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Introduction: As a renewable forest resource, bamboo plays a role in sustainable

forest development. However, traditional cutting systems, selection cutting (SeC)

and clear-cutting (ClC), result in an unsustainable production of bamboo forests

due to labor-consuming or bamboo degradation. Recently, a strip clear-cutting

(StC) was theoretically proposed to promote the sustainability of bamboo

production, while little is known about its application consequence.

Methods: Based on a 6-year experiment, we applied the strip clear-cutting

system in a typical running bamboo (Phyllostachys glauca McClure) forest to

assess its feasibility and sustainability. Using SeC and ClC as controls, we set three

treatments with different strip widths (5 m, 10m, and 20m) for strip clear-cutting,

simplified as StC-5, StC-10, and StC-20, respectively. Then, we investigated leaf

physiological traits, bamboo size and productivity, population features, and

economic benefits for all treatments.

Results: The stands managed by StC had high eco-physiological activities, such

as net photosynthetic rate (Pn), photosynthetic nitrogen use efficiency (PNUE),

and photosynthetic phosphorus use efficiency (PPUE), and thus grew well,

achieved a large diameter at breast height (DBH), and were tall. The stand

biomass of StC (8.78 t hm-2 year-1) was 1.19-fold and 1.49-fold greater than

that of SeC and ClC, respectively, and StC-10 and StC-20 were significantly

higher than SeC or ClC (p< 0.05). The income and profit increased with the

increase in stand density and biomass, and StC-20 and StC-10 were significantly

higher than SeC or ClC (p< 0.05). Using principal components analysis and

subordinate function analysis, we constructed a composite index to indicate the

sustainability of bamboo forests. For the sustainability assessment, StC-10 had

the highest productive sustainability (0.59 ± 0.06) and the second highest

economic sustainability (0.59 ± 0.11) in all cutting treatments. StC-10 had the

maximum overall sustainability, with a value of 0.53 ± 0.02, which was

significantly higher than that of ClC (p< 0.05).
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Conclusion: The results verified that StC for Phyllostachys glauca forests is

feasible and sustainable as its sustainability index outweighs those of traditional

cutting systems (SeC and ClC), and 10 m is the optimum distance for the strip

width of StC. Our findings provide a new cutting system for managing other

running bamboo forests sustainably.
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Introduction

Forest sustainability is crucial to human well-being, and

sustainable forest management plays a vital role in sustainable

development (Singh et al., 2009; MacDicken, 2016; Viccaro and

Caniani, 2019). Productive and economic sustainability are key

assessment components of sustainable forest management

(Hansmann et al., 2012; Holden et al., 2014; Brukas et al., 2015;

Bartniczak and Raszkowski, 2018; Viccaro and Caniani, 2019).

Productive sustainability requires forest management that does

not weaken forest productivity (Bartniczak and Raszkowski, 2018;

Viccaro and Caniani, 2019). Economic sustainability refers to

maintaining economic income over time without compromising

sustainability (Foy, 1990; Brukas et al., 2015). Generally, productive

and economic sustainability emphasize different aspects of

sustainability but are indispensable components of sustainable

development (Holden et al., 2014; Brukas et al., 2015).

Although natural forest area decreases by approximately 6.5

million hectares every year (MacDicken, 2016; Viccaro and Caniani,

2019), the bamboo forest is known as an increasing forest, with a

total area of more than 30 million hectares in China (Du et al., 2018;

Kang et al., 2022). As clonal plants, bamboo species are fast-growing

and have a short renewable cycle. Thus, bamboo is a good substitute

for wood and plays a role in satisfying forestry production needs

(Guo et al., 2013). However, traditional cutting systems (selection

cutting and clear-cutting) for bamboo forests are either labor-

consuming or degrade the bamboo, which limits the sustainable

development of bamboo forests.

A cutting system is an important way to achieve high

productivity and economic sustainability in bamboo forests. At

present, the cutting systems for bamboo forests are selection

cutting and clear-cutting (Wang et al., 2016; Mao et al., 2017; Liu

and Hu, 2018). Selection cutting can achieve high productive

sustainability by selectively cutting down a certain proportion of

mature plants every cutting season to keep bamboo forests in a

rational age structure (Liu and Hu, 2018). However, the productivity

advantage comes at the expense of high labor costs and low economic

profit (Wang et al., 2016; Mao et al., 2017; Liu and Hu, 2018). By

contrast, clear-cutting saves cutting costs by cutting down all plants in

a cutting area every cutting season. In addition, clear-cutting is liable
02
to result in a degradation of bamboo forests as no existing mature

plants supply nutrients to newborn bamboo to support its growth

(Liu and Hu, 2018). Therefore, the low cost of clear-cutting is at the

expense of productive sustainability. As selection cutting and clear-

cutting have evident drawbacks in economic sustainability or

productive sustainability, it is urgent to develop a sustainable

cutting system for managing bamboo forests more sustainably.

Strip clear-cutting refers to applying clear-cutting in forest

strips along the direction of the slope and retaining uncut patches

in cut areas (Ocaña-Vidal, 1992; Picchio et al., 2018). Strip clear-

cutting is a sustainable cutting method for timber extraction

(Rondon et al., 2010) but it is seldom applied to bamboo forests.

Considering the source-sink characteristic of clonal integration

(Marshall, 1996; Kleinhenz and Midmore, 2001; Shi et al., 2021),

the strip clear-cutting system could be a potential solution for the

sustainable management of bamboo forests because the newborn

bamboo in clear-cut strips could obtain nutrients from the uncut

strips to support their regeneration and then avoid degradation

(Wang et al., 2016). After a partial clear-cutting experiment in

stands of a typical running bamboo (Phyllostachys glauca) was

carried out, the maximum distance of clonal integration was 5 m

because the new shoots in the clear-cutting area were significantly

smaller than those in the uncut area once they were more than 5 m

away from the uncut side (Wang et al., 2016). Thus, a strip clear-

cutting system protocol was proposed for running bamboo forests

(see Figure 1A), i.e., dividing a bamboo stand into equally wide

strips along a slope, clear-cutting every other strip, and then clear-

cutting the “uncut” strips over a certain cycle (e.g. every 2 years),

and so on (Wang et al., 2016). This protocol combines the merits of

clear-cutting (saving labor and cost) and selection cutting

(sustainable production). Although the strip clear-cutting system

is arguably feasible and sustainable in theory, we still do not know

its consequences in practice. Furthermore, an optimum strip width

for this cutting system needs to be determined.

Phyllostachys glauca McClure, a woody and evergreen bamboo,

is a typical running bamboo native to China. The bamboo forms

pure forests and covers a large area in Ruichang City. In this study,

using traditional cutting systems (selection cutting and clear-

cutting) as controls and setting strip clear-cutting with different

widths, we aimed to verify the productive and economic
frontiersin.org
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sustainability of bamboo forest managed by a strip clear-cutting

system and determine a suitable strip width through a long-term

trial with Phyllostachys glauca forest in Ruichang City. Based on the

preliminary results, we hypothesized that: (1) strip clear-cutting has

advantages in productive and economic sustainability over selection

cutting and clear-cutting because it incorporates the merits of the

two traditional cutting systems, and (2) as the maximum distance of

nutrient supply observed in the field cutting experiment was 5 m

and a distance less than 5 m is not convenient for cutting (most

culms were approximately 5 m long), a strip width of 5 m is the best

option for the strip clear-cutting system in practice.
Materials and methods

Species and site description

Phyllostachys glauca is widely distributed from the Yellow River

Valley to the Yangtze River Valley. It is 5-12 m in height and 20-50

mm in diameter, and has excellent economic value, e.g., shoots for

food and culms for building and ornaments (Wang et al., 2016; Shi

et al., 2021). As an economic species, Phyllostachys glauca brings

considerable benefits to local people.

The study site was located in Ruichang City (29°23’06″ N-29°
51’11″ N, 115°06’31″ E-115°43’45″ E), Jiangxi province, China,

where the largest area of natural Phyllostachys glauca forest in

China grows, with a total area of 9 938 hm2 (Wang et al., 2016; Shi

et al., 2021; Wu et al., 2022). In the local area, Phyllostachys glauca

usually forms pure stands with few understory species. Ruichang

City has a subtropical humid monsoon climate that receives 1394

mm precipitation annually, with an average temperature of 16.6°C.
Traditional cutting systems for
Phyllostachys glauca

The bamboo forests were predominantly managed by the clear-

cutting system with a cutting cycle of 3 years, and the bamboo

population could not fully recover under this short cycle of clear-

cutting. Consequently, this long-term cutting leads to a progressive

decline in bamboo stands and even flowering. Another cutting

system, selection cutting with a cutting cycle of 3 or 4 years, was

only applied to a small proportion of bamboo forests because of

labor consumption. Owing to high stand density, approximately

90% of individuals were cut for operating convenience. The two

cutting systems barely maintained sustainable forest production.
Experiment design

Strip clear-cutting system design
We used the protocol proposed by Wang et al. (2016), which

was described as aforementioned, to design the strip clear-cutting

system. Strip width and cutting cycle, two key parameters of the

cutting system, were designed as follows. Three strip widths were set

to detect a suitable distance for bamboo growth and recovery, which
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were 5 m, 10 m, and 20 m. As the selection cutting system with a

cutting cycle of 3 or 4 years can maintain the bamboo forest

healthily in the local area, we designed a 4-year cutting cycle for

the strip clear-cutting system in this study. In practice, a bamboo

stand was divided into strips of equal width (5 m, 10 m, or 20 m)

along the hill slope and continuously numbered from number one.

Then, all even strips were clear-cut first, and the uncut strips (odd

strips) would be clear-cut 2 years later. Accordingly, the even and

odd strips were alternately clear-cut every 2 years (Figure 1A).

Cutting experiment design
In December 2016, bamboo forests located at the same

elevation, slope aspect, degree and position were selected to

develop the cutting experiments. Ten plots of 10 m × 10 m were

surveyed for each kind of bamboo stand, and the results showed

that they were similar in the diameter at breast height (DBH), plant

height, and stand density (Table 1). Taking selection cutting and

clear-cutting systems as controls, the strip clear-cutting system was

designed as three treatments, which were strip clear-cutting with

strip widths of 5 m (StC-5), 10 m (StC-10), and 20 m (StC-20)

(Figure 1). The experiment design was a balanced incomplete block

design due to terrain constraints. For the strip clear-cutting

experiment, at least nine strips were set for each treatment, and

the strip lengths ranged from 50 to 100 m. Four 5 m × 5 m plots in

StC-5, six 5 m × 10 m plots in StC-10, and five 5 m × 10 m plots in

StC-20 were established in the cut strips and uncut strips. Clear-

cutting was alternatively carried out for the initial cut and uncut

strips in December 2018 and 2020. The selection cutting (SeC) and

clear-cutting (ClC) experiments were carried out in a stand at least

50 m wide and 100 m long. Five and four 5 m × 10 m plots in SeC

and ClC were randomly selected, respectively. Selection cutting and

clear-cutting systems were both carried out every 3 years.
Methods

Plot survey
In December 2016, the DBH and height of each individual were

measured in each plot before bamboo cutting. From 2017 to 2021,

the DBH, plant height, and number of newborn bamboos in each

plot were investigated every year.

Leaf physiological traits
The net photosynthetic rate (Pn) of different treatments was

measured using an open gas exchange system with a red and blue

light source (LI-6400; LiCor Inc., Lincoln, NE, USA), and the

measurements were conducted from 9:00 h to 11:00 h on sunny

days in August. Three mature sun leaves on healthy individual plants

(five plants in each plot) were randomly selected and measured at a

CO2 concentration of 400 mmol mol−1, photosynthetic photon flux

density of 1500 mmol m−2 s−1, and flow rate of 500 mmol s-1. When

the measurement parameters were stable, three values were recorded

every 10 s for each leaf, and the average value of each leaf was used for

further analysis.

To determine the specific leaf area (SLA), 50 mature leaves in

each plot were collected, and their leaf areas were measured using a
frontiersin.org
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CI-203 Portable Laser Area Meter (CID Inc., Camas, WA, USA).

Afterwards, the leaves were oven-dried at 60°C for 48 h and the dry

mass was determined. Then dried leaf samples were ground into

a fine powder for chemical analysis. Leaf phosphorous (P) and

nitrogen (N) concentrations were determined using a discontinuous

chemical analyzer (Cleverchem 200+, DeOem-Tech GmbH,

Hamburg, Germany) after digestion with sulfuric acid (H2SO4).

Economical investigation
The most economical part of Phyllostachys glauca is the culms,

which are widely used as the holder for vegetable cultivation, garden

building, flagpoles, and so on. The sale price of this bamboo culm

depends on the culm length. We investigated the local sale price of

culms and the cutting cost from 2017 to 2021. As the bamboo

forests grow naturally and the culms are sold in situ, the

management cost of those bamboo forests is only the labor costs

of cutting. On a hectare basis, the profit of bamboo forests was

calculated as the income (the product of culm yield and sale price)
Frontiers in Plant Science 04
subtracted from the cutting cost. Here, the extra cutting cost for

strip clear-cutting set the boundary lines between strips at the first

cutting operation.
Indicator calculation

Productivity indicators
Stand density was calculated as the total number of bamboos

divided by plot area. Individual biomass was calculated using the

quadratic model proposed by Zou et al. (2020), which used DBH

and height as predictors to estimate biomass. Then, the stand

biomass was the sum of the total individual biomass in a plot.

Eventually, the annual stand density and annual stand biomass were

calculated as stand density and biomass divided by the cutting cycle.

The calculations of the evenness and uniformity of bamboo

forests followed the methods of Zheng and Hong (1998).

Specifically, evenness was calculated as stand density divided by

the standard deviation of subplot density, and uniformity was

calculated as average DBH divided by the standard deviation of

subplot average DBH. In addition, the recruitment rate was

estimated as the ratio between the number of newborn bamboos

and the number of pre-existing bamboos in a plot.

SLA (cm2 g-1) was calculated by dividing leaf area by leaf dry

mass, and photosynthetic nitrogen use efficiency (PNUE) and

photosynthetic phosphorus use efficiency (PPUE) were calculated

by dividing Pn by leaf N and P concentrations, respectively.

Economic indicators
Bamboo wood production (BWP) refers to the biomass of

bamboo culms. Based on our investigation, the sale price of
TABLE 1 The initial characteristics of bamboo forests before cutting.

Bamboo
stands

Diameter at
breast

height (cm)

Plant height
(m)

Stand density
(Plants hm-2)

Strip
clear-cutting

2.02 ± 0.12a 4.36 ± 0.24a 36819 ± 5003a

Selection
cutting

2.05 ± 0.16a 4.40 ± 0.31a 38555 ± 6588a

Clear-cutting 2.02 ± 0.11a 4.35 ± 0.22a 35361 ± 5582a
Data are means ± S.E (n =10). The same lowercase letters indicate non-significant differences
among different bamboo stands (p > 0.05).
: The cut bamboo

: The uncut bamboo

Strip clear-cutting  Clear-cutting

 Selection cutting
Strip widths: 5 m, 10 m, 20 m

Cutting cycle: four years

Cutting interval between strips: two years

B

C

A

FIGURE 1

The design of cutting systems in Phyllostachys glauca bamboo forests. (A) The strip clear-cutting system with different strip widths (5 m, 10 m, and
20 m); at least nine strips were established for each width. (B) The clear-cutting system. (C) The selection cutting system.
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bamboo culms was classified into seven classes according to their

height (Table 2). The sale income was the sum of all the bamboo

individuals in a plot with their specific heights and prices, as shown

in Equation 1:

I =o
x

i=1
(Ri � ni)=A=C (1)

where I is the income (¥ hm-2 year-1); Ri and ni are the sale price

and the number of bamboos in a height grade in a plot, respectively;

A is the plot area; and C is the cutting cycle, i.e., 6 years for selection

cutting, clear-cutting, and strip clear-cutting. The number and

height of culms in a plot were investigated during the cutting

operation. Similar to the calculation of income, cutting costs were

also calculated in the unit of ¥ hm-2 year-1, i.e., cutting costs divided

by stand area and cutting cycle. The return on investment (ROI)

represents the ratio of cost to income.

Sustainability calculation
Using principal components analysis (PCA) and subordinate

function analysis (SFA), we constructed a comprehensive index

based on multiple indicators to indicate the sustainability of

bamboo forests, which was calculated using Equation 2 (Fu et al.,

2004; Mrosek et al., 2006; Shi et al., 2009; Balana et al., 2010):

SI =o
n

i=1
(Wi � Si) (2)

where SI is the sustainability index, Wi is the weight vector of

the i sustainability indicator, and Si is the membership value of the i

sustainability indicator.

The weight of sustainability indicators (Wi) was determined by

PCA. Based on the cumulative percentage of principal sustainability

components and the component capacity score coefficient values,

Wi was calculated using Equation 3:

Wi = Ci=o
n

i=1
Ci (3)

where  Ci is the component capacity score coefficient of the i

sustainability indicator. The membership value (Si) was calculated

as either ascending or descending functions (Equations 4, 5). An

ascending function was used for a sustainability indicator with a

positive component capacity score, and vice versa.

Si =
(xij − ximin)

(ximax − ximin)
(4)

Si =
(ximax − xij)

(ximax − ximin)
(5)
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where xij is the j-th observation value of the i-th sustainability

indicator, and ximax and ximin are the maximum and minimum of

the i-th sustainability indicator, respectively.

We defined three sustainability indexes, i.e., the productive

sustainability index (SIpr), economic sustainability index (SIec),

and overall sustainability index (SIo). SIpr was composed of 13

indicators: DBH, plant height, stand density, stand biomass,

recruitment rate, evenness, uniformity, Pn, PPUE, PNUE, leaf

phosphorus concentration (LP), leaf nitrogen concentration (LN),

and SLA. SIec was composed of five indicators: bamboo wood

production, income, cost, return on investment (ROI), and profit.

Then, SIo was calculated using all the above 18 indicators.
Statistics analysis

One-way ANOVA with Duncan’s multiple range test was used

to examine the significance of the effect of the cutting on leaf

physiological traits (Pn, PPUE, PNUE, LP, LN, and SLA), bamboo

size and productivity (DBH, plant height, stand density, and stand

biomass), population features (recruitment rate, evenness, and

uniformity), economic benefits (bamboo wood production,

income, cost, ROI, and profit), and sustainability (SIpr, SIec, and

SIo). Pearson correlation analysis was performed to detect the

relationships between physio-productivity traits, bamboo size and

productivity, population features, economic benefits, and

sustainability. The weight vector of each indicator was

determined by principal component analysis (PCA). Redundancy

analysis (RDA) was used to explore the relationships between

sustainability indexes and their predictors (productivity traits and

economic features). RDA was performed using CANOCO 5.0

(Microcomputer Power Corporation, USA). PCA and other

statistical analyses were performed by SPSS 17.0 (SPSS Inc.,

Chicago, IL, USA), and figures were graphed with Origin Pro 8.5

(Origin Lab Corporation, Northampton, MA, USA).
Results

The productivity traits of different
cutting treatments

Physio-productivity traits
The net photosynthetic rate (Pn), specific leaf area (SLA), leaf

nitrogen concentration (LN), leaf phosphorus concentration (LP),

photosynthetic phosphorus use efficiency (PNUE), and photosynthetic

phosphorus use efficiency (PPUE) were varied in bamboo stands with

different cutting systems (Figure 2). Pn and SLA were similar in different
TABLE 2 Averaged sale prices of Phyllostachys glauca culms in Ruichang City from 2017 to 2021.

Plant height (m) 2.5≤H<3 3≤H<4 4≤H<5 5≤H<6 6≤H<7 7≤H<8 H≥8

Averaged price (¥ plant-1) 0.209 0.400 0.567 0.850 1.067 1.367 1.850
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cutting treatments (p > 0.05), while their maximum and minimum

values both occurred in StC-10 and SeC treatments, respectively

(Figures 2A, B). As for LN, all treatments were similar (p > 0.05)

(Figure 2C). However, the LP values of StC-5 andClCwere 1.49 ± 0.04 g

kg-1 and 1.47 ± 0.06 g kg-1, respectively, and significantly higher than

that of other treatments (p< 0.05) (Figure 2D). The strip clear-cutting

treatments (StC-5, StC-10 and StC-20) were higher than the treatments

of SeC and ClC in PNUE and PPUE (Figures 2E, F). PNUE and PPUE

of StC-10 (0.11 ± 0.01 mmol mol-2 s-1 and 4.11 ± 0.22 mmol mol-2 s-1)

were significantly higher than those of SeC (p< 0.05).

Bamboo forest productivity
Different cutting systems have imposed an evident influence on

bamboo size (DBH and plant height), stand density, and productivity

(stand biomass) (Figure 3). In strip clear-cutting treatments, the

bamboo sizes decreased with an increase in strip width, and the

bamboos in StC-5 and StC-10 were similar in size (p > 0.05) but

larger than those in other treatments. On the contrary, the stand

density of the strip clear-cutting treatments increased with an increase

in strip width, and the stand density of StC-20 had the highest value
Frontiers in Plant Science 06
(17198.52 ± 750.65 plant hm-2 year-1) in all treatments. Owing to its

relatively large size and high stand density, StC-20 had the greatest

stand biomass (10.62 ± 0.84 t hm-2 year-1), which was 1.58-, 1.18-, 1.43-

, and 1.81-fold greater than StC-5, StC-10, SeC, and ClC, respectively.

Population features
There were no significant differences in recruitment rate and

evenness between bamboo stands managed by different cutting

systems (p > 0.05) (Figure 4). Among the cutting treatments, StC-20

and ClC were the lowest in recruitment rate and evenness, which

were 65.20 ± 3.64% and 2.45 ± 0.23, respectively. Conversely, the

stand uniformity of StC-20 was significantly higher than other

cutting treatments (p< 0.05), with a value of 20.50 ± 1.36.
The economic benefits of different
cutting treatments

The bamboo stands under different cutting systems showed a

distinct structure of height classes (Figure 5), which determined a
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FIGURE 2

The effect of cutting systems on leaf physiological traits. (A) Net photosynthetic rate. (B) Specific leaf area. (C) Leaf nitrogen concentration. (D) Leaf
phosphorus concentration. (E) Photosynthetic nitrogen use efficiency. (F) Photosynthetic phosphorus use efficiency. Data are means ± S.E. StC-5,
strip clear-cutting of 5 m width treatment, n = 4; StC-10, strip clear-cutting of 10 m width treatment, n = 6; StC-20, strip clear-cutting of 20 m
width treatment, n = 5; SeC, selection cutting treatment, n = 5; ClC, clear-cutting treatment, n = 4. The small letters indicate significant differences
between different treatments in the same indicator (p< 0.05).
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specific sale price of culms (as shown in Table 2). The proportions

of plant heights over 5 m in strip clear-cutting stands were 59.27%,

46.76%, and 46.31% for StC-5, StC-10, and StC-20, respectively,

which decreased with an increase of strip width and were all higher
Frontiers in Plant Science 07
than SeC (38.67%) and ClC (38.23%). Compared with SeC and ClC,

the strip clear-cutting treatments showed a relatively lower

proportion of the height (H) class of 4m ≤ H< 5 m and a

relatively higher proportion of the height class of H ≥ 8 m. As a
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result, the bamboo stands managed by strip clear-cutting systems,

especially StC-5 and StC-10, had a higher proportion of long culms

than SeC and ClC.

Different cutting systems have a significant influence on

bamboo economics (Figure 6, p< 0.05). StC-10 obtained the

greatest bamboo wood production (6.89 ± 0.48 t hm-2 year-1),

which was 1.30-, 1.09-, 1.22- and 1.45-fold greater than that of StC-

5, StC-20, SeC, and ClC, respectively. With long culms and a high

stand density, the bamboo stands managed by StC-10 and StC-20

obtained higher incomes than those managed by SeC and ClC. The

income of StC-20 was as high as 10, 194 yuan hm-2 year-1, which

was 1.45-, 1.05-, 1.17- and 1.32-fold greater than that of StC-5, StC-

10, SeC, and ClC, respectively. The cutting cost was highest in SeC

and lowest in ClC, which were 7, 152 yuan hm-2 year-1 and 3, 934

yuan hm-2 year-1, respectively. Additionally, the cutting cost of strip

clear-cutting treatments ranged from 4, 248 yuan hm-2 year-1 to 4,

671 yuan hm-2 year-1. In terms of the return on investment (ROI),

SeC and StC-5 were significantly higher than StC-10, StC-20,

and ClC. As a result, StC-20 and StC-10 obtained a higher profit

(5, 957 yuan hm-2 year-1 and 5, 352 yuan hm-2 year-1) than

other treatments.
Sustainability indicators and their
principal contributors

Sustainability indicators
The sustainability indicators, including productive sustainability,

economic sustainability, and overall sustainability, varied for the

bamboo stands under different cutting systems (Figure 7). As for

productive sustainability, StC-5 and StC-10 were significantly higher

than other treatments (p< 0.05), with values of 0.57 ± 0.05 and 0.59 ±

0.06, respectively. StC-20 and StC-10 had higher economic

sustainability values (0.60 ± 0.10 and 0.59 ± 0.11), which were

3.16-fold and 3.11-fold greater than ClC, respectively. Combining

the productivity and economic aspects, the overall sustainability of

strip clear-cutting treatments was higher than SeC and ClC, and StC-

10 obtained the greatest value of 0.53 ± 0.02 among all treatments.
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Generally, compared with selection cutting and clear-cutting, strip

clear-cutting models exhibited good sustainability in this bamboo

forest management.
Principal contributors to the
sustainability indicators

The redundancy analysis (RDA) showed the relationships

between productivity traits, economic features, and sustainability

indexes of Phyllostachys glauca stands managed by different cutting

systems (Figure 8). As sustainability indexes were calculated with

the component capacity score coefficient of each indicator (see

Equation 3), the six indicators (PNUE, PPUE, DBH, plant height,

Pn, and stand density) closely related to productive sustainability

were the principal contributors of SIpr, with a negative contribution

of stand density and a positive contribution from the other five

indicators. Since other predictors such as uniformity, evenness, LP,

LN, SLA, and recruitment rate weakly correlated to productive

sustainability, they had limited contributions. Likewise, the bamboo

wood production, income, return on investment, and profit of

bamboo stands were four principal contributors to economic

sustainability because they were closely associated with SIec.

When all predictors were included, the overall sustainability was

mainly determined by plant height, DBH, bamboo wood

production, stand biomass, evenness, and income. However,

income and bamboo wood production were mostly determined

by the productivity indicators (stand biomass and density), with

significant correlation coefficients (p< 0.01) of 0.92 (income and

stand biomass), 0.61 (income and stand density) and 0.91 (bamboo

production and stand biomass), respectively. Furthermore, stand

density was significantly and negatively associated with DBH (r =

-0.70, p< 0.001) and plant height (r = -0.70, p< 0.001), while

bamboo wood production was significantly and positively

associated with DBH (r = 0.53, p< 0.01) and plant height (r =

0.53, p< 0.01). Thus, the bamboo individual size not only affected

productive sustainability but also governed economic sustainability,

and it was the key factor influencing the overall sustainability of

bamboo stands.
FIGURE 5

The proportion of plant height classes in bamboo stands treated by different cutting systems. Data are means ± S.E. StC-5, strip clear-cutting of 5 m
width treatment, n = 4; StC-10, strip clear-cutting of 10 m width treatment, n = 6, StC-20, strip clear-cutting of 20 m width treatment, n = 5; SeC,
selection cutting treatment, n = 5; ClC, clear-cutting treatment, n = 4. The small letters indicate significant differences between different treatments
in the same indicator (p< 0.05).
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Discussion

The feasibility of applying the strip
clear-cutting system in Phyllostachys
glauca forest

Our first hypothesis that strip clear-cutting has advantages in

productive and economic sustainability over selection cutting and

clear-cutting because it incorporates the merits of the two

traditional cutting systems, was mainly supported. Productive,

economic, and overall sustainability of strip clear-cutting were

higher than SeC and ClC except for the economic sustainability

of StC-5 (Figure 7).

The bamboo stands managed by strip clear-cutting systems had

larger individual plants (DBH and plant height) and a greater

averaged stand biomass than those managed by SeC and ClC

(Figure 3). As plant size and stand biomass were the main

contributors to productive sustainability, the treatments of strip

clear-cutting outweighed the treatments of SeC and ClC in
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productive sustainability. Our results were consistent with

previous studies, which indicated that the strip cutting of

Phyllostachys edulis led to greater DBH, plant height, and biomass

than selection cutting and clear-cutting (Zhang et al., 2020). This

was likely explained by the high eco-physiological activities of the

bamboo under strip clear-cutting because Pn, PNUE, and PPUE are

important factors that promote plant growth by increasing

photosynthates and the plant nitrogen utilization rate, especially

in the case of nutrient deprivation (Ghannoum et al., 2005; Zhong

et al., 2019; Mugo et al., 2021; Nasar et al., 2021). A higher PUNE

resulted in a higher crop nitrogen utilization rate and thus enhanced

crop yield (Ghannoum et al., 2005; Zhao et al., 2013; Mugo et al.,

2021). In this study, we also detected strong correlations between Pn
and PNUE, and PNUE and bamboo size, which in turn affected

biomass (Figure 8).

Moreover, bamboos are clonal plants and have the trait of clonal

integration, which can translocate resources (photosynthate,

mineral nutrients, water, etc.) between ramets connected with

rhizomes along a source-sink gradient (Pitelka and Ashmun,
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1985; Alpert, 1991; Price et al., 1996; Dong et al., 2019; Shi et al.,

2022). As for the strip clear-cutting system, bamboos in the uncut

strip were source ramets and could provide resources to sink ramets

(newborn bamboos) in the cut strip to support their growth

(D’hertefeldt and Jónsdóttir, 1994; Chen et al., 2015; Wang et al.,

2016; Shi et al., 2021; Zheng et al., 2022). A higher Pn leads to more

photosynthate production, which could be translocated and utilised

by the connected bamboo ramets and then enhance the final yield

(Li et al., 2016; Li et al., 2018). Therefore, we inferred that the high

photosynthetic capacity and clonal integration among bamboos

increased individual size and consequently led to a greater stand

biomass in strip clear-cutting stands than in clear-cutting stands, in

which no source ramets supply nutrients to the newborn bamboos

as the bamboo plants were all cut. Unlike the case of applying SeC in

Moso bamboo (Phyllostachys edulis) stands, the bamboo stands

managed by selection cutting in this study did not show a

competitive advantage in sustainable production. The reason that

selective cutting maintains good sustainable productivity in the

Moso bamboo forest lies in the low cutting intensity because few

mature individuals were cut, with a proportion of less than one-

quarter of the total. However, in our case, the average stand density

of Phyllostachys glauca was as high as 3.7 plants m-2. For the sake of

operating convenience, the local farmers cut approximately 90% of

individuals in a cutting cycle, and the few individuals kept supplied

limited nutrients for bamboo regeneration, resulting in lower

productive sustainability than SeC.

In addition to good productivity, the bamboo stands managed

by strip clear-cutting also have good economic sustainability. The

economic indicators of bamboo wood production and income were

highly related to stand density and biomass, which were mainly

determined by individual bamboo size (Figure 8). Although the

cutting cost of strip clear-cutting was higher than that of clear-
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cutting (Wang et al., 2016; Liu and Hu, 2018), StC-10 and StC-20

outcompeted SeC and ClC in economic sustainability due to their

higher stand density and plant height. On the contrary, StC-5 had

lower economic sustainability than other treatments because it had

the lowest stand density (Figure 3C). As a clonal plant, ramets of

Phyllostachys glauca are analogous to twigs of trees. Thus, bamboo

cutting is similar to tree pruning, and more intensive pruning leads

to more regeneration of new shoots (Zhou et al., 2009; Zheng et al.,

2022; Zhou et al., 2022). In this study, the low stand density of StC-5

was attributed to the weakest cutting strength in all treatments.

Compared with traditional cutting systems (SeC and ClC), the

strip clear-cutting system is efficient and sustainable in bamboo

forest management and thus has advantages over productivity and

economy. Additionally, some studies confirmed that the application

of clear-cutting in bamboo forests led to the degradation of bamboo

resources (Tan et al., 2017; Liu and Hu, 2018). Therefore, our results

indicated that the strip clear-cutting system is feasible in bamboo

forest management.
An appropriate strip width for the strip
clear-cutting system for Phyllostachys
glauca forest

Our second hypothesis that a strip width of 5 m is the best

option for the strip clear-cutting system in practice was not

supported. According to the values of the overall sustainability

index, the best strip width is 10 m instead of 5 m (Figure 7). The

productive sustainability of StC-10 was similar to StC-5, and the

economic sustainability of StC-10 was the second highest. StC-10

outcompeted other cutting treatments (StC-5, StC-20, SeC, and

ClC) in overall sustainability.
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The sustainability indicators of bamboo stands under different cutting systems. Values are means ± S.E, StC-5: strip clear-cutting of 5 m width
treatment, n = 4; StC-10: strip clear-cutting of 10 m width treatment, n = 6; StC-20, strip clear-cutting of 20 m width treatment, n = 5; SeC:
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The 10-m strip width of strip clear-cutting has the maximum

productive sustainability in all treatments because it has advantages

in traits closely related to productive sustainability, such as PNUE,

PPUE, DBH, plant height, and stand density (Figure 8). In the strip

clear-cutting treatments, StC-10 had higher SLA, PNUE, and PPUE

than StC-5 and StC-20 (Figure 2). This indicated that the bamboo of

StC-10 had stronger photosynthetic ability and resource-utilizing

efficiency than StC-5 and StC-20 and increased bamboo growth.

Likewise, previous studies found that a higher photosynthetic

capacity leads to more photosynthate accumulation to accelerate

the growth of Phyllostachys edulis (Li et al., 2018; Zheng et al., 2022).

Furthermore, nutrient supply to the bamboo in the cut strips

decreased with increasing strip width. Many studies confirmed

that the strength of clonal integration (resource translocation

between bamboos) decreased with an increase in the distance

between source and sink ramets (Matlack, 1997; Stuefer et al.,

2004; Shi et al., 2021), which was also supported by our results.

Bamboo size decreased with the increase in strip width, i.e., the

clonal integration distance (Figures 3A, B). Bamboo plants in cut

strips need to receive nutrients from the bamboo in uncut strips on

both sides to support their growth, and a shorter distance means

more nutrient supplies. Field cutting and isotopic tracing (N15)

experiments both suggested that the effective distance of clonal

integration in Phyllostachys glauca is less than 5 m (Wang et al.,
Frontiers in Plant Science 11
2016; Shi et al., 2021). Thus, it explains the large size of bamboo

individuals in StC-5. As for StC-10, bamboo in cut strips could

obtain nutrients from bamboo on either the left or right side of

uncut strips no more than 5 m wide, which could result in a similar

individual size to that of StC-5. Similarly, previous studies on the

strip clear-cutting of Moso bamboo also found that individual sizes

with strip widths of 3 m and 6 m were larger than with strip widths

of 9 m and the SeC and ClC treatments (Tan et al., 2017), and the

DBH of new bamboo gradually decreased with the increase in strip

width (Zhou et al., 2022). Furthermore, we found that stand density

increased with increasing strip width. Thus, bigger individual size

and higher stand density lead to greater stand biomass of StC-10.

With a moderate stand density and large bamboo, the 10 m strip

width of strip clear-cutting also has good economic sustainability.

More individuals and long culms in a stand result in higher income

and profit. StC-10 and StC-20 achieved significantly higher economic

sustainability than ClC (p< 0.05). Although StC-20 had the greatest

economic sustainability (0.60 ± 0.10), it had lower productive

sustainability than StC-5 and StC-10, which were only 66.14% and

64.15% of StC-5 and StC-10, respectively (p< 0.05). As the clear-

cutting width (20 m) was longer than the effective distance of clonal

integration (< 5 m), the newborn ramets in the central area of the cut

strips could not receive any nutrients from the source ramets in the

uncut strips on either side (Matlack, 1997; Stuefer et al., 2004; Shi et al.,

2021). Thus, bamboo stands would be liable to be degraded by long-

term management with StC-20, the same situation caused by ClC.

Conversely, the stands managed by StC-5 produced fewer bamboo

individuals than StC-10 and StC-20 and then obtained an economic

sustainability (0.24 ± 0.12) of less than 40% of StC-10 and StC-20.

Thus, a strip width of 10 m rather than 5 m was the best option in the

forest management of Phyllostachys glauca.
The potential application of the strip
clear-cutting system for running
bamboo management

Phyllostachys glauca is a running bamboo species that places

ramets in new micro-habitats via the underground running

rhizomes (Shi et al., 2021; Wang et al., 2023). For running bamboos,

ramets connected with a rhizome can translocate their resource, such

as water and nutrients (clonal integration), along a source-sink

gradient (Shi et al., 2021; Shi et al., 2022). Strip clear-cutting

produces a source-sink gradient between the cut strips and uncut

strips, and the strip width determines the strength of clonal integration,

which supports the growth of newborn ramets. Theoretically, the strip

clear-cutting system suits other running bamboo species because they

have the same clonal structure. To date, the strip clear-cutting system

has only been used in two running bamboo species, Phyllostachys

glauca and Phyllostachys edulis (Wang et al., 2016; Zhang et al., 2020;

Zheng et al., 2022). Testing of the effect of different strip widths on

bamboo regeneration showed that 10 m and 6 m were suitable strip

widths for the cutting of Phyllostachys glauca and Phyllostachys edulis

(Wang et al., 2016; Zhang et al., 2020; Zheng et al., 2022), respectively.

However, there are 178 running bamboo species widely distributed in
FIGURE 8

Redundancy analysis (RDA) of productivity traits, economic features,
and sustainability indexes of Phyllostachys glauca stands managed
by different cutting systems. Black arrows, response variables; red
arrows, explaining variables. StC-5, strip clear-cutting of 5 m width
treatment; StC-10, strip clear-cutting of 10 m width treatment; StC-
20, strip clear-cutting of 20 m width treatment; SeC, selection
cutting treatment; ClC, clear-cutting treatment. SIpr, productive
sustainability index; SIec, economic sustainability index; SIo, overall
sustainability index; Pn, net photosynthetic rate; SLA, specific leaf
area; LN, leaf nitrogen concentration; LP, leaf phosphorus
concentration; PNUE, photosynthetic nitrogen use efficiency; PPUE,
photosynthetic phosphorus use efficiency; DBH, the diameter at
breast height; BWP, bamboo wood production; ROI, return
on investment.
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China (Gu et al., 2021). Most of those species are of high economic and

productive value. Using an efficient and sustainable cutting system is a

vital issue in increasing the management sustainability of bamboo

forests. Therefore, the strip clear-cutting system deserves to be applied

to other running bamboo species.

Although some studies developed strip clear-cutting in Moso

bamboo forests in recent years, most of them focused on

regeneration growth, soil traits, etc., rather than an assessment of

management sustainability (Tan et al., 2017; Zhang et al., 2020;

Zheng et al., 2022; Zhou et al., 2022). In this study, we evaluated the

sustainability of Phyllostachys glauca forests under the strip clear-

cutting system based on a 6-year field experiment. Thus, the long-

term observation, across a complete strip clear-cutting cycle, offers a

reliable and accurate assessment of this new cutting system. Our

results have verified the feasibility and sustainability of applying the

10-m strip width of strip clear-cutting in Phyllostachys glauca

forests. It provides a new option for managing running bamboo

forests in a sustainable way.
Conclusions

With traditional cutting systems for Phyllostachys glauca forests

(selection cutting and clear-cutting), it is hard to achieve good

sustainability in both productivity and economy. Based on a 6-year

experiment, we assessed the feasibility and sustainability of strip clear-

cutting, a new cutting system for bamboo stands, by comparing its

productivity traits, economic features, and sustainability index with

those of traditional cutting systems. The strip clear-cutting outweighed

selection cutting and clear-cutting in productive and economic

sustainability because it possessed the cutting convenience of clear-

cutting and good nutrient supply for regeneration of selection cutting.

Of the different strip widths, a 10 m wide strip of strip clear-cutting

obtained the highest overall sustainability and is the optimum option

for the strip clear-cutting system in practice. The results verified that

strip clear-cutting with a 10-m strip width in Phyllostachys glauca

forests is feasible and sustainable. Our findings provide a novel system

for the cutting of other running bamboos in a sustainable way.
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