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1Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, United States,
2Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO, United
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Most food crops are susceptible to necrotrophic bacteria that cause rotting and

wilting diseases in fleshy organs and foods. All varieties of cultivated potato

(Solanum tuberosum L.) are susceptible to diseases caused by Pectobacterium

species, but resistance has been demonstrated in wild potato relatives including

S. chacoense. Previous studies demonstrated that resistance is in part mediated

by antivirulence activity of phytochemicals in stems and tubers. Little is known

about the genetic basis of antivirulence traits, and the potential for inheritance

and introgression into cultivated potato is unclear. Here, the metabolites and

genetic loci associated with antivirulence traits in S. chacoense were elucidated

by screening a sequenced S. tuberosum x S. chacoense recombinant inbred line

(RIL) population for antivirulence traits of its metabolite extracts. Metabolite

extracts from the RILs exhibited a quantitative distribution for two antivirulence

traits that were positively correlated: quorum sensing inhibition and exo-

protease inhibition, with some evidence of transgressive segregation,

supporting the role of multiple loci and metabolites regulating these

resistance-associated systems. Metabolomics was performed on the highly

resistant and susceptible RILs that revealed 30 metabolites associated with

resistance, including several alkaloids and terpenes. Specifically, several

prenylated metabolites were more abundant in resistant RILs. We constructed

a high-density linkage map with 795 SNPs mapped to 12 linkage groups,

spanning a length of 1,507 cM and a density of 1 marker per 1.89 cM. Genetic

mapping of the antivirulence and metabolite data identified five quantitative trait

loci (QTLs) related to quorum sensing inhibition that explained 8-28% of the

phenotypic variation and two QTLs for protease activity inhibition that explained

14-19% of the phenotypic variation. Several candidate genes including alkaloid,

and secondary metabolite biosynthesis that are related to disease resistance

were identified within these QTLs. Taken together, these data support that
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quorum sensing inhibition and exo-protease inhibition assays may serve as

breeding targets to improve resistance to nectrotrophic bacterial pathogens in

potato and other plants. The identified candidate genes and metabolites can be

utilized in marker assisted selection and genomic selection to improve soft- rot

and blackleg disease resistance.
KEYWORDS

potato, soft rot and blackleg resistance, virulence screening, QTL, metabolomics,
genetic mapping, pectobacterium
1 Introduction

Many cultivated plants are susceptible to necrotrophic bacterial

pathogens that infect stems and nutrient-rich organs. These bacteria

can survive in the natural environment in soil, alternative hosts,

irrigation water, and plant debris. Bacteria including

Pectobacterium and Dickeya spp., enter plants through wounds or

natural openings and these pathogens may stay latent until

favorable conditions occur, at which time the bacteria shift from

latent to virulent states. This shift is mediated by acyl homoserine

lactone mediated quorum sensing (Põllumaa et al., 2012). During

pathogenesis, these bacteria colonize interior parts of the host plant

and synthesize exo-enzymes, including pectate lyases,

polygalacturonases, exo-proteases, and cellulases, that break down

plant cell walls to obtain nutrients from the plant cell walls and from

within plant cells (Davidsson et al., 2013). This results in a total

collapse of the host tissue leading to fleshy organ decay and stem

necrosis that cause major pre- and post-harvest losses. These

necrotrophic pathogens are especially destructive due to their

ability to remain latent, and infect a wide range of hosts (Ma

et al., 2007). Notable, effective management strategies for these

diseases are still lacking. Sanitation, quarantine, and exclusion

practices are often ineffective as Pectobacterium and Dickeya spp.

are prevalent in the environment. Moreover chemical management

options can be phytotoxic, are not systemic, further limiting their

efficacy. Consequently, the development of resistant cultivars is

critical for improved disease management (Vyska et al., 2016).

Potato (Solanum tuberosum L.) is an integral part of the world’s

agriculture ranking as third most important food crop. Potato has

been cultivated for more than 8,000 years and during this time the

crop has been continuously selected for many agronomic and

nutritional traits through breeding. Despite these efforts,

including disease-resistance breeding cultivated, potatoes remain

vulnerable to necrotrophic bacterial pathogens like Pectobacterium

and Dickeya spp. (known to cause soft rot, aerial stem rot, and

blackleg in the potatoes).

In contrast, several wild Solanum relatives of cultivated potato

are resistant to these diseases. Recent phenotyping studies support

several independent mechanisms of resistance in these related

species. For example, some wild potatoes have a rapid form of
02
wound healing correlated with soft rot resistance (Chung et al.,

2017). We recently characterized a different resistance mechanism

that is driven by antimicrobial metabolites and proteins extracted

from wild potato stems and tubers. These molecules, found in the

wild potato S. chacoense, may inhibit virulence of Pectobacterium by

reducing exo-enzyme activity, swimming motility, and quorum

sensing (Joshi et al., 2021b, 2022). In these studies, chemical

extracts were isolated from a single S. chacoense line M6.

However, the genetics of S. chacoense that control these resistance

phenotypes remain uncharacterized, as well as the plant metabolic

processes that enable this type of biochemical resistance

is understudied.

While cultivated potato shares many morphological and

physiological traits with its wild diploid relatives, the tetraploid

genetics and excessive heterozygosity of S. tuberosum makes it

extremely difficult to map loci associated with disease resistance

and to introgress traits from wild species. For necrotrophic bacteria,

wild species do exhibit some variation in quantitative measures of

resistance and the germplasm tends to be highly heterozygous

(McCauley, 2021; Lebecka et al., 2021b). Subsequent genetic

mapping within wild potato species shows that many

necrotrophic bacterial resistance traits are quantitative (Jansky

et al., 2014; Chung et al., 2017; Lebecka et al., 2021a; Ma et al.,

2022), showing that bacterial disease resistance can be improved via

introgression breeding. Currently, the potato industry is

experiencing a revolutionary shift in breeding towards diploid

genetics, and double monoploid lines (DM) are being used for

research (Xu et al., 2011; Jansky et al., 2016; Bethke et al., 2022).

These DM lines are still susceptible to pathogens, but they can be

readily crossed with diploid wild potato species as an intermediate

step in introgression breeding. While these genetic mapping

populations tend to be small due to poor tuberization and fruit

formation attributed to the mixing of very diverse genetics (i.e., wild

x domesticated species crosses), they can still be studied to

understand the distribution of resistance traits, their qualitative or

quantitative nature, and to begin to understand the integrative

relationship of Solanum genes, metabolites, and resistance traits.

Some studies have performed quantitative trait loci (QTL) analysis

of DM x wild diploid Solanum populations and identified soft rot

resistance across multiple chromosomes (Zimnoch-Guzowska et al.,
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2000; Lebecka et al., 2021a), although the links between these QTL

and biochemical resistance traits such as with S. chacoense

are unknown.

Here, we utilized a recombinant inbred line (RIL) population

derived from a cross of S. chacoense M6 x S. tuberosum DM1 and

evaluated the disease resistance performance of the population. This

population is segregated for tuberization, tuber morphology, and

stem thickness leading to no tubers, degenerative tubers, and thin

stem, making typical virulence assays unreliable or impossible.

Previously, we identified metabolite-based resistance in S. chacoense

M6 that directly affects virulence of bacteria i.e quorum sensing and

exo-protease (Joshi et al., 2021a). Therefore traits of interest in this

study were the ability of metabolites from RIL population to inhibit

quorum sensing (QS-I) and exo-protease activity (EP-I). Our

investigation focused on determining whether QS-I and EP-I are

quantitative or qualitative traits. Additionally, we explored the

inheritance pattern of these traits in a biparental mapping

population. Finally, we performed a non-targeted metabolomic

analyses on the parents alongside transgressive segregants for the

QS-I and EP-I traits to identify components of the potato

metabolome that co-vary with the QS-I and EP-I resistance traits.
2 Materials and methods

2.1 Plant materials, bacterial strains,
and chemicals

We generated a recombinant inbred line (RIL) population of

potato by crossing S. tuberosum DM1-3 (as a female) with S.

chacoense M6 (male) (McCauley, 2021; Jansky et al., 2024). For this

population, a single F1 plant was self-pollinated to generate a large F2
population. Then the fertile individuals in this population were self-

pollinated for 5 or 6 (F5/F6) generations to develop a potato RIL

population consisting of approximately 100 inbred lines. Plants were

obtained from the Jansky group and tubers from the F5/F6 RILs were

planted in a greenhouse at the Plant Growth Facilities at Colorado

State University, U.S.A. The temperature was set to 24°C and 18°C for

day and night cycles respectively with a 16 h day length. Plants were

grown in ProMix Bx General Purpose mix, fertilized with Osmocote

Plus 15-9-12 (Scotts-MiracleGro, U.S.A.), and irrigated to saturation

every other day until used for assays. Aphids and other pests were

managed with Botaniguard ES and Molt-X (BioWorks, U.S.A.),

Entrust SC (Corteva, U.S.A.), Distance IGR (Valent Biosicences,

U.S.A.), Judo and Azatin (OHP Inc., U.S.A.), Avid 0.15EC

(Syngenta, U.S.A.), and Compass (Bayer, U.S.A.) according to the

manufacturer’s recommendations. Under greenhouse conditions,

approximately half of the RILs had deleterious phenotypes

including poor growth, no tuber formation, and self-degeneration

of tubers for multiplying and continuing the population. Therefore,

only 53 RILs were considered suitable for comparative phenotypic

analysis. LC-MS-grade water, analytical-grade methanol, acetonitrile

(ACN), and hydrochloric acid were purchased from Fisher Chemicals

(Thermo Fisher Scientific, U.S.A.) for metabolite extractions. P.

brasiliense strain Pb1692 was used for all resistance experiments in

this study. Nutrient broth (NB), agar, and skim milk powder were
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purchased from Difco Laboratories (Thermo Fisher Scientific,

U.S.A.). Bacteria were grown at 30°C under continuous

shaking conditions.
2.2 Extraction of metabolites

Stems from six-week-old potato plants from each RIL and

parent line were harvested, flash frozen in liquid nitrogen, and

ground to a crude powder using mortar and pestle. We performed

two biological replicates of extraction from two different plant lots.

Ground samples were lyophilized for at least 12 h (HarvestRight,

U.S.A.). The freeze-dried stem tissues were then ground to a fine

powder using a coffee grinder. For metabolite extraction, 2 ml of

70:30 methanol/water (vol/vol) was added to a 100 mg of tissue,

agitated for 2 h at 4°C using a vortex, and then sonicated for 5 min

at room temperature. The mixture was then centrifuged at 6,000 × g

for 20 min at 4°C and the supernatant was transferred to a new vial

and dried under a stream of nitrogen gas (Organomation Associates

Inc., U.S.A.). The dry matter (the metabolite extract) was weighed

and resuspended in sterile dH2O.
2.3 Quorum sensing and exo-protease
activity assays

Bacterial cultures were grown overnight in NB at 30°C under

continuous shaking at 220 rpm. The cultures were centrifuged, and

the cells were resuspended into sterile water. This cell suspension was

used as a source of inoculum to test bacterial responses to metabolite

extracts. Ten-milligrams of each metabolite extract were resuspended

in 1 ml of sterile water and the metabolite extract was then inoculated

with ~106 CFU of bacteria (calculated using optical density, O.D.,

measurements – OD value of 1 at 600 nm equivalent to 109 CFU).

The metabolite plus bacteria suspensions were incubated for 15 h at

30°C under continuous shaking at 220 rpm. No difference in bacterial

multiplication was observed (evaluated using O.D. measurements)

(data not shown). These cultures were then centrifuged (8,000 × g, 5

min) to separate the supernatant from the Pb1692 cells. The

supernatant was filter sterilized and used to measure quorum

sensing activity (QS-A) via acyl homoserine lactone (AHL, using

the reporter strain Chromobacterium violaceum - CV026) and exo-

protease activity (EP-A). The quantitative metrics of these systems

were performed in plate assays as previously described (Joshi et al.,

2021b). Here, activity (A) is a unit of measure specific to each assay:

pigmentation area for QS, and milk powder degradation area for EP.

QS and EP inhibitory (I) activity was calculated as: I (%) = (DM1-A –

Line-A)/DM1-A x 100, with DM1 as a susceptible control.
2.4 Non-targeted metabolomics

The metabolite extracts were analyzed with two independent

platforms run in positive and negative mode for a total of four

metabolomics data sets: reverse phase ultra high-performance

liquid chromatography mass spectrometry (UHPLC-MS), and
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hydrophilic interaction chromatography HILIC-MS). Together

these platforms capture a wide range of molecules with different

chemistry. For UHPLC-MS, samples were injected in a randomized

order using 1 µl injection volume into a Waters Acquity UPLC

system. Separation was achieved using a Waters Acquity UPLC

CSH Phenyl Hexyl column (1.7 µM, 1.0 x 100 mm, part number

186009478), using a gradient from solvent A (water, 0.1% formic

acid, 2 mM ammonium hydroxide) to solvent B (acetonitrile, 0.1%

formic acid). Injections were made in 99% A, held at 99% A for 1

min, ramped to 98% B over 12 minutes, held at 98% B for 3 minutes,

and then returned to starting conditions over 0.05 minutes and

allowed to re-equilibrate for 3.95 minutes, with a 200 µl/min

constant flow rate. The column and samples were held at 65°C

and 6°C, respectively. The column eluent was infused into a Waters

Xevo G2-XS Q-TOF-MS with an electrospray source in negative

and positive mode (as independent runs), scanning 50-1200 m/z at

0.1 seconds per scan, alternating between MS (6 V collision energy)

and MSE mode (15-30 V ramp). Calibration was performed using

sodium formate with 1 ppm mass accuracy. The capillary voltage

was held at 700 V, source temperature at 150°C, and nitrogen

desolvation temperature at 600°C with a flow rate of 1000 L/hr.

Quality control was performed in both phases and modes by

running quality control samples after every 4 or 5 experimental

samples. For HILIC-MS, separation was achieved using a Waters

Acquity Premier BEH Amide column with built-in fit guard column

(1.7 µM, 2.1 x 100 mm, part number 186009508), using a gradient

from solvent B (95% acetonitrile, 5% water, 0.1% formic acid, 10

mM ammonium hydroxide) to solvent A (water, 0.1% formic acid,

10mM ammonium hydroxide). Injections were made in 90% B, held

at 90% B for 0.5 minutes, ramped to 25% A over 6.50 minutes,

ramped to 50% A over 2 minutes, ramped to 85% A over one

minute, held at 85% A for 0.50 minutes, returned to starting

conditions over one minute, and allowed to re-equilibrate for 3.50

minutes, with a 500 µl/min constant flow rate. The column and

samples were held at 30°C and 6°C, respectively. The column eluent

was infused into a Waters Xevo G2-XS Q-TOF-MS with an

electrospray source in positive and negative ionization mode (as

independent runs), scanning 50-1200 m/z at 0.1 seconds per scan,

alternating between MS (6 V collision energy) and MSE mode (15-

30 V ramp). Calibration was performed using sodium formate with

1 ppm mass accuracy. The capillary voltage was held at 700 V

(positive ionization mode) or 1800 V (negative ionization mode),

source temperature at 150°C, and nitrogen desolvation temperature

at 600°C with a flow rate of 1000 L/hr.

For processing, data were converted from Waters.RAW to.mzML

using Proteowizard MSConvert version 3.0.20154, and peak detection,

detection, alignment, grouping, retention time correction, and peak

filling was performed using XCMS in R (Smith et al., 2006).

Deconvolution and normalization were performed using the

RAMClust package in R (Broeckling et al., 2014). Interpretation of

spectra was done using the R package InterpretMS Spectrum (Lai et al.,

2018). Spectral clusters with their spectral abundance were exported to

MS Excel for further analysis. The information was used to match the

external databases and tools such as MS-Finder (Tsugawa et al., 2016),

SIRIUS (Dührkop et al., 2019), HMDB (Wishart et al., 2022) and

MassBank of North America for annotation.
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2.5 Construction of linkage map and
QTL mapping

Genotyping by sequencing (Elshire et al., 2011) was done on the

genomic DNA of the parents and the RIL digested with restriction

enzyme as mentioned in Jansky et al (Jansky et al., 2024). Raw reads

were trimmed for quality and adapter sequences were trimmed

using Trimmomatic (Bolger et al., 2014). High quality reads were

aligned to the potato genome using BWA-MEM and SNPs were

called using Freebayes. SNPs were filtered with a minimum quality

of 20. Filtered SNP data was utilized for genetic linkage analysis

using OneMap R for inbred based populations (Margarido et al.,

2007). The marker positions were based on the reference genome

DM_1-3_516_R44 – v6.1 (Pham et al., 2020). QTL identification

was done with composite interval mapping in Windows QTL

Cartographer v 2.5 011 (Wang et al., 2012). Mean values of QS-

A, QS-I, EP-A, and EP-I across 8 replicates were used for QTL

analysis. The sliding window for all traits was 1 cM. A forward and

backward stepwise regression method with a probability of 0.1 and a

window size of 5 cM were utilized to determine cofactors. LOD

thresholds for significance was selected by using the thousand-

permutation test to each data set (p ≤ 0.05) (Churchill and Doerge,

1994). For each QTL, the 95% confidence interval was calculated

using a 2-LOD support interval (van Ooijen, 1992).
2.6 Mapping genes associated with
metabolites/metabolic pathways

Metabolites strongly associated with disease resistance were

traced for their metabolic pathways and chromosomal location of

pathway genes using plant metabolic pathway database PotatoCyc

(SolCyc Biochemical Pathways) (Fernandez-Pozo et al., 2015).

Associated genes in metabolic pathways were mapped to

chromosomes of Solanum tuberosum group phujera DM1-3 (v4.03,

id52025) using a visualization tool Phenogram (https://

visualization.ritchielab.org/ Ritchie Lab, University of Pennsylvania).
2.7 Statistical analysis

RIL phenotypic data were analyzed with GraphPad Prism v10

(Dotmatics, Boston, MA, U.S.A.) including histograms by frequency

distribution binning and establishing nonlinear fit lines. One-way

Analysis of Variance (ANOVA) tests were conducted to compare

lines with Tukey post-hoc tests on QS-A and EP-A data with a p

threshold of 0.05, and Spearman’s rank correlation was performed in

Graphpad Prism v10. Data was tested for normality using the

Kolmogorov-Smirnov test with a p threshold of 0.05. QS-I and EP-

I were calculated as [DM1 activity – Line activity]/[DM1 activity] x

100%. Metabolomics data was analyzed using SIMCA v17.0

(Sartorius AG, Gottingen, Germany). Orthogonal Partial Least

Square (OPLS) models were developed using the two-way

Orthogonal Partial Least Square (O2PLS) workflow (Bouhaddani

et al., 2016) by regressing the QS-A and EP-A data (two independent

y’s) against the metabolite data (x) in a single model and establishing
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two components to explain joint (Component 1) and unique

variation (Component 2). All multivariate data was z scaled. Cross-

validation was performed using the 1/7th leave out approach and

reported as predictive power ranging between 0-100% (Q2).

Univariate metabolite z transformations were performed by

comparing metabolite abundances of lines to the mean of lines

classified as “susceptible” based on QS-A and EP-A values that

were not different from DM1, with a significance threshold of z >

1.96 corresponding to p < 0.05 indicating an association to resistance.

All graphs were illustrated using Graphpad Prism.
3 Results

3.1 Exo-enzyme and quorum sensing
inhibition were distributed as quantitative
traits in the M6 x DM1 RIL population

In the M6 x DM1 RIL population generated from a cross of S.

tuberosum line DM1-3 (diploid potato) to M6 (a diploid potato

inbred line) we evaluated two specific metabolite-based

mechanisms correlated with disease resistance, quorum sensing
Frontiers in Plant Science 05
inhibition (QS-I) and exo-protease inhibition (EP-I) and

compared them among RILs. These assays are compatible with

tissues of varying morphologies because the assay is normalized

with metabolite extractions.

Screening of parental and progeny metabolites for QS and EP

activity (QS-A and EP-A, Figure 1A) showed that for QS-A, M6 and

DM1 had 0.09 and 0.51 activity units respectively, with the QS-I of

M6 at 82% of DM1. Of the 56 RIL lines, 3 lines exhibited

transgressive segregation in the resistant direction (i.e., lower QS-

A than the parent M6, QS-I between 83-92%), although these were

not statistically different than M6 (ANOVA, Tukey Post-hoc p >

0.05). Ten RILs had greater QSa than DM1, however, most of them

were equally distributed between DM1 and M6. For EP-A, M6 and

DM1 were at 0.09 and 0.51, corresponding to an EP-I of M6 at 85%

of DM1. Eight RILs exhibited transgressive segregation in the

resistant direction for EP, (EP-I between 87-100%) while no lines

varieties transgressed DM1 in EP-related susceptibility.

Both QS-A and EP-A values were normally distributed

(Kolmogorov-Smirnov tests, p > 0.10) and support QS-I and EP-I

as quantitative resistance traits (Figure 1B). The relationship

between QS-I and EP-I was evaluated using correlation analysis

of the activity data (Figure 1C). The two traits were moderately
A

B C

FIGURE 1

Effects of Solanum metabolite extracts on virulence-associated traits of Pectobacterium. (A) Metabolites were extracted from S. chacoense M6
(resistant), S. tuberosum DM1 (susceptible), or M6 x DM1 recombinant inbred lines (RILs) and tested for effects on quorum sensing activity (QS-A) and
exo-protease activity (EP-A) of Pectobacterium brasiliense Pb1692. (B) Histogram distribution of activity data in the population fitted to a Gaussian
curve. (C) Spearman’s rank correlation of QS and EP activity, with regression line added as a visual aid. QS and EP activity data is presented as the
mean ± SEM with n=8 replicates, with M6 (purple) and DM1 (brown) used as resistant and susceptible controls, respectively. RILs in bold text were
chosen for metabolomics analysis.
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correlated with Spearman’s rank correlation rs = 0.70 (p < 0.0001, n

= 52), indicating that some, but not all metabolites affecting both QS

and EP were either identical or were in the same extracts. For the

remainder of this study, the RIL lines that were high in both QS-I

and EP-I were denoted as “resistant lines”, and all other lines were

classified as “intermediate” or “susceptible”.
3.2 QTL analysis identified genomic regions
associated with disease
resistance phenotypes

A genetic linkage map was constructed covering all the 12

chromosomes of potato (Figure S1). The genetic map had a total

length of 1507 cM with an average marker interval of 0.72 cM. The

largest linkage group was linkage group 1 which spanned 188.63 cM

and contained 109 markers (Table S1). The length of each linkage

group ranged from 85.04 cM to 188.63 cM and density ranged from

0.31 to 0.698 markers per cM. We identified 5 QTLs for QS-I

(Table 1) that explained 8-28% of the variation. Two QTLs were

identified in chromosome 5, while 1 QTL each was identified on

chromosomes 2, 7, and 10 respectively (Figure 2). For protease

activity, two QTLs were identified in chromosomes 3 and 5 that

explained 14-19% of the phenotypic variation. Interestingly, the

analysis of QS-I (vs. QS-A) identified two new QTLs including one

on chromosome 11 that explained 15% of the phenotypic variation

(Table 1). Similarly, for EP-I, we identified one QTL previously

identified for EP-A and two new QTLs on chromosome 7 and 10

that explained 13-18% of the phenotypic variation. The 10,000 bp

flanking region for each significant QTL was searched in the potato

genome. For qQS-2-1 there were 54 genes, for qQS-5-1&2 there

were 217 genes, for qQS-7-1 there were 39 genes, for qQS-10-1

there were 31 genes, for qPA-3-1 there were 249 genes, for qPA-5-1

there were 217 genes.
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3.3 Metabolites associated with QS-I
and EP-I

A comparative metabolomics experiment was performed to

identify metabolites associated with QS-I and/or EP-I in RILs that

inhibit these virulence traits. Because of the positive correlation

between QS-I and EP-I, and that these traits are positively

associated with disease resistance (Joshi et al., 2021b), a single

subset of 15 lines was evaluated for metabolomics analysis with

classifications of highly resistant, moderately resistant, or

susceptible (5 lines from each group), along with the two parents.

The four metabolomics platforms (UHPLC-MS, HILIC-MS,

positive and negative mode) detected approximately 15,460

metabolites (Table S2). The 15,460 metabolites were regressed

against QS-A or EP-A using orthogonal project to latent

structures analysis, with both y variables included the same model

(OPLS method, as an O2PLS design). The first model that included

intermediates had a cumulative R2Y = 99%, however the model

failed cross-validation with Q2 = 48% (Figure 3A). A second OPLS

model was constructed without data from lines without

intermediate phenotypes achieved R2Y = 99% and Q2 = 61%,

supporting that metabolites profiles could sufficiently predict QSa
or EPa (Figure 3B). In both models, two predictive components

were generated that were linked to overall resistance (e.g. both QSa
and EPa, joint variation, Component 1, ~95%) and a subset of

resistance (e.g. either QS-A or EP-A, unique variation, Component

2, ~5%). The second model was subsequently analyzed for

metabolites that met a correlated loadings threshold of 0.70 for

Component 1, and these were determined to be metabolites

associated with resistance. For Component 2, loadings values of >

0.10 were determined to be more associated with EP-A than QS-A

and indicate trait bias, and loadings of < -0.10 indicate bias towards

QSa. Component 2 values in between -0.10 and 0.10 were

considered associated with both traits.
TABLE 1 Summary of QTLs identified for quorum sensing and exo-protease activity/inhibition.

Trait QTL code Chromosome Peak marker position (cM) Peak LOD* PVE (R2)*

QS-A qQS-A-2-1 2 93.11 2.61 0.10

QS-A qQS-A-5-1 5 92.11 5.55 0.28

QS-A qQS-A-5-2 5 98.11 5.39 0.25

QS-A qQS-A-7-1 7 21.11 2.82 0.11

QS-A qQS-A-10-1 10 60.48 2.58 0.09

QS-I qQS-I-5-1 5 92.11 2.75 0.13

QS-I qQS-I-7-1 7 19.51 3.75 0.16

QS-I qQS-I-11-1 11 32.81 3.57 0.15

EP-A qEP-A-3-1 3 122.49 3.76 0.19

EP-A qEP-A-5-1 5 86.00 2.51 0.14

EP-I qEP-I-3-2 3 124.51 5.48 0.26

EP-I qEP-I-7-1 7 42.51 3.30 0.13

EP-I qEP-I-10-1 10 77.21 4.24 0.18
*LOD, logarithm of the odds; PVE, variation explained.
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In total, 35 metabolites met the Component 1 threshold and

were classified as associated with virulence inhibition. Of the 35

metabolites, the Component 2 analysis denoted that 13 metabolites

were associated with both QS-I and EP-I, 10 metabolites with QS-I,
Frontiers in Plant Science 07
and 12 metabolites with EP-I. The metabolite abundances were

normalized using z transformation to analyze trends among each

individual resistance and susceptible lines, with the intermediates

added back to the analysis, and with DM1 set to 0 as the susceptible
A

B

FIGURE 3

Orthogonal Projection to Latent Structures analysis of metabolites detected in potato RILs. Data was generated based on 15,460 metabolites (x)
regressed against QS-A and EP-A (y) data in two O2PLS models: with 15 lines that includes intermediates, or 10 lines of only resistant and
susceptible. (A) O2PLS scores plots, correlation scaled for 15 (left) or 10 lines (right), with the data points for the two Y variables QS-A and EP-A
noted as a black circle. (B) O2PLS scores and loadings plot model of the 10 lines (scores) with metabolite loadings shown (gray dots), correlation
scaled. Metabolites that met the joint variation (Component 1) threshold of 0.70 were considered associated with resistance. Dashed lines were
manually added to highlight the direction of the Y variable vectors.
FIGURE 2

Quantitative trait locus (QTL) mapping of biochemical antivirulence traits in S. tuberosum. Resistance-associated traits included quorum sensing and
exo-protease activity and inhibition data (QS-A, QS-I, EP-A, EP-I) each mapped independently using logarithm of the odds (LOD) scores as
associations to genomic regions. Chr = linkage group (chromosome). QS-A (red): Quorum sensing activity, QS-I (green): % quorum sensing
inhibition compared to susceptible DM1, EP-A (blue): Exo-protease activity, EP-I (black): % of exo-protease inhibition to susceptible DM1.
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control (Figures 4A–C). All metabolites were confirmed to have

higher mean z scores in the resistant lines compared to susceptible,

supporting the OPLS model successfully characterized metabolites

associated with QS-I and EP-I in this population. Interestingly, no

metabolites exhibited a clear trend of high levels in resistant lines,

medium levels in intermediates, and low levels in susceptible,

confirming the OPLS model with intermediates that failed cross-

validation. Some metabolites were higher in intermediates than

resistant (e.g. LCneg_C4997), but often the intermediates were

grouped with the susceptible (e.g. LCneg_2364). Further, only a

few metabolites exhibited a presence/absence type of pattern in the

data, denoted by excessively high z scores (e.g. HLneg_C0661,

HLneg_C0518, HLneg_C0207), with most metabolites existing in

both the resistant and susceptible lines, but at higher levels in the

resistant lines. Two metabolites were higher in the resistant RILs

than DM1, except for the parent M6 that was equal to or below

DM1 (HLneg_C0184, LCneg_C2835).

The metabolites were annotated based on interpretation of mass

spectra and cross-listing spectral data with metabolite databases

(Table 2). Of the 35 metabolites, 19 were annotated and 16 were

classified as unknowns with the inability to match to databases, or

the inability to determine elemental formulas from the spectral data.

Two alkaloids that are rather notable in Solanum spp. were the

glycoalkaloid solacauline (HLneg_C0195) and the kukoamine N1,

N5,N10-Tris-trans-p-coumaroylspermine (LCneg_C4997), both in

the QS-I/EP-I classification. Three metabolites were annotated as

terpenes and all trended in the EP-I direction, with no terpenes

being associated with only QS-I: piperochromenoic acid

(LCneg_C6339), demissine (HLneg_C0207), and parasiloxanthin

(HLpos_C1110). Additionally, 2-C-methyl-D-erythritol-2,4-

cyclodiphosphate (LCneg_C3974) is a terpene precursor

metabolite and was biased towards EP-I. Two compounds were

annotated as terpene conjugates, being alternate classes with a

prenyl group attached to the base structure: isopentyl

gentiobioside (two metabol i te signals , LCneg_C6893,

LCneg_6963, EP-I) and N6-(delta2-isopentenyl)-adenosine 5’-

diphosphate (LCneg_C3220, a putative prenylated purine, EP-I).

A third prenylated flavonoid was identified (albanin H,

LCposC4899), although this was linked to QS-I, as well as the

non-prenylated polyphenolic feruloylquinic acid (HLneg_C0184).
3.4 Association of disease resistance
related metabolites with genetic variants

Candidate resistance metabolites that were consistently higher

across all tested resistant lines were annotated and EP-I assigned to

specific metabolic pathways and aligned to the chromosomal

locations of pathway genes (Figure 5). These prominent pathways

include alkaloid biosynthesis, zeatin biosynthesis, methylerythritol

phosphate pathway (non-MVA terpene synthesis), glutathione

redox reactions, 5-O-caffeoylquinic acid (phenolic) biosynthesis,

and prenyl transferases. Notably, genes associated with these

pathways were distributed across 12 distinct potato chromosomes.
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A

B

C

FIGURE 4

Univariate analysis of metabolites associated with inhibition of
virulence traits. Z scores of each metabolite for each of the 15 lines
(as dots) compared to the susceptible group as the control.
Metabolites were determined to be associated with resistance based
on an analysis of the OPLS loadings for (A) joint variation, QS-I and
EP-I, or unique variation indicating trait bias for (B) EP-I and (C) QS-
I. The dash above each z row indicates the mean z for the resistant
(purple), intermediate (orange), or susceptible group (brown) for that
metabolite. Z scores outside of the shaded region (-1.96 to 1.96)
support statistical significance compared to the susceptible controls.
Metabolites are reported as platform detected_compound
C number.
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TABLE 2 Metabolites associated with QS-I and EP-I in wild potato and resistant RILs.

Class
Sub-
class

Metabolite IDa Massb
error
(ppm)

Corrc
Trait
Biasc

Trait
Corrc

Alkaloids glycoalkaloids solacauline HLneg_C0195 M = 826.4706 1 0.77 -0.04 QS-I/EP-I

demissine HLneg_C0207 [M+F]-= 1036.5593 10 0.85 0.18 EP-I

kukoamines N1,N5,N10-Tris-trans-
p-coumaroylspermine

LCneg_C4997 M = 640.3067 30 0.83 0.10 QS-I/EP-I

Terpenes intermediates 2-C-methyl-D-erythritol-
2,4-cyclodiphosphate

LCneg_C3974
[M+FA-H]-

= 320.9796
1 0.72 0.28 EP-I

tetraterpenes parasiloxanthin HLpos_C1110 [M+H]+ = 571.4609 17 0.77 0.29 EP-I

Saccharides prenylated isopentyl gentiobioside LCneg_C6893 M = 412.1908 9 0.81 0.30 EP-I

isopentyl gentiobioside LCneg_C6963 M = 412.1908 9 0.86 0.11 EP-I

Phenolics polyphenolics feruloylquinic acid HLneg_C0184 M = 368.1121 4 0.75* -0.1 QS-I

prenylated
albanin H LCpos_C4899

[M+2H]2+

= 421.1674
5 0.70 -0.34 QS-I

piperochromenoic acid LCneg_C6339 M = 340.2066 8 0.8* 0.05 QS-I/EP-I

Nucleotides purines diadenosine pentaphosphate LCneg_C6110 [M-H]- = 914.9778 32 0.73 -0.21 QS-I

prenylated N6-(delta2-isopentenyl)-adenosine
5’-diphosphate

LCneg_C3220 [M-H]- = 491.038 51 0.81 0.26 EP-I

pyrimidines UDP-alpha-D-xylose LCneg_C2876 M = 533.9952 65 .082 0.09 QS-I/EP-I

Lipids glycerolipids
TG(62:0) LCneg_C2188

[M-H20-H]-

= 969.9628
5 0.77 0.08 QS-I/EP-I

TG(63:0) LCpos_C1940
[M+H+NH4]

2+

= 517.9981
15 0.75 0.09 QS-I/EP-I

TG(58:0) LCneg_C4004 M = 932.9485 37 0.75 0.13 EP-I

DG-3-OH(40:5) LCpos_C2185
[M+Na]+

= 741.5279
0 0.76 0.07 QS-I/EP-I

PE-NMe2(42:2) HLneg_C0518 M = 855.6676 5 0.86 0.19 EP-I

PE-NMe2(38:6) LCpos_C2805 M = 791.5465 0 0.79 -0.13 QS-I

Unknown phenolics unknown phenolic HLneg_C1151 M = 232.0754 1 0.86 -0.06 QS-I/EP-I

unknown phenolic HLneg_C1426 [M-H]- = 401.0705 0.85 -0.08 QS-I/EP-I

unknown flavonoid glycoside LCpos_C4690
[M + K]+

= 821.1921
2 0.85 -0.38 QS-I

glycosides unknown glycoside HLneg_C0210 M = 396.8958 9 0.76 -0.26 QS-I

lipids unknown lipid LCneg_C3482 [M-H]- = 162.8387 0.77 0.06 QS-I/EP-I

unknown unknown HLneg_C0107 M = 350.8118 5 0.75 -0.25 QS-I

unknown LCneg_C2364 M = 660.9885 2 0.83 0.11 EP-I

unknown LCneg_C2733 M = 806.9983 8 0.80 0.09 QS-I/EP-I

unknown HLneg_C1371 [M-H]- = 280.9837 0.76 -0.34 QS-I

unknown HLneg_C0661 [M-H]- = 448.8301 0.80 0.15 EP-I

unknown LCpos_C4188 [M+H]+ = 515.036 0.75 0.20 EP-I

unknown LCneg_C2835 [M-H]- = 633.9719 0.78* -0.02 QS-I/EP-I

unknown LCneg_C6825 [M-H]- = 644.9649 0.69 -0.32 QS-I

(Continued)
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A comparative analysis revealed overlaps between these genomic

regions and the identified QTL regions, which encompass genes

related to alkaloid synthesis, phenolic biosynthesis, peroxidases, and

acylsugar acyltransferase.
4 Discussion

The resistance to necrotrophic bacterial diseases observed in

wild Solanum species is multifactorial, with biomolecules playing a

direct and indirect role in combating the disease. For chemical

resistance, S. chacoense M6 has several sub-classes of compounds

that work together to collectively reduce bacterial virulence and

slow or completely prevent the development of disease. Therefore,

there are several anti-virulence properties of plant molecules found

on wild Solanum. We describe two sub-classes of these as

antivirulence proteins (Joshi et al., 2022) and antivirulence

metabolites (Joshi et al., 2021b). For proteins, these have been

classified as protease inhibitors that affect bacterial exo-protease

activity, motility, and cell morphology, but not quorum sensing. For

metabolites, these molecules affect quorum sensing, motility, and

exo-protease inhibition, but not morphology. This supports that the

wild potato S. chacoense contains a mixture of molecules
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individually affecting sub-components of bacterial virulence,

possibly with a synergy that culminates in broad phenotypic

measures of host resistance, or less decay of plant tissues.

The phenomenon that multiple molecular compounds interact

with multiple processes is consistent with the observation that

resistance in S. chacoense is multi-genic (Zimnoch-Guzowska

et al., 2000; Chung et al., 2017). Recently, RILs were developed by

crossing DM1×M6, that allows use of genetic and high throughput

metabolomic tools to explore soft rot and blackleg resistance in M6

potato (McCauley, 2021; Jansky et al., 2024). The RILs from the

DM1×M6 were impossible to effectively compare for resistance in

later generations (e.g., F5/F6) due to high phenotypic variability that

may affect virulence assays, such as varying stem thickness, self-

degenerating tubers, or inability to tuberize. In this study, we

worked with a sub-set of the RIL population that allowed the

study of metabolites, genes, and anti-virulence traits correlated

with resistance. While the power of genetic associations is

relatively low compared to a typical plant genetics study, we were

still able to describe the distribution of resistance traits in

this population.

Specifically, the two antivirulence traits were explored: the

ability for a metabolite extract to inhibit quorum sensing or exo-

protease activity (QS-I, EP-I). Importantly, these are quantitative
FIGURE 5

Genetic map of the chromosomes from the Solanum tuberosum group phujera DM1-3 (v4.03, id52025). The location of genes associated with soft
rot and blackleg resistant metabolites is shown across potato chromosomes with individual color denoting specified biochemical pathways.
TABLE 2 Continued

Class
Sub-
class

Metabolite IDa Massb
error
(ppm)

Corrc
Trait
Biasc

Trait
Corrc

unknown LCneg_C7003 [M-H]- = 703.9523 0.91 -0.21 QS-I

unknown LCneg_C2095 [M-H]- = 769.9478 0.78 0.35 EP-I

unknown LCneg_C5207 [M-H]- = 937.9673 0.72 0.3 EP-I
fr
a: metabolomics platform (HILIC or reverse phase LC; positive or negative mode); b: inferred mass M based on InterpretMS algorithm or parent ion used for annotation, with unknowns
reporting one assumed ion in the spectrum (e.g.[M-H]-); c: corr = O2PLS Component 1 loading representing positive correlation value to QS-I/EP-I traits, known as joint predictive variation;
trait bias = O2PLS Component 2 loading of bias correlation to QS-I (negative) or EP-I (positive) traits, with bias thresholds set at > or < 0.10; * = DM1 z score greater than M6.
ontiersin.org

https://doi.org/10.3389/fpls.2024.1336513
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Joshi et al. 10.3389/fpls.2024.1336513
assays and therefore inhibition can be inferred as a percent

reduction compared to a control, in this experiment with DM1 as

the control. The distribution of the QS and EP activity data was

normal among the RILs, with some evidence of potential

transgressive segregation (Figure 1B). This supports that QS-I and

EP-I are quantitatively inherited traits and therefore linked to

multiple genes and/or metabolites, and that QS-I and EP-I are

new traits that can be bred for in plants. Further, QS-I and EP-I

were moderately positively correlated, indicating some metabolites

or regulators impact both processes, but there are also metabolites

that uniquely affect these sub-components of virulence. This is

consistent with our previous observation that protease inhibitors

affected some, but not all virulence processes in this system (Joshi

et al., 2022).

The metabolomics analysis was performed on a subset of the

RIL population. While screening the full RIL population would be a

stronger design to associate metabolites with QS-I and EP-I, we

were still able to create a predictive model that provided significant

hits of metabolites associated with resistance. The OPLS method

was used for its ability to work with mass spectrometry (x) data, and

the normally distributed phenotypic (y) data as shown in Figure 1A.

Further, we could integrate QS-I and EP-I concepts into a single

model (similar to O2PLS (Bouhaddani et al., 2016)), in which the

data could be divided into two subsets: joint variation (metabolites

affecting both QS-I and EP-I), and individual variation (metabolites

affecting either QS-I or EP-I, a virulence trait bias components).

The output was a two-dimensional space that provided a score to

each metabolite for each of the four options (Figure 3B).

Interestingly, the model resulted in approximately 95% of the

variation being explained by the joint component, and 5% for the

trait bias component. This is inconsistent with the Spearman rank

correlation data, which would support more variation on the trait

bias component (rs = 0.70), although the metabolomics data may be

skewed with the 15 lines chosen for their effectiveness for both the

QS-I and EP-I traits. This may also be due to the lack of

intermediates in the final OPLS model; intermediates were a

major component to decipher the distribution of QS-I or EP-I

phenotypes in this population (Figure 1), but metabolomics analysis

that included these intermediates resulted in poor models

(Figure 3). One explanation is that the difficulty in the

metabolomics analysis to decipher very minor differences in

metabolites may lead to major differences in phenotypes in the

intermediates. Therefore, these metabolomics data are most

confident in the ability to discriminate the highly resistant RILs

from the highly susceptible RILs, rather than subtle differences that

occur in the intermediate RILs.

The metabolomics data showed that the highly resistant RILs

were associated with a set of 35 metabolites that included a mixture

of lipids, alkaloids, terpenes, phenolics, and several unknowns. Most

lipids were determined to be membrane glycolipids or storage

lipids. As lipid profiles are inherited, this class of compounds is

expected to be indirectly related to resistance, where this profile is

inherited from M6 to the resistant RILs, however not associated

with resistance. Of the 35 resistance-related metabolites, 16 were

‘known unknowns’ (MSI levels 3-4 (Sumner et al., 2007)), and these

are expected to occur in an experimental design that includes a wild
Frontiers in Plant Science 11
plant species and progeny crossed with diploid potato. Regardless,

this report includes mass spectral data for these compounds to

continue to be tracked in subsequent studies.

Several compounds that were associated with resistance have

known or predicted roles in resistance and virulence, and

specifically for QS-I or EP-I. Three alkaloids were found to be

associated with resistance, solacauline, demissine, and N1,N5,N10-

Tris-trans-p-coumaroylspermine. Solacauline and demissine are

steroidal alkaloids, a class of compounds largely unique to

Solanum and Liliaceae, of which approximately 300 structures

have been reported (Morillo et al., 2020). Steroidal alkaloids are

nitrogenous sterols (a solanidane group) that are usually conjugated

to 2-4 saccharides, with the saccharide component being critical to

their bioactivity (Delbrouck et al., 2023). These compounds provide

protection by disrupting cell membranes of pests and pathogens

(Niño et al., 2009). The two main potato glycoalkaloids, chaconine

and solanine, were not associated with resistance in this experiment.

Solacauline and demissine have a similar solanidane backbone as

chaconine and solanine, but both have unique saccharide

components. Solacauline has a linear trisaccharide chain,

compared to branched chain trisaccharides (chacotriose and

solatriose) found in most glycoalkaloids (Shakya and Navarre,

2008). Glycoalkaloids may affect bacterial membranes (Yan et al.,

2021), however given S. chacoense M6 extracts do not exhibit

bactericidal activity (Joshi et al., 2021b), it is more likely to

interact with bacterial proteins involved in virulence, and this

interaction may be improved with the linear chain saccharide

component. Further, demissine has a branched tetrasaccharide

component, and this was biased towards EP-I, further supporting

that the saccharide component of glycoalkaloids may be critical in

determining their direct effects on bacterial processes and overall

impact on resistance to these pathogens.

A second major class of metabolites associated with QS-I and

EP-I are terpenes and terpene conjugates of other specialized

metabolites. Terpene synthesis is linked to glycoalkaloid synthesis

via the synthesis of sterols (glycoalkaloids are based on triterpenes).

The terpene biosynthesis precursor 2-C-methyl-D-erythritol-2,4-

cyclodiphosphate was associated with resistance in the RIL

population, although biased toward EP-I. In these data, the

common terpene-related trend was the prenylation of specialized

metabolites. Prenylation is a modification to secondary metabolites

that results in changes to the compounds solubility, and usually

enhances function including antibacterial activity and enzyme

inhibition, for example docking of the prenyl group in protein

active sites (Botta et al., 2005; Yazaki et al., 2009; Chen et al., 2014;

Wang et al., 2017). Therefore, the presence of prenyl side chains on

specialized, exogenous plant molecules could directly affect bacterial

proteins that regulate virulence pathways. The M6 resistance related

metabolites included two prenylated phenolics (albanin H,

piperochromenoic acid), a prenylated saccharide (isopentyl

gentiobioside), and a prenylated purine (N6-(delta2-isopentenyl)-

adenosine 5’-diphosphate, putative annotation). Gentiobiose is a

saccharide common in unripe (green) tomato fruit (Dumville and

Fry, 2003) and would therefore be expected in other Solanum spp.

Prenylated gentiobiose has further been detected in tomato cell

culture (De Rosa et al., 1996), and isopentyl gentiobioside was
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previously found to be associated with resistance in S. chacoense

(Joshi et al., 2021b). For effects on QS, some bacteria such as Bacillus

have prenylated pheromones (e.g. ComX), with the prenyl group

being essential to protein-binding function and overall diversity

(Ansaldi et al., 2002; Okada et al., 2017). Prenylated phenolics have

demonstrated QS-I properties (Paguigan et al., 2019), and in other

metabolite-protein interactions, prenylated forms have stronger

activity (Osorio et al., 2021). While Pectobacterium AHL

pheromones are acylated and not prenylated, the side chains have

similar molecular sizes, shapes, and lipophilic chemical properties

to support this system a potential resistance mechanism by S.

chacoense. Further, as with prenylated proteins, the prenylation of

water-soluble metabolites such as saccharides and phenolics may

focus their activity on cell membranes, where significant regulation

of QS occurs (Joshi et al., 2021b).

Several associations between QS-I and EP-I resistance traits and

individual antivirulence metabolites and metabolic pathways in S.

chacoense were observed with genetic mapping. The overall SNP-

QTL mapping approach was conducted using exo-protease activity

inhibition (EP-A, EP-I), and quorum sensing inhibition (QS-A, QS-

I) as a phenotype to pinpoint markers associated with these traits.

Notably, protease inhibition demonstrated associations with

markers located on chromosome 3, 5, 7, and 10. Similarly, AHL

inhibition was linked to markers found on chromosome 2, 5, 7, 10,

and 11. These markers encompass a wide range of regions within

the potato chromosome, many of which are correlated with disease

resistance metabolites and associated pathways, including acylsugar

acyltransferase, alkaloid biosynthesis, phenolic biosynthesis, and

peroxidases. Our findings are in line with recent findings where

acylsugar metabolism, alkaloid biosynthesis, and phenolic

biosynthesis is shown to be associated with plant-microbe

interaction and disease resistance (Mandal et al., 2020; Song et al.,

2023; Yuan et al., 2023). In summary, the integration of two robust

approaches, genetic analysis, and metabolomics, has shed light on

the biochemical pathways associated with soft rot and blackleg

diseases resistance.
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