row spacing

configuration was 66 + 10 cm, the plant spacing was 10 cm, and the

plant density was 260,000 plants per hectare. Drip irrigation was

employed. The PE drip tape spacing was 76 cm, the emitter spacing

was 30 cm, and the drip flow rate was 1.8 L/h. Cotton seeds were

sown and drip-irrigated (300 m2/ha) on April 26, 2021.
2.2 Data acquisition

2.2.1 Measurement of cotton seedling
emergence rate

According to the cotton planting pattern (Feng et al., 2017) and

the suggestion of the image acquisition time of Zhao et al. (2018),

the emergence rate were acquired at the seedling stage (plants had 2

- 4 leaves) (May 9, 2021). At this stage, the canopy diameter of each

cotton seedling was 3 - 6 cm, while the plant spacing was 10 cm.

Therefore, there were almost no overlapping leaves. Thirty

sampling plots (2.3 × 2.3 m) were selected along a S-shaped line

(Figure 2A), then the coordinate of the center of each plot were

recorded. The number of seedlings in each plot was manually
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counted, and the emergence rate was calculated based on the

seeding rate.

2.2.2 Drone-based image acquisition
After manually counting the seedlings in the field, images of the

entire cotton field were acquired using the Phantom 4 Mutispectral

drone (DJI, Shenzhen, China) from 12:00 to 14:00. The drone was

equipped with one visible camera and five multispectral cameras,

which could acquire RGB and multispectral images at the same

time. Therefore, the images obtained by the six cameras had only a

small position offset at the hardware level. The drone calculated the

position offset of each camera from the NIR camera, and this offset

was included into the metadata of the images and used in the GPS

correction. Therefore, the GPS information for the six cameras were

not consistent. The CMOS size of a single camera was 1/2.9 inch,

and the focal length was 5.74 mm. The bands of the acquired images

are shown in Table 1.

The DJI GS Pro software (DJI, Shenzhen, China) was used to

design flight path (Figure 2B). Lenses were vertically downward

during flight to take images at equal intervals. The flight altitude was

30 meters, The ground sampling distance (GSD) of the images was

1.607 cm pixel-1 which theoretically sufficient to obtain clear UAV

images, and the longitudinal overlap and side overlap were 75%.

The shutter time was 1/20000 s for the visible camera and AUTO

for multispectral cameras. Reference board (MAPIR, USA) was

placed horizontally in an unconcluded position, so that it appeared

in the images taken by the drone.

A total of 1614 images (269 images for each camera) were obtained,

and the size of each image was 1600 × 1300 pixels. The format of visible

images was JPG, and that of multispectral images was TIFF.
A

B

FIGURE 1

Overview of the study site. (A) Location of the study site; (B) Cotton planting pattern in Xinjiang.
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2.3 Data processing

The acquired images were processed with the following

procedures (Figure 3): (A) Image preprocessing and visual

interpretation. The acquired orthophoto images were rotated,

cropped, and corrected. By visual interpretation, the features in

the images were classified into cotton seedlings, bare soils, mulch

films, and PE drip tapes, and the corresponding pixels were

randomly selected. Besides, the coordinates were also extracted.

(B) Extraction of cotton seedlings from the images. According to the

results of previous researches, 17 visible VIs and 14 multispectral

VIs were constructed based on 1 visible image and 5 multispectral

images, and three strategies were used to extract: (1) Otsu’s

thresholding was conducted on each VI; (2) Key VIs were

selected based on the results of (1), and the intersection between

two binary images and three machine learning methods were used

to classify the features in the images; (3) Machine learning

classification models were constructed using all VIs and validated.

(C) Inversion of cotton seedling emergence rate. The images were

morphologically filtered and divided into consistent grids. The

number of cotton seedlings in each grid was counted, and the
Frontiers in Plant Science 04
inversion accuracy was verified according to the manually measured

seedling emergence rate.
2.4 Data preprocessing

The acquired images were stitched together using Pix4D

mapper software (Pix4D, Lausanne, Switzerland), When stitching

the images, each band has at least 6 photos to be marked to a control

point, to ensure the consistency of images in the GPS coordinates.

Then, the georeferencing tool in the ENVI Classic 5.3 (Harris

Geospatial; Broomfield, Colorado, USA) software was used for

georeferencing of images, using the NIR image as the reference

image, all above can reduce the pixel-scale error of images. Finally,

the radiometric correction, combination, rotation, cropping, and

other operations were carried out.

The main features in the images were cotton seedlings, bare

soils, mulch films, and PE drip tapes. Through visual interpretation,

the location of pixels in different features was manually randomly

labeled with the region of interest (ROI) tool, to make the sampling

points evenly distributed in the study area (Figure 2C). After

exporting the data (labeled coordinates, reflectance, and DN

value), the images and coordinates were imported into MATLAB

and checked after re-export, to ensure that the data exported by

MATLAB were the same as those exported by ENVI. A total of 302,

224, 237, and 200 pixels were labeled for cotton seedlings, bare soils,

mulch films, and PE drip tapes, respectively.
2.5 Extraction of cotton seedlings
from images

2.5.1 Construction of VIs
According to the sampling bands and band ranges of the

sensors, combined with the results of previous researches, 17
TABLE 1 Spectral bands acquired by the drone-based sensors.

Sensor Band range

Visible 400 nm - 700 nm

Blue 450 nm ± 16 nm

Green 560 nm ± 16 nm

Red 650 nm ± 16 nm

Red-edge 730 nm ± 16 nm

Nir-red 840 nm ± 26 nm
A B C

FIGURE 2

Location of sampling points for measuring emergence rate (A), flight route (B), and (C). Location of the pixels of cotton seedlings, bare soils, mulch
films, and PE drip tapes in the acquired image.
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visible VIs and 14 multispectral VIs related to plant leaves (Table 2)

were selected.
2.5.2 Binarization method for individual
vegetation indices

In this study, the Otsu’s method (Otsu, 1979) was used to

segment the VI images to extract cotton seedlings and other

features. After completing visual interpretation, the coordinates of

the four features were extracted to validate the accuracy by

comparing with the in-situ measurement results. Then, the VIs

with good performance were selected as the key VIs through

accuracy validation and visual inspection.
2.5.3 Binarization method for the fusion of
multiple vegetation indices

In this study, two modeling strategies, Otsu-intersection (OI)

and machine learning (ML), were used to fuse key VIs to increase

the prediction accuracy.

In OI, the binarized images of six key VIs were intersected. It

uses the differential responses of different VIs to features to

eliminate noise and increases the signal-to-noise ratio of

binarized images.

Three machine learning methods including SVM (Noble, 2006),

RF (Breiman, 2001), and KNN (Cover, 1968) were used for modeling.
2.5.4 Accuracy of different binarization methods
This study used the ratio of correctly labeled pixel samples to

total pixel samples (Accuracy) to evaluate the accuracy. In the

segmentation using the Otsu’ method, all 963 pixel samples

collected were used for the validation of the accuracy. Two thirds
Frontiers in Plant Science 05
of the pixel samples of each type of feature were used for modeling

with machine learning, and the remaining samples were used for

accuracy validation (Table 3).

Accuracy =
CS
TS

� 100%

where CS is the correctly labeled pixel samples, and TS is the

total pixel samples.
2.6 Inversion of emergence rate

2.6.1 Morphological filtering
To reduce noise in the binarized images and the interference of

leaf overlap, morphological filtering was used for correction

(① Filling isolated interior pixels; ② Removing H-connected

pixels; ③ Using diagonal fill to eliminate 8-connectivity of the

background) (https://www.mathworks.com/help/images/). Besides,

objects with pixels below 2 were deleted.

2.6.2 Mesh segmentation and counting
According to the cotton planting pattern in Xinjiang and image

quality, this study divided the cotton field into square grids at an

interval of 144 pixels (that is, the width of each mulch film). To reduce

the impact of differences in the growth of cotton seedlings (i.e., after

segmentation, large seedlings may have 16 pixels, while small seedlings

may have 5 pixels), the billable function was used to count the number

of cotton seedlings in each grid (https://www.mathworks.com/help/

images/). Cotton seedlings were all counted as independent individuals.

Therefore, the difference in canopy size could not affect the seedling

emergence rate prediction. Based on the seeding rate, the cotton
A

B

C

FIGURE 3

Flow chart of drone-based monitoring of cotton seedling emergence rate. (A) Image preprocessing and visual interpretation; (B) Extraction of cotton
seedlings from images; (C) Inversion of seedling emergence rate.
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seedling emergence rate in each grid was calculated.

Emergence rate =
NE
NS

� 100%

where NE is the number of seedlings identified in a grid, and NS

is the number of seeds sown in the grid.

2.6.3 Accuracy evaluation
The R2, MAE, and RMSE were employed to evaluate the

accuracy. The higher the R2, the lower the MAE and RMSE, the

higher the accuracy.

R2 =  o
n
i=1(ŷ i − �y)2

on
i=1(yi − �y)2

RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(ŷ i − yi)
2

n
 

s

MAE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1 ŷ i − yi
n

 

r

where n is the number of samples for modeling, ŷ i is the

estimate, yi is the measured value, and �y is the average of

measured values.
3 Results

3.1 Optical characteristics of the
four features

In the visible images (Figure 4A), by visual interpretation, the

four features showed the law of R > G > B. The digital number (DN)

values of bare soils and cotton seedlings were similar in the red

channel, and the DN values of bare soils were slightly lower than

those of cotton seedlings in the green and blue channels. The DN
TABLE 2 Selected vegetation indices for this study.

Index Expression
Referenc-
es

Visible VIs

r r =  
R

R + G + B

Finlayson
et al. (1998)

g g =  
G

R + G + B

Finlayson
et al. (1998)

b b =  
B

R + G + B

Finlayson
et al. (1998)

NGRDI NGRDI =
g − r
g + r

Tucker
(1979)

GLI GLI =
2� g − r − b
2� g + r + b

Louhaichi
et al. (2001)

ExR ExR = 1:4� r − g
Meyer
et al. (1999)

ExG ExG = 2� g − r − b
Woebbecke
et al. (1995)

ExB ExB = 1:4� b − g
Mao
et al. (2003)

ExGR ExGR = ExG − ExR
Meyer and
Neto (2008)

CIVE CIVE = 0:411� R − 0:811� G + 0:385� B + 18:78745
Kataoka
et al. (2003)

VEG VEG =
G

Ra � B(1−a) (a = 0:667)
Hague
et al. (2006)

MExG MExG = 1:262� G − 0:884� R − 0:311� B
Tang
et al. (2003)

IKAW IKAW =
R − B
R + B

Kawashima
(1998)

TGI TGI = 0:5� (0:19� (R − G) − 0:12� (R − B))
Hunt
et al. (2011)

COM1 COM1 = ExG + CIVE + ExGR + VEG
Guijarro
et al. (2011)

COM2 COM2 = 0:36� ExG + 0:47� CIVE + 0:17� VEG
Guerrero
et al. (2012)

Muti-spectral Vis

NDVI NDVI  =  
rNIR − rRed
rNIR + rRed

Rouse
et al. (1974)

GNDVI GNDVI  =  
rNIR − rGreen
rNIR + rGreen

Gitelson
et al. (1996)

RVI RVI  =  
rNIR
rRed

Jordan
(1969)

DVI DVI  = rNIR − rRed
Jordan
(1969)

RDVI RDVI  =  
rNIR − rRedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirNIR + rRed
p

Roujean
and
Breon
(1995)

SAVI SAVI  =  
(1 + L)� (rNIR − rRed)

rNIR + rRed + L
,(L = 0.5)

Huete
(1988)

CI CI  =  
rNIR
rGreen

− 1
Gitelson
et al. (2003)

NLI NLI  =  
r        2NIR − rRed
r        2NIR + rRed

Goel and
Qin (1994)

MNLI MNLI  =  
(1 + L)� (r        2

NIR − rRed)
r        2
NIR + rRed + L

(L= 0.5)
Gong
et al. (2003)

(Continued)
TABLE 2 Continued

Index Expression
Referenc-
es

Muti-spectral Vis

TVI TVI  = 60� (rNIR − rGreen) − 100� (rRed − rGreen)
Broge and
Leblanc
(2001)

EVI2 EVI2  =  
2:5� (rNIR − rRed )
rNIR + 2:4� rRed + 1

Jiang
et al. (2008)

MSAVI2 MSAVI2 =
2�  rNIR + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� rNIR + 1)2 − 8� (rNIR − rRed)

p
2

Qi
et al. (1994)

OSAVI OSAVI  =  
rNIR − rRed

rNIR + rRed + 0:16

Rondeaux
et al. (1996)

MCARI MCARI2 =
1:5� (2:5� (rNIR − rRed) − 1:3� (rNIR − rGreen))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2� rNIR + 1)2 − 6� (rNIR − 5� rRed) − 0:5
p Haboudane

et al. (2004)
fro
R, G, B represent the values of the images acquired by the red, green, and blue channels by
visible camera, respectively, and rBlue, rGreen, rRed, rRed−edge, and rNir represent the reflectance
of the blue, green, red, red-edge, and near-infrared bands acquired by multispectral
cameras, respectively.
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values of mulch films were higher than those of cotton seedlings and

bare soils due to their high brightness. The PE drip tapes were black

in the visible images, so their DN values were lower than those of

other features. In the multispectral images (Figure 4B), similarly, the

reflectance of mulch films was the highest, while that of PE drip

tapes was the lowest. The reflectance of bare soils and cotton

seedlings were highly similar, especially in the blue and green

regions. However, the reflectance of cotton seedlings were lower

than that of bare soils in the red region but higher than that of bare

soils in the red edge and near-infrared regions. On the whole, there

was a significant difference between cotton seedlings and plastic

films/PE drip tapes in the images, but there was little difference

between cotton seedlings and bare soil.
3.2 Segmentation accuracy of each
vegetation index

The visible image segmentation results (Figure 5A) showed that

the visible VIs could not accurately extract cotton seedlings and

other features except for the R, G, and B channel data. The R, G, and

B channel image segmentation results showed that almost all cotton

seedlings were labeled with 0, but there were also a large number of

other features that were labeled with 0. So the accuracy using visible

images was poor. The multispectral image segmentation results

(Figure 5B) showed that the segmentation results by Blue, Green,

GNDVI, DVI, RDVI, CI, NLI, MNLI, TVI, and MSAVI2 were

similar to those of R, G, and B, showing a low accuracy. However, a

high accuracy was obtained by using the NDVI, RVI, SAVI, EVI2,

OSAVI, and MCARI.
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The segmentation results for most VIs showed that mulch films

caused great interference to the extraction of cotton seedlings

(Figure 6). After enlarging the six VIs with higher accuracy (NDVI,

RVI, SAVI, EVI2, OSAVI, and MCARI), it was found that mulch

films and bare soils had more bright points (noise) in the

segmentation results of RVI, SAVI, EVI2, and OSAVI. This

indicates that these four VIs are more sensitive to soil surface

texture. It was also found that PE drip tapes had more bright

points (noise) in the segmentation results of NDVI and MCARI.

This indicates that these two VIs are easily affected by drip tapes

and shadows.
3.3 Segmentation accuracy based on the
fusion of key vegetation indices

The six key VIs were fused by machine learning (SVM, RF, and

KNN) and OI separately, and their segmentation accuracy were

compared. It was found (Table 4) that the segmentation accuracy of

the four models reached more than 96%, and the lowest accuracy

was 96.08%. Specifically, the segmentation accuracy of Key VIs-OI

and Key VIs-SVM model were 96.69% and 96.08%, respectively,

which were slightly lower than that of Key VIs-RF (98.50%) and

Key VIs-KNN (98.50%) models. Overall, all four methods had a

high segmentation accuracy.

Through the visual interpretation of the image segmentation

results (Figure 7), it was found that there was more noise for the

bare soils and the shadow of drip tapes in the Key VIs-SVM, Key

VIs-RF, and Key VIs-KNN segmentation images. Therefore, the

segmentation performance of Key VIs-OI model was

the optimal.
3.4 Segmentation accuracy based on the
fusion of all vegetation indices

The data of 1 visible image, 17 visible VIs, 5 multispectral

images, and 14 multispectral VIs were used as inputs to construct

SVM, RF, and KNN models (Table 5). The segmentation accuracy

of SVM, RF, and KNN models constructed based on visible VIs was

the lowest, and that of visible VIs-RF model was the highest among
TABLE 3 Pixel sample size of the four features.

Surface feature Modeling set Validation set Total

Cotton seedling 200 102 302

Bare soil 150 74 224

Mulch film 158 79 237

PE drip tape 133 67 200

Total 642 322 963
A B

FIGURE 4

Variations of major features in the RGB (A) and multispectral (B) images of cotton field.
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A

B

FIGURE 5

The proportion of cotton seedlings and other features (bare soils, mulch films, and PE drip tapes) in the foreground and background colors in the
Otsu’s thresholding results of each vegetation index. Ideally, cotton seedlings have a high proportion in one of 0 or 1, but a very low proportion in
the other. Segmentation accuracy of each vegetation index using Otsu’s method. (A) RGB vegetation indices; (B) Multispectral vegetation indices;
Seedling, cotton seedlings; Others, bare soils, mulch films, and PE drip tapes; 0 and 1 are the classification results using Otsu’s method, 0 represents
background color, and 1 represents foreground color.
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FIGURE 6

Segmentation results of each vegetation index using Otsu’s method. Red represents the foreground color, and the background color is set to
transparent. (a, B; b, G; c, R; d, b; e, g; f, r; g) NGRDI; (h) GLI; (i) VARI; (j) ExR; (k) ExG; (l) ExB; (m) ExGR; (n) CIVE; (o) VEG; (p) MExG; (q) IKAW; (r)
TGI; (s) COM1; (t) COM2; (A) Blue; (B) Green; (C) Red; (D) Red-edge; (E) NIR; (F) NDVI; (G) GNDVI; (H) RVI; (I) DVI; (J) RDVI; (K) SAVI; (L) CI; (M) NLI;
(N) MNLI; (O) TVI; (P) EVI2; (Q) MSAVI2; (R) OSAVI; (S) MCARI.
Frontiers in Plant Science frontiersin.org08

https://doi.org/10.3389/fpls.2024.1333089
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1333089
the visible VI models. The segmentation accuracy of SVM, RF, and

KNN models constructed based on multispectral VIs was higher

than that of the SVM, RF, and KNN models constructed based on

visible VIs, among which the accuracy of multispectral VIs-SVM

and multispectral VIs-KNN models were 100% based on the

calibration set. The segmentation accuracy of multispectral VIs-

RF model was the lowest (98.28%) among multispectral VI models,

but it was still much higher than that of visible VI models. After

fusing all VIs, it was found that the accuracy was slightly lower than

that of multispectral VI models, among which the segmentation

accuracy of All VIs-SVMmodel was the highest (100% based on the

calibration set). Overall, the segmentation accuracy of multispectral

VI models was the highest.

The segmentation results (Figure 8) showed that the visible

VI models had a very poor accuracy. The bare soils, the boundary

area between bare soils and mulch films, and cotton seedlings

were identified as identical features in large quantities, and only

PE drip tapes were clearly identified. This indicates that the high

reflectance of mulch films increases the upper limit of threshold

segmentation and reduces the difference between cotton

seedlings and bare soils in the visible region. It is worth noting

that when bare soil and plastic film are superimposed, the high

reflectance of plastic film increases the brightness of bare soils,

making bare soils similar to cotton seedlings in the visible region.

The segmentation results of multispectral VI models and the

models constructed based on the fusion of all VIs were good, and

showed some improvements compared with key VI models.

However, there was still some noise. As a whole, the All VIs-

KNN model had the optimal segmentation results and the

number of noise was small.
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3.5 Visual inversion of seedling emergence
rate in cotton field

Based on the results of Section 3.2, 3.3, and 3.4, it was found that

the segmentation accuracy of Key VIs-OI and All VIs-KNN models

were obviously higher than other models. Thus, these two models

were selected. Then, the noise less than 2 pixels were removed by

morphological filtering. The counting statistics of cotton seedlings

was carried out, to obtain the seedling emergence rate in cotton field

based on the sowing density (Figures 9A, C). The results showed

that the seedling emergence rate was 65% - 75% in most grids, and

the mean and median were similar. The mean and median of Key

VIs-OI model were 68.12% and 69.21%, respectively, and those of

All VIs-KNN model were 68.44% and 69.21%, respectively.

Compared with the measured data (Figures 9B, D), it was found

that the seedling emergence rate estimated by the two models were

slightly lower than the measured value. Besides, the accuracy of All

VIs-KNN model was higher than that of Key VIs-OI, with a R2 of

0.8318, a RMSE of 2.69%, and a MAE of 2.15%.

The emergence rate estimates obtained by the two models were

similar (Figure 10). Cotton seed germination around the PE drip

tapes was affected by high soil moisture content due to pipe joint

water leakage. Cotton seed germination rate was low in the

northernmost part of the field bordering the road due to soil

hardening. Besides, four low emergence area in the southeast

corner of the field was due to insufficient water supply caused by

the bending of the drip tapes. On the whole, the spatial distribution of

cotton seedling emergence rate in the experimental area was uneven.
4 Discussion

This study used cheap consumer-grade drones to obtain images

of cotton fields, highlighted the spectral features of cotton seedlings

in the images by constructing VIs, and analyzed the response

characteristics of four features in the segmentation results of

different VIs. After that, a simple and efficient method for cotton

seedling emergence rate inversion was proposed, that is, fusing

multiple VIs to extract seedlings from the images. This method had

a high accuracy. Therefore, it has high application potential in the

rapid monitoring of crop seedling emergence rate.
TABLE 4 Segmentation accuracy based on the fusion of key
vegetation indices.

Segmentation method
Calibration Validation

Seedling Others Seedling Others

Key VIs-OI 96.69% 99.55%

Key VIs-SVM 99.50% 98.87% 96.08% 96.36%

Key VIs-RF 98.50% 97.51% 99.02% 98.64%

Key VIs-KNN 98.50% 96.60% 99.02% 98.64%
A B C D

FIGURE 7

Image segmentation results based on the fusion of key vegetation indices. Red represents the foreground color, and the background color is set to
transparent. The four features are divided into two categories, namely cotton seedlings and other features. (A) Key VIs-OI; (B) Key VIs-SVM; (C) Key
VIs-RF; (D) Key VIs-KNN.
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TABLE 5 Segmentation accuracy based on the fusion of all vegetation indices.

Segmentation method Number of VIs
Calibration Validation

Seedling Others Accuracy Seedling Others Accuracy

Visible Vis

SVM 20 83.50% 94.56% 91.11% 58.82% 87.73% 78.57%

RF 20 92.00% 93.42% 92.98% 69.61% 86.36% 81.06%

KNN 20 86.50% 89.12% 88.30% 74.51% 82.73% 80.12%

Muti-spectral Vis

SVM 19 100.00% 100.00% 100.00% 98.04% 99.09% 98.76%

RF 19 99.00% 97.96% 98.28% 98.04% 99.09% 97.83%

KNN 19 100.00% 100.00% 100.00% 99.02% 98.64% 98.76%

All Vis

SVM 39 100.00% 100.00% 100.00% 97.06% 99.09% 98.45%

RF 39 99.00% 98.64% 98.75% 97.06% 99.55% 98.76%

KNN 39 97.00% 97.73% 97.50% 96.08% 99.55% 98.45%
F
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D E F

G H I

FIGURE 8

Segmentation results of machine learning. Red represents the foreground color, and the background color is set to transparent. The bare soils,
plastic films, and PE drip tapes are set as the background color in the classification, that is, the four features were divided into two categories,
namely cotton seedlings and other features. (A) Visible VIs-SVM; (B) Muti-spectral VIs-SVM; (C) All VIs-SVM; (D) Visible VIs-RF; (E) Muti-spectral VIs-
RF; (F) All VIs-RF; (G) Visible VIs-KNN; (H) Muti-spectral VIs-KNN; (I) All VIs-KNN.
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Most previous studies have used a single VI to extract crops from

images using the Otsu’s method (Varela et al., 2018; Mhango et al.,

2021), but their segmentation results contain a large number of

irregularly shaped noise, which is similar to the results of this study.

This may be due to that the components in the farmland are very
Frontiers in Plant Science 11
complex, which have some similar strong reflection, diffuse reflection,

and other optical properties. Therefore, it is difficult to extract crop

seedlings individually during thresholding segmentation (Yeom et al.,

2018). In addition, Feng et al. (2020a) reported that soil moisture

content and mutual shading of large soil particles might also lead to
A B

C D

FIGURE 9

Seedling emergence distribution based on the inversion using the Key VIs-OI and All VIs-KNN models. (A) Seedling emergence rate estimated by Key
VIs-OI model; (B) Validation of the seedling emergence rate inversion accuracy of Key VIs-OI model; (C) Seedling emergence rate estimated by All
VIs-KNN model; (D) Validation of the seedling emergence rate inversion accuracy of All VIs-KNN model.
A B

FIGURE 10

Images of estimated seedling emergence rate in cotton field by machine learning. (A) Inversion of seedling emergence rate by the Key VIs-OI model;
(B) Inversion of seedling emergence rate by the All VIs-KNN model.
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light and dark changes in soil color, resulting in many noises with a

similar shape to crop seedlings, affecting the segmentation accuracy.

The widely used ExG was less accurate in this study. This may be due

to that film mulching is not adopted in previous studies (Yeom et al.,

2018; Banerjee et al., 2021). However, a large number of mulch films

on the soil surface showed a higher red/green ratio and blue/green

ratio than bare soil, and a higher brightness than crop seedlings

during the ExG inversion. This is confirmed by the study results of

Dai et al. (2020). Dai et al. (2020) found that the distribution of cotton

pixels in different gray scales on ExG images was uniform, which

eventually caused the difficulty of crop seedling extraction.

To reduce massive noise in the thresholding segmentation

results of VIs, the widely used method is to extract morphological

features to match each object in the thresholding segmentation

results (Koh et al., 2019). For example, Li et al. (2019) extracted six

morphological features as inputs of random forest models for

estimating the potato seedling emergence rate, and found that the

R2 was 0.96. However, the morphological characteristics of

seedlings change rapidly with the growth and development of

crops. If there is a difference in the time of image acquisition, or

if the growth of seedlings becomes faster or slower due to

temperature and humidity changes, it will lead to differences

between the actual morphological characteristics of seedlings and

the model inputs, which ultimately reduces the model accuracy

(Zhang et al., 2020). The exploration of spectral differences between

cotton seedlings and other features can help overcome these

problems. On the one hand, with the growth and development,

cotton seedlings’ spectral features change much less than the

morphological characteristics. On the other hand, cotton

seedlings have obvious spectral differences from other features

(Ashapure et al., 2019). The constructed VIs highlighted the

characteristics of cotton seedlings and made the difference

between cotton seedlings and bare soils/PE drip tapes/mulch films

more obvious. Due to VIs have different sensitivity to features (Wei

et al., 2019), the fusion of multiple VIs can combine the sensitive

information for multiple indices and greatly reduce noise. Similar

results were also obtained in the monitoring of crop nutrition status

(Xu et al., 2023). Therefore, spectroscopic techniques have great

potential in image segmentation and classification.

Varela et al. (2018) and Valente et al. (2020) showed that

segmentation of crop seedling images by extracting morphological

features and using deep learning relies on high spatial resolution, and

low spatial resolution reduced the accuracy of classifiers. Therefore,

most scholars make UAVs fly low to obtain high resolution, i.e., Dai

et al. (2020); Feng et al. (2020b), and Varela et al. (2018) used 10 m

flight altitude to obtain images with a resolution of 0.27 cm, 0.29 cm,

and 0.24 cm pixel-1, respectively. Wu et al. (2019) used 7 m flight

altitude to obtain images with a resolution of 0.06 cm pixel-1.

However, due to the limited battery capacity of drones, agricultural

practitioners have to make trade-offs between size of shooting area

and resolution, which limits the application of drones for emergence

monitoring (Lin and Guo, 2021). Segmentation of crop seedling

images using the spectral differences between cotton seedlings and

other features can reduce the dependence of the model on resolution

(Wilke et al., 2021). Sankaran et al. (2015) showed that even at 3.0 cm
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pixel-1 resolution, the NDVI value of crops was highly correlated with

crop seedling emergence rate (r = 0.82). Wilke et al. (2021) compared

the images of RGB sensor and multispectral sensor, and found

that the effect of spatial resolution on the VI model was lower than

that on the model constructed based on visible images in the early

stage of leaf development with only two unfolded leaves per plant.

When the resolution of RGB images decreased from 0.2 to 0.59 cm

pixel-1, the MAE decreased from 26 to 55 plants m-2; When the

resolution of multispectral images decreased from 0.69 cm to 1.38 cm

pixel-1, the MAE decreased from 24 to 29 plants m-2. The R2 obtained

in this study was lower than that of Varela et al. (2018); Dai et al.

(2020); Feng et al. (2020b), and Wu et al. (2019), but the RMSE

(2.69%) and MAE (2.15%) were the lowest. Therefore, the method

proposed in this study still has a high accuracy when using images

with a low resolution, and can meet the needs of large-scale

monitoring and high-precision monitoring at the same time.

The results of this study suggest that the fusion of multiple VIs

could obtain purer binary images, which has great potential in

crop seedling emergence monitoring. Therefore, in future studies,

images with different resolutions will be acquired, to compare the

effects of different resolutions on the inversion accuracy of deep

learning technology, template matching, and the method used in

this study, to obtain an appropriate resolution that can meet the

needs of both flight area and spatial resolution in production

practice. In addition, the accuracy of the method proposed in this

study in monitoring the seedling emergence of other crops needs

to be tested in the future.
5 Conclusion

This study proposed a method to quickly and intuitively invert

cotton seedling emergence rate in cotton field. That is, the remote

sensing images of cotton seedlings were acquired by drones to

construct the visible VIs and multispectral VIs. Then, multiple VIs

were fused to obtain pure binary images. After that, the cotton field

was meshed and the cotton seedlings were counted, to obtain the

image showing the distribution of cotton seedling emergence rate in

the cotton field. The following conclusions were drawn.
• Visible images were susceptible to the influence of high-

reflectance features, and the segmentation accuracy based on

visible images was lower than that of multispectral images.

• The crop seedling segmentation accuracy based on the fusion

of multiple VIs was higher than that of a single VI.

Especially, the Key VIs-OI(R2 = 0.7972, RMSE = 3.55%,

MAE = 2.60%) and the All VIs-KNN(R2 = 0.8318, RMSE =

2.69%, MAE = 2.15%) models had an obviously high

segmentation accuracy.

• This study broadened the selection range of VIs and achieved

purer crop seedling extraction from images. The proposed

method has very low requirements for hardware, and can

serve as a low-cost and powerful tool for practitioners to

monitor crop seedling emergence. This study will provide

technical support for modern agricultural management.
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