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Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and

consistent flowering is vital for maintaining crop production amidst the challenges

presented by climate change. In this review, we summarized key recent efforts

aimed at unraveling the complexities of plant flowering through genetic, genomic,

physiological, and biochemical studies in woody species, with a special focus on

the genetic control of floral initiation and activation in woody horticultural species.

Key topics covered in the review include major flowering pathway genes in

deciduous woody plants, regulation of the phase transition from juvenile to adult

stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T

genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the

multifunctional roles of MADS-box genes in flowering and dormancy release

triggered by chilling. Based on our own research work in blueberries, we

highlighted the central roles played by two key flowering pathway genes,

FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS

1, which regulate floral initiation and activation (dormancy release), respectively.

Collectively, our survey shows both the conserved and diverse aspects of the

flowering pathway in annual andwoody plants, providing insights into the potential

molecular mechanisms governing woody plants. This paves the way for enhancing

the resilience and productivity of fruit-bearing crops in the face of changing

climatic conditions, all through the perspective of genetic interventions.
KEYWORDS

chilling requirement, deciduous plant, florigen, floral activation, floral initiation,
flowering mechanism, woody plant
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1 Introduction

Flowering represents a vital phase in the reproductive

developmental of plants, ultimately resulting in the generation of

seeds for subsequent generations. In agriculture, a robust flowering

process, encompassing floral induction, formation, and

developmental programming, stands as a fundamental

prerequisite for achieving productive crop cultivation. The

persistent trend of global warming, coupled with burgeoning

populations and the depletion of natural resources, has presented

significant challenges to agricultural production. For staple crops,

warming can curtail agricultural output by shifting optimal growth

zones and/or diminishing both cropping frequency and yields (Zhu

et al., 2022). In the case of woody fruit crops, particularly temperate

fruit trees, the impacts of global warming are profound, exerting

adverse effects on floral development, dormancy release, and fruit

growth (Luedeling et al., 2011). A pertinent instance is the scenario

wherein insufficient chilling, triggered by climatic shifts, precipitates

decreased bud break and reduced flower quality, leading to a

reduction in fruit production (Atkinson et al., 2013).

Annual plants have evolved to respond to seasonal variations,

facilitating a seamless transition from vegetative to reproductive

phases. Extensive investigations using the model plant Arabidopsis

(Arabidopsis thaliana) and cereal crops have yielded a wealth of

valuable insights. These studies have unveiled pivotal regulatory

nodes governing floral initiation and flowering time, encompassing

pathways tied to aging, photoperiod, autonomous/vernalization,

and gibberellin stimuli (see reviews by Greenup et al., 2009; Fornara

et al., 2010; Andres and Coupland, 2012; Conti, 2017; Kinoshita and

Richter, 2020; Izawa, 2021; Liu et al., 2021). At the center of this

regulatory matrix stand two major integrators: FLOWERING

LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF

CONSTAN 1 (SOC1). FT exerts a positive influence on SOC1,

with this FT-to-SOC1 module occupying a central role in plant

flowering, exhibiting evolutionary conservation across diverse plant

species (Fornara et al., 2010; Lee and Lee, 2010). In Arabidopsis, FT

emerges as a direct downstream target of both CONSTANS (CO)

within the photoperiod pathway and FLOWERING LOCUS C (FLC)

in the vernalization/autonomous pathway. SOC1, on the other

hand, is under the direct sway of SQUAMOSA PROMOTER

BINDING PROTEIN-LIKE (SPL) in the aging pathway, alongside

FLC and DELLA proteins within the gibberellin pathway (Wang

et al., 2009; Preston and Hileman, 2013; Bao et al., 2020).

The elucidation of the intricate gene networks underpinning

each flowering pathway in Arabidopsis has laid a foundational

framework, setting the stage for analogous insights into the

flowering mechanisms of other plants. In this review, our

attention is directed towards the intricacies of flowering

mechanisms in woody plants, with a particular focus on fruit-

bearing crops. We provide a concise summary of recent

advancements and present a gene network that explains possible

flowering mechanism in woody plants, specifically focusing on

deciduous temperate fruit crops. Within this framework, we

underscore the role of FT in floral induction and SOC1’s

involvement in floral programming. This gene-centric network
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not only deepens our understanding of flowering mechanisms in

woody plants but also serves as a valuable knowledge resource for

orchard management for fruit growers.
2 Major flowering pathway genes in
deciduous woody plants

The process offlowering in deciduous woody plants is a product

of intricate genetic and environmental influences and their

interactions in responding to the seasonal changes (Figure 1). The

phases of flowering, fruiting, and vegetative growth predominantly

unfold mainly during spring and summer, coinciding with the

prevalence of elevated average temperatures. Meanwhile new

floral buds for many deciduous woody plants are initiated in the

summer period and continuously undergo development through

fall. In contrast, winter mark the completion of reproductive

growth, onset of growth cessation, and the establishment of

dormancy in general. During this period, declining temperatures

and shortening day period act as key environmental signals to

trigger and drive these biological events. It is generally within these

colder months that the development of flower buds occurs and the

initiation of endodormancy is likely signaled.

A pivotal facet that distinguishes deciduous woody plants from

the vernalization/autonomous pathway observed in Arabidopsis lies

in the flowering mechanism driven by chilling accumulation,

termed chilling requirement (CR). This accumulation of chilling

hours occurs before the eventual release of endodormancy, as

temperatures start to rise in spring. This CR-mediated process

imparts a unique rhythm to the flowering behavior of deciduous

woody plants, in contrast to the continuous floral initiation and

flowering progression exhibited by vernalized Arabidopsis plants.

Deciduous woody plants often have two distinct phases emerge: the

initiation of floral buds mostly during the autumn and early winter,

followed by the actual blossoming of these buds in spring

subsequent to CR fulfillment (Figure 1).

Flower regulation in deciduous fruit trees is distinct from

annuals. In annuals, flower initiation begins with the transition

from vegetative to inflorescence stage and flower formation and

development are typically completed within a single season (see

reviews by Baurle and Dean, 2006; Irish, 2010). On the other hand,

flowers from seedling-derived fruit trees can only be initiated and

developed after the tree reaches adulthood, which can take several

years. Even in adult trees, flower initiation and development occur

over two growing seasons, not one (Wilkie et al., 2008; Sun et al.,

2022). For example, floral bud initiation in apple and peach trees

occurs in summer and basic morphological structures such as sepal,

petal, stamen, and carpel are developed during the fall before entering

a fully dormant state, remaining in a “resting” state during winter and

then resumed developmental pace before flowering next spring.

Winter chilling is indispensable for driving dormancy out (Arora

et al., 2003). It was also found that chilling is essential for driving

morphological differentiation within buds during winter (Luna et al.,

1990; Luna et al., 1991; Luna et al., 1993; Reinoso et al., 2002a;

Reinoso et al., 2002b; Julian et al., 2011). In fact, the formation of
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specific floral tissue in response to chilling is a morphological

indicator that the floral buds are out of dormant state and have

entered an ecodormant state capable of responding to warm stimuli,

resuming developmental pace and achieving reproduction success

(Wang et al., 2004; Wang et al., 2016). Notably, floral initiation,

formation and development are regulated by endogenous

physiological states and seasonal thermal regimes.
2.1 Regulation of the phase transition from
juvenile to adult stage

In the genetic realm, the majority of woody fruit crops exhibit a

juvenile phase spanning from days to years, during which seedlings

remain incapable of flowering even when subjected to suitable

environmental triggers (Samach, 2012). In Arabidopsis, the

transition from vegetative to inflorescence meristem appears to be

regulated by the aging pathway requir ing a miR156

(microRNA156) that controls PROMOTER BINDING PROTEIN-

LIKE genes (SPLs) (Wang et al., 2009; Wu et al., 2009; Teotia and

Tang, 2015; Xu et al., 2016b; Hyun et al., 2017). In this pathway,

miR156 negatively regulates the activity of flowering activator SPLs.

This family of SPLs, known for their multifunctionality, catalyzes

floral transition by augmenting the expression of key genes such as

LEAFY (LFY) and MADS box genes SOC1 and AP1 (Albani and

Coupland, 2010; Lee and Lee, 2010; Ma et al., 2021). The
Frontiers in Plant Science 03
engagement of the miR156-SPL module in the transition from

juvenile to adult phases has been validated in various plants,

including apple (Zhang et al., 2015a; Jia et al., 2017; Zheng et al.,

2019), the conserved nature of this miR156-SPL module within the

aging pathway is acknowledged across annual and perennial plant

species. Yet, substantiating this module’s presence in other woody

plants other than apple remains a necessity, along with addressing

the intriguing query surrounding the divergent durations of juvenile

phases observed among different woody plant species (Huijser and

Schmid, 2011; Morea et al., 2016) (Figure 2).

Of notable significance is the involvement of the DELLA

proteins that act as master regulators that rewire a multitude of

transcriptional networks to control diverse biological responses

(Briones-Moreno et al., 2023). One of the Arabidopsis DELLA

factors exhibits a propensity to interact with distinct SPLs, yielding

disparate outcomes. These interactions can either spark the

initiation of floral primordia, such as through the activation of

AP1 transcription via binding with SPL9, or act to inhibit SPL

function, thus serving as a brake on the flowering process. This dual

nature confers upon interactions of gibberellin (GA) and DELLA

proteins to produce varying effects on the reproductive journey,

depending on the developmental stage, all orchestrated by the

intricate behavior of DELLA proteins (Yu et al., 2012; Yamaguchi

et al., 2014; Bao et al., 2020).

The phase transition in fruit trees is also regulated by TFL1 and

its related genes. For example, when the TFL1 gene is knocked out
FIGURE 1

Annual growth cycle of deciduous woody plants guided by seasonal daylight and temperatures. Plant flowering, fruiting, and vegetative growth
mainly occur in spring and summer, when it is in long day (LD) conditions with growing daylength associated with increasing/higher average
temperatures. Growth cessation and dormancy happen in fall and winter under decreasing temperature and mostly short day (SD) conditions, when
flower bud formation is achieved and endodormancy is induced. Enough chilling accumulation is needed before sufficient warm accumulation
breaks endodormancy in spring. Low temperatures or insufficient warm accumulation causes ecodormancy in spring for those fully chilled buds.
Extreme high temperatures in summer can result in ecodormancy, during which plant growth is temporarily arrested.
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or down in apple plantlets, the flower inhibition imposed by

juvenility is erased, allowing for flowering in re-juvenilized shoots

as quickly as a few months, instead of the usual 3-6 years (Kotoda

et al., 2006; Charrier et al., 2019). However, it is not yet clear how

the miR156-SPL pathway interacts with TFL1.
2.2 The roles of CONSTANS- and
CONSTANS-LIKE genes-FT regulatory
framework in flower induction in fruit trees

Photoperiod, notably the duration of daylight, constitutes a

pivotal environmental cue orchestrating plant flowering. This

process elucidates the photoperiod pathway, wherein the CO gene

plays a crucial role in transducing light signals to regulate FT

expression (Samach et al., 2000; Kinoshita and Richter, 2020).

While the CO-FT module has been unequivocally demonstrated

in numerous annual plants, suggesting its theoretical conservation

across all species (Putterill et al., 1995; Yano et al., 2000; Griffiths

et al., 2003; Kim et al., 2008; Samach, 2012; Song et al., 2012;
Frontiers in Plant Science 04
Lymperopoulos et al., 2018; Bao et al., 2020), the centrality of COLs

(CO-LIKE genes) in the orchestration of flowering time remains a

subject of contention. This is attributed in part to the intricate

diversity in characterizing the COL gene family (Wong et al., 2014).

Ectopic expression analyses of peach CO in Arabidopsis have

indirectly supported the conservation of the CO-FT module in

trees, hinting at a broader applicability (Böhlenius et al., 2006;

Zhang et al., 2015b). In the case of apple, distinctive expression

patterns of apple COLs in comparison to Arabidopsis genes suggest

a divergent CO-FT module (Jeong et al., 1999). Expression studies

have brought to light varying facets: grape CO linked to flowering

initiation and COL1 associated with dormancy (Almada et al.,

2009); six pear (Pyrus bretschneideri) COLs, out of a total of 15,

showed circadian clock and photoperiod-regulated expression

(Wang et al., 2017); and Mango (Mangifera indica L.) CO and

COLs implicated in photoperiod-mediated flowering, with CO-FT

conservativity warranting further clarification (Liu et al., 2020a; Liu

et al., 2022). Similar investigations have extended to bamboo

(Phyllostachys violascens), poplar (Populus trichocarpa), and

Rabbiteye blueberries (Vaccinium virgatum Aiton), demonstrating
FIGURE 2

Interactions among key flowering pathway genes in chilling-dependent woody plants. In this gene network, FT plays an essential role in floral
initiation and formation. SOC1 has a central role in floral activation by interacting with other MADS box genes. GA affects both floral initiation and
floral activation. Other hormones and sucrose have impact on floral initiation or floral activation. Solid lines show relationships revealed in
Arabidopsis. Dot lines shows relationships found in woody plants. SD, short day; GA, gibberellin; Suc, sucrose; CK, cytokinin; ABA, abscisic acid; IAA,
Indole-3-acetic acid.
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their roles in photoperiod-controlled flowering through expression

patterns or Arabidopsis ectopic expression (Xiao et al., 2018; Li

et al., 2020; Omori et al., 2022).

However, the conclusive validation of the central role of the

CO-FT module in woody plants awaits direct evidence from gain-

of-function (e.g., overexpression) or loss-of-function (e.g., gene

silencing/knockout) studies. The intricate multifunctional roles of

the COLs family have added layers of complexity to their functional

scrutiny. While the comprehensive understanding remains elusive,

the CO-FT involvement in flowering function has yet to be ruled

out. Concurrently, the interplay between CO expression and light in

Arabidopsis reveals the intricate dance of phytochrome-

phytohormone interactions in regulating flowering time and

broader aspects of plant growth and development (Fornara et al.,

2010; Lymperopoulos et al., 2018). The regulatory role of DELLAs

in the GA pathway as a negative regulator of CO expression, along

with the indirect influences of abscisic acid (ABA) and Jasmonate,

further accentuates the intricate tapestry of these regulatory

networks (Davis, 2009; Tiwari et al., 2010; Xu et al., 2016a; Bao

et al., 2020; Izawa, 2021; Serrano-Bueno et al., 2021). Flower

initiation in apple, peach, and other trees occurs in summer or

late summer, suggesting that unlike in Arabidopsis, photoperiod

signals may not play a role in flower induction. Instead, other

endogenous signals such as physiological state, hormone

homeostasis, or nutrient balance (e.g., photosynthetic output)

might be influencing flower formation. As a result, the CO-FT

module could gain new functions and interact with these

endogenous signals in fruit trees to control floral initiation.
2.3 The opposite floral regulatory roles of
GA-DELLA pathway in annuals and woody
fruit trees

In Arabidopsis, phytohormones known as GAs play substantial

roles in various aspects of plant growth and development, spanning

processes such as seed germination, elongation growth, and the

regulation of flowering time (Michniewicz and Lang, 1962;

Yamauchi et al., 2004; Willige et al., 2007; Yamaguchi et al., 2014;

Ni et al., 2015). This influence is often mediated through intricate

interactions with multiple developmental pathways, facilitated by the

DELLA domain which functions as a receiver domain for activated

GA receptors (Yamauchi et al., 2004; Willige et al., 2007; Yamaguchi

et al., 2014; Ni et al., 2015). The impact of GA on flowering time,

whether promoting or inhibiting, hinges on the specific plant species

and developmental stages at play (Koshita et al., 1999; Goldberg-

Moeller et al., 2013; Pearce et al., 2013; Izawa, 2021). Broadly speaking,

GAs tend to exert flowering promotion in long-day and biennial

plants, while adopting an inhibitory role in other plant categories,

encompassing fruit trees such as citrus (Citrus reticulata Blanco ×

Citrus templeHort. ex Y. Tanaka) and grape (Boss and Thomas, 2002;

Goldberg-Moeller et al., 2013; Li-Mallet et al., 2016; Zhang et al.,

2019). Nonetheless, this species- and genotype-dependent function of

GA in the intricate relationship of flowering introduces a level of

uncertainty and complexity, thereby casting a degree of doubt upon

GAs as strong candidates for the role of florigen. This sentiment
Frontiers in Plant Science 05
persists despite findings in the grass species Lolium temulentum,

where specific GAs (GA5 and GA6) emerge as an alternative source

of florigenic signal distinct from FT, another floral signal originating

from leaves (King and Evans, 2003; King et al., 2006).

However, the roles of GAs in regulation of floral formation in

perennial flowering species appears to be quite different from that in

annual species such as Arabidopsis. GA is thought to be inhibitory

to flowering in perennials (Khan et al., 2014), as exemplified by the

fact that exogenous applications of GA in citrus, apple and

grapevine have been shown to inhibit flower production (Mullins,

1968; Srinivasan and Mullins, 1978; Zhu et al., 2008; Guo et al.,

2018). This suggests that GA-generated/stimulated signals are

rewired to distinct transcriptional pathways in perennials and

annuals, resulting in opposite regulatory outputs. This finding is

supported by the gain-of-function mutation of DELLAs, a main

target of GA, in annual Arabidopsis and perennial grape, which led

to repression and promotion of flowering, respectively (Peng and

Harberd, 1997; Dill and Sun, 2001; Silverstone et al., 2001; Fleck and

Harberd, 2002; Boss et al., 2006). Thus, DELLAs may be rewiring

the same GA signals to transcriptional circuits or modules that have

opposing functions, or targeting different factors that regulate

flowering, resulting in contrasting flowering phenotypes.
2.4 Chilling-driven floral development in
deciduous fruit trees

Within Arabidopsis, a collection of seven flowering-promoting

genes situated within the autonomous pathway assumes a

counteractive role against the MADS box gene FLC, which stands

as a pivotal arbiter offlowering time within the vernalization pathway

(Michaels and Amasino, 1999; Simpson, 2004; Michaels, 2009).

Functioning as a negative regulator, FLC exerts control over

flowering by suppressing the expression of FT and SOC1. The

phenomenon of vernalization, characterized by prolonged cold

exposure, effectively suppresses FLC expression, thus paving the

way for the initiation of flowering. The involvement of SHORT

VEGETATIVE PHASE (SVP) in this process emerges through its

interaction with FLC, mirroring the function of FLC in response to

vernalization by curbing GA biosynthesis (Gregis et al., 2006; Andres

et al., 2014). Similarly, the vernalization pathway of wheat contains

VERNALIZATION 2 (VRN2), a zinc finger protein that parallels FLC

in its role within the wheat vernalization pathway. In this context,

VRN1 and VRN3 function as counterparts to FT and the MADS box

geneAP1, respectively (Gendall et al., 2001; Yan et al., 2003; Yan et al.,

2004; Yan et al., 2006; Woods et al., 2016). It is of note that cereals

harbor genes akin to FLC, although their functionalities largely

remain enigmatic (Kennedy and Geuten, 2020). Collectively, this

FLC-regulated vernalization pathway is generally presumed to be

conserved in certain plant species, exemplified by Arabidopsis, while

displaying evolutionary divergence in others, as seen in the case of

cereals (Sheldon et al., 2000; Tadege et al., 2001; Alexandre and

Hennig, 2008; Kennedy and Geuten, 2020).

The concept of “Chilling Requirement” (CR), in contrast to

vernalization for transition of vegetative to inflorescence meristem

in annual plants, elucidates the necessity for an adequate
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accumulation of chilling hours, pivotal for breaking dormancy and

fostering the flowering process within specific woody plant species

(Chouard, 1960; Jewaria et al., 2021). In terms of functionality, the

CR-mediated flowering pathway in woody plants mirrors the

vernalization pathway observed in annual plants (Brunner et al.,

2014). The CR in fruit trees and vernalization in annuals and bi-

annuals have different impact on flower regulation. Vernalization is

required for transition of vegetative to inflorescence meristem while

the CR is mostly for regulation of floral bud development rather

initiation or formation. Only grape is exception in which conversion

of vegetative anagens to inflorescences requires chilling or chilling

promotes this conversion. In this sense. chilling acts as a bioregulator

and is obligatory for floral development as exemplified by that warm

temperature represses the floral development in dormant floral buds

but chilling promotes it. As of present, the CR pathways involving

FLC or VRN2 have not been definitively substantiated through both

forward and reverse genetics methodologies (Table 1). However,

insights from transcriptome analyses have unveiled the existence of

FLC-like orVRN-like genes across numerous woody plants, including

apple, grape, blueberry (Vaccinium corymbosum L.), and kiwifruit

(Actinidia chinensis) (Diaz-Riquelme et al., 2009; Diaz-Riquelme
Frontiers in Plant Science 06
et al., 2014; Varkonyi-Gasic et al., 2014; Porto et al., 2015; Kumar

et al., 2016; Song and Chen, 2018b). Employing a forward genetics

approach, the discovery of six interconnected Dormancy-Associated

MADS-Box genes (DAMs) emerged as a hallmark of the CR pathway

in the evergrowing mutant of peach. Among these, DAM5 and

DAM6 were found to act as repressors of bud break, while DAM4

demonstrated pronounced chilling-induced repressor activity,

particularly evident at the level of epigenetic regulation (Bielenberg

et al., 2008; Jimenez et al., 2009; Li et al., 2009; Jimenez et al., 2010;

Wells et al., 2015; Zhu et al., 2020a; Voogd et al., 2022). These DAMs

stand as potential analogs to FLC or VRN2, possibly occupying

central roles within the CR pathway (Falavigna et al., 2014;

Falavigna et al., 2018; Falavigna et al., 2022). Nonetheless, the

deficiency of reverse genetics evidence to confirm the functional

role ofDAMs in peaches stems from technical challenges arising from

the absence of an efficient peach transformation system for

conducting functional gene analysis. Moreover, the striking

sequence similarities between DAMs, SVPs, and AGAMOUS-LIKE

24 (AGL24) of Arabidopsis, as well as their widespread presence in

various woody plants (Table 1), adds to the intrigue and complexity

of their roles.
TABLE 1 Functional analyses of key flowering pathway genes in woody plants.

Plant Gene Expressiona Function Reference

Apple (Malus ×
domestica Borkh.)

MdAP1 (MdMADS5) EX Promotes Arabidopsis flowering (Kotoda
et al., 2002)

Apple CONSTANS (CO)-like
(COL), MdCOL1
and MdCOL2

EA Apple CO-like genes are significantly different from the
Arabidopsis genes.

(Jeong
et al., 1999)

Apple MdDAMb and MdSVPa OX Delays bud break. SVP genes might also play a role in floral
meristem identity.

(Wu
et al., 2017a)

Apple Three DAMs and
two SVPs

KD Precocious flowering but normal flower morphology, fertility and fruit
development were observed.

(Wu
et al., 2021)

Apple MdSVPa, MdSVPb, and
MdDAM-like genes

EA MdSVPa and MdSVPb but not MdDAM-like genes complement the
early-flowering phenotype of Arabidopsis svp-41

(da Silveira
Falavigna
et al., 2021)

Apple MdDAMa and MdDAMc EA (qRT-PCR) MdDAMa and MdDAMc were correlated with the period
of endodormancy.

(Mimida
et al., 2015)

Apple MdFLC1a, MdFLC1b,
and MdFLC1c (MdFLC3)

EX MdFLC3 functions as a floral repressor in Arabidopsis. (Kagaya
et al., 2020)

Apple MdFT1 and MdFT2 MdFT1-OX Precocious flowering in apple (Kotoda
et al., 2010)

Apple MdFT1 EX Promotes flowering in Arabidopsis and poplar (Trankner
et al., 2010)

Apple MdLFY OX The use of LFY transgenic apple plants for crosses does not seem to
be efficient for accelerating breeding cycles.

(Wada et al.,
2002;
Flachowsky
et al., 2010)

Apple MdSOC1 EA MdSOC1a and MdSOC1b is compatible with the formation of MADS
complexes containing MdSOC1a during endodormancy and
ecodormancy, and containing MdSOC1b during endodormancy.

(Falavigna
et al., 2022)

Apple MdTFL1 KD
EX

Promotes flowering in apple
Delays flowering in Arabidopsis

(Kotoda et al.,
2006)

(Continued)
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TABLE 1 Continued

Plant Gene Expressiona Function Reference

KD
KD
KD

Promotes flowering in apple
Delays flowering in Arabidopsis
Promotes tobacco flowering

(Mimida et al.,
2009)
(Flachowsky
et al., 2012)
(Zuo et al.,
2021)
(Do et al., 2022)

Japanese apricot
(Prunus mume)

PmDAM EX PmDAM6 shows growth inhibitory functions in transgenic poplar. (Sasaki
et al., 2011)

Bamboo
(Phyllostachys violascens)

PvCO1 EX Delays flowering in Arabidopsis (Xiao
et al., 2018)

Black cherry (Prunus
serotina Ehrh.)

PsTFL1 OX Delays flowering (Wang and
Pijut, 2013)

Blueberry (Vaccinium
corymbosum L.)

VcFT OX Precocious flowering (Song
et al., 2013b)

Blueberry VcSOC1 EX Promotes flowering in tobacco (Song and
Chen, 2018a)

Blueberry VcTFL1 KO Promotes flowering (Omori
et al., 2021)

Carrizo citrange (Citrus
sinensis L. Osbeck ×
Poncirus trifoliata
L. Raf.)

AtAP1 EX Promotes citrus flowering (Pena
et al., 2001)

Citrus (Citrus sinensis L.
Osbeck ‘Washington’.)

CsAP1 and CsLFY EX Early-flowering in Arabidopsis (Pena et al.,
2001; Pillitteri
et al., 2004)

Carrizo citrange CsFT OX Early flowering, transported signal through transgrafting (Soares et al.,
2020; Sinn
et al., 2021)

Citrus (Citrus sinensis) CsSOC1-like EX Shortens the time taken to flower in the Arabidopsis wild-type
ecotypes Columbia and C24

(Tan and
Swain, 2007)

Grape (Vitis vinifera L.) VvFT OX Overexpression of VvFT in somatic grapevine embryos repressed the
expression of VvDAM3-SVP and VvDAM4-SVP.

(Vergara
et al., 2021)

Grape (Vitis vinifera L.) VvFT,
VvSOC1 (VvMADS8)

EX Hastens flowering in Arabidopsis (Sreekantan and
Thomas, 2006)

Grape (Vitis labruscana
Bailey ×V. vinifera L.)

VvSVP EX Abnormal flower morphology and varying degrees of delayed
flowering in Arabidopsis

(Dong
et al., 2022)

Grape (Vitis vinifera L.) VvTFL1 EX Delays flowering in tobacco and Arabidopsis (Boss
et al., 2006)

Grape (Vitis vinifera L.) VvCO and VvCOL1 EA VvCO expression in latent buds is in agreement with a function
during flowering induction.

(Almada
et al., 2009)

Kiwifruit
(Actinidia chinensis)

AcFLC KO AcFLCL promotes flowering. (Voogd
et al., 2022)

Kiwifruit AcFT EX and OX Induces early flowering in transgenic Arabidopsis. OX results in in
vitro flowering but the plants are not viable.

(Moss
et al., 2018)

Kiwifruit AcSOC1 (9) EX Promotes flowering in Arabidopsis (Voogd
et al., 2015)

Kiwifruit AcSVP3 OX No effect on vegetative growth, dormancy, or flowering time (Wu
et al., 2014)

Kiwifruit AcTFL1 KO Promotes flowering (Varkonyi-Gasic
et al., 2019)

(Continued)
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TABLE 1 Continued

Plant Gene Expressiona Function Reference

Loquat (Eriobotrya
japonica Lindl.)

EjAP1 EX EjAP1 can partially complement the ap1-1 mutant of Arabidopsis. (Liu et al., 2011;
Liu et al., 2013b)

Loquat EjLFY EX Early-flowering in Arabidopsis (Liu et al., 2011)

Loquat EjSOC1 EX Promotes flowering in Arabidopsis (Jiang
et al., 2019c)

Loquat EjSVP EX Overexpression of EjSVP2 affected the formation of Arabidopsis
thaliana flower organs.

(Jiang
et al., 2019b)

Loquat EjTFL1 EX Delays flowering in Arabidopsis (Jiang et al.,
2019a; Jiang
et al., 2020)

Mango (Mangifera
indica L.)

MiCOL and MiCO EX Delays flowering in Arabidopsis (Liu et al.,
2020a; Liu
et al., 2022)

Peach (Prunus persica) PpCO EX Restores the late flowering phenotype of the Arabidopsis co-2 mutant (Zhang
et al., 2015b)

Peach PpDAM EA Chilling downregulates DAM1 and DAM3-6 in dormant floral buds. (Zhu
et al., 2020a)

Peach PpDAM EA DAM3, DAM5 and DAM6 were winter expressed. The expression
patterns of DAM5 and DAM6 are consistent with a role as
quantitative repressors of bud break.

(Jimenez
et al., 2010)

Peach PpFT EX Promotes flowering in Arabidopsis (Zhang
et al., 2015b)

Peach PpTFL1 EX Delays flowering in Arabidopsis (Chen
et al., 2013)

Pear (Pyrus
pyrifolia Nakai)

PypAP1 EX Early-flowering in Arabidopsis (Liu
et al., 2013a)

Pear
(Pyrus bretschneideri)

PbCOL EA Six PbCOLs were found to be regulated by both circadian clock
and photoperiod.

(Wang
et al., 2017)

Pear (Pyrus
pyrifolia Nakai)

PypDAM KD Increases bud break rate (Gao
et al., 2021)

Pear (Pyrus
pyrifolia Nakai)

PypDAM1 EA PpDAM1 increases in endodormancy. (Ubi et al., 2010;
Tuan
et al., 2017)

Pear (Pyrus communis L.) PycFT2 EX Promotes flowering in tobacco but not in apple (Freiman
et al., 2015)

Pear (Pyrus communis L.) (Betula pendula)
APETALA1/FRUITFULL
MADS-box
gene BpMADS4

EX Promotes flowering (Tomes
et al., 2023)

Pear
(Pyrus bretschneideri)

PybSOC1 EX Leads to early flowering phenotype in Arabidopsis (Liu
et al., 2020b)

Pear (Pyrus
pyrifolia Nakai)

PypTFL1 EA PpTFL1 is involved in floral induction. (Bai et al., 2017)

European plum (Prunus
domestica L.)

PdoDAM1-6 EA PdoDAM3 & 4 are of a little difference from the others. (Quesada-Traver
et al., 2020)

European plum Poplar FT1 isolated from
Populus trichocarpa

EX Promotes flowering in plum (Srinivasan
et al., 2012)

Chinese plum (Prunus
salicina Lindl.)

PsDAM1-6 EA PsDAM6 expression was repressed by chilling treatment (Fang
et al., 2022)

Poplar
(Populus trichocarpa)

PtFT1 EX
PtFT1

Promotes early flowering in Arabidopsis
Early flowering

(Klocko
et al., 2016)

(Continued)
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Emerging as pivotal contenders within the CR pathway, both

DAMs and FLC-like genes have extensively been studied across

various significant woody fruit crops through techniques such as

expression analysis, ectopic expression, overexpression, gene

silencing, and gene knockout (Table 1). These comprehensive

investigations have revealed several key insights:
Fron
1) The diversity and prevalence of DAMs and FLC-like genes

present in woody plants.

2) Their integral involvement in flowering orchestrated by

chilling exposure, while also revealing the nuanced role

these genes play, often dependent on the specific species

and genotype.

3) Contrary to the well-defined centrality of FLC in

Arabidopsis or VRN2 in cereals within their respective

vernalization pathways, no singular DAM or FLC-like
tiers in Plant Science 09
gene in woody fruit crops appears to assume a universally

conserved and central role in the CR pathway.
In fact, for all plant species requiring either vernalization or

chilling, the pivotal factor in regulating flowering time is not

individual genes like FLC in Arabidopsis, VRN1 in cereals, or

DAMs (SVPs or AGL24), but rather the entire MADS-box

gene family.
3 FT-dominated floral induction and
SOC1-centered floral activation in
deciduous woody plants

As elucidated earlier, the five well-established pathways in

Arabidopsis—namely age, photoperiod, GA, autonomous, and
TABLE 1 Continued

Plant Gene Expressiona Function Reference

inducible
expression

Poplar
(Populus trichocarpa)

PtLFY OX and EX
KD

Accelerates flowering in Arabidopsis. One of the many tested
transgenic lines of Populus flowered precociously.
Several leaf morphology and productivity traits were statistically and
often substantially different in sterile vs. normal flowering RNAi-
LFY trees.

(Rottmann
et al., 2000)
(Klocko
et al., 2021)

Hybrid poplar (Populus
tremula × alba)

SOC1 (MADS12 OX Promotes bud break in ecodormant poplars (Gómez-Soto
et al., 2021)

Poplar (Populus
trichocarpa)
Hybrid poplar (Populus
tremula × alba)
Hybrid poplar (P.
tremula x tremuloides)

SVP-like from
Populus trichocarpa

OX Delay the onset of flowering (Goralogia
et al., 2021)

Poplars (Populus spp.) PopCEN1 (TFL1) KD None of the transgenics exhibited flowering or other obvious
phenotypic effects

(Mohamed
et al., 2010)

Rose (Rosa chinensis) RcAP1 EX Early-flowering in Arabidopsis (Han
et al., 2019)

Rose RoKSN, a
TFL1 homologue

EX Leads to the absence of flowering in Arabidopsis (Randoux
et al., 2014)

Sweet cherry
(Prunus avium)

PaAP1 EX An early flowering in Arabidopsis (Wang
et al., 2013)

Sweet cherry PavDAM1
and PavDAM5

EX Results in plants with abnormal flower and seed development
in Arabidopsis

(Wang
et al., 2020)

Sweet cherry PavDAM EX Results in plants with abnormal flower and seed development
in Arabidopsis

(Branchereau
et al., 2022)

Sweet cherry PavMADS1 and
PavMADS2 (DAM)

KD Silencing of PavMADS1 and PavMADS2 coincided with an increase in
FT expression during dormancy

(Rothkegel
et al., 2017)

Sweet cherry PavFT EX Promotes flowering in Arabidopsis (Yarur
et al., 2016)

Sweet cherry PavSVP and PavSVPL EX Delays flowering and floral defects phenotype in Arabidopsis (Wang
et al., 2021)
a Overexpression (OX): constitutive expression of a gene from the same species/genotype. Ectopic expression (EX): constitutive expression of gene from different species. Expression analysis
(EA): expression analysis by RNA sequencing or quantitative reverse transcript PCR (qRT-PCR). Gene knockdown (KD): repression of gene expression using RNAi or antisense expression. Gene
knockout (KO): completely inhibit gene expression by removing the gene using gene editing.
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vernalization—stand as the benchmark for unraveling flowering

mechanisms in diverse plant species. The wealth of insights

garnered through analyses of flowering pathways in myriad other

plants has yielded a plethora of evidence. This evidence aids in

discerning both conserved and nonconserved genes and intricate

networks governing plant flowering. This accumulation of

knowledge paves the way for endeavors aimed at manipulating

individual gene(s) to regulate flowering time and enhance yields.

Notably, it stands to reason that plants, including woody varieties,

have, to varying degrees, evolved distinct flowering pathways.

Drawing from the available literature, it becomes evident that at

the core of floral induction resides FT-centered processes, while

SOC1-centered mechanisms prevail in orchestrating floral

activation across a wide spectrum of plants, if not universally

so (Figure 2).
3.1 FT-dominated floral induction

FT acts as a critical integrator, assimilating signals for floral

transition from approximately 10 activators and 30 repressors

largely stemming from photoperiod and vernalization pathways,

thus instigating flowering in Arabidopsis (Kobayashi et al., 1999;

Wigge et al., 2005; Pin and Nilsson, 2012; Kinoshita and Richter,

2020; Liu et al., 2021). It stands prominently poised as a top contender

for the florigen role (Turck et al., 2008; Turnbull, 2011; Pin and

Nilsson, 2012). On the converse, TERMINAL FLOWER 1 (TFL1), a

homolog of FT, exerts an opposing effect within Arabidopsis (Bradley

et al., 1997; Kobayashi et al., 1999). Within the FT/TFL1 gene family,

an assemblage of six members comes into view, encompassing FT,

TWIN SISTER OF FT, TFL1, BROTHER OF FT AND TFL1 (BFT),

MOTHEROF FT AND TFL1 (MFT), and ARABIDOPSIS THALIANA

CENTROADIALIS HOMOLOGUE (ATC) (Yoo et al., 2010; Ryu et al.,

2011; Liu et al., 2016). FT and TFL1 function through direct

interactions with the bZIP transcription factor FD. The constitutive

upregulation of FT or its orthologs (hereafter FT-CX) expression

aligns with a proclivity for flowering promotion. Conversely, the

persistent elevation of TFL1 or its orthologs (hereafter TFL1-CX)

tends to elongate the flowering process. This dualistic phenomenon

has been empirically validated across a range of plant species,

including select woody plants (Table 1). Collectively, mounting

evidence gleaned from ectopic expression and overexpression

studies substantiates the conservation of FT and its orthologs across

diverse plants, underscoring their ubiquitous roles as primary inducers

within the flowering transition (Pin and Nilsson, 2012; Kinoshita and

Richter, 2020; Liu et al., 2021).

The advancement of flowering in woody plants has been

effectively catalyzed through the upregulation of FT-CX, as

illustrated in Table 1. Noteworthy examples in deciduous fruit crops

include investigations related to a blueberry FT gene, denoted as VcFT

(Vc:Vaccinium corymbosum), and a poplar (Populus trichocarpa) FT1

gene (PtFT1) in European plum (Prunus domestica). PtFT1-CX

induced continuous flowering as demonstrated by Srinivasan et al.

(2012). Rigorous exploration has led to findings wherein the

constitutive expression of VcFT (VcFT-CX) leads to a noteworthy
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shift in the flowering paradigm. Specifically, this alteration is

characterized by the partial reversal of chilling requirements and the

induction of early flowering within apical shoot meristems. In

transgenic blueberry, this phenomenon resulted in the formation of

multiple flower buds at each node, diverging from the single bud

occurrence observed in their nontransgenic counterparts (Song et al.,

2013b; Walworth et al., 2016). It is noteworthy, tough, that while

VcFT-CX exerted significant influence, its effects were not fully

comprehensive in substituting the requirement for chilling. Under

conditions devoid of sufficient chilling hours, nearly 50% of flower

buds failed to attain the requisite potential for blooming (Walworth

et al., 2016). Therefore, while VcFT-CX did show phenotypic

outcomes including expedited flowering and heightened floral bud

formation, it remained inadequate in replicating the roles of chilling

requirements intrinsic to blueberry flowering. Notably, the trend of

expedited flowering attributed to the constitutive expression of FT

orthologs and the contrasting delay occasioned by TFL1-CX has been

extensively documented across an expanding array of woody plants.

Despite this, further investigation is necessary to reveal the intricate

involvement of FT in the context of CR-mediated flowering, a domain

ripe for exploration (Table 1).

FT exhibits versatile functionality. Evident from previous

research, the overexpression of FT orthologs in woody plants

such as kiwifruit FT (AcFT) and VcFT-CX resulted in premature

flowering within in vitro transformed shoots. However, this effect

proved to be potentially overwhelming, hampering the shoots from

evolving into viable plants (Moss et al., 2018; Song et al., 2019). The

impact of FT-CX at transcript levels becomes readily apparent

through comprehensive RNA sequencing analysis. Notably,

instances like VcFT-CX provide insight into its extensive impact,

significantly elevating VcFT expression in both leaves and flower

buds; intriguingly, this upregulation was notably absent in roots.

Simultaneously, thousands of differentially expressed genes (DEGs)

attributed to VcFT expression varied across different tissues and

developmental stages, even within the same tissue (Walworth et al.,

2016; Song et al., 2019; Song et al., 2023).

When scrutinizing major blueberry flowering pathway genes

including VcSOC1, VcAP1, VcFUL, VcLFY, VcSPLs, and VcSVP

across three distinct tissues, intriguing patterns emerge:
1) In the apical shoot meristems where VcFT-CX induces early

flowering, its influence extends to the upregulation of

VcSOC1, VcAP1, VcFUL, VcLFY, and VcSPLs (Walworth

et al., 2016).

2) In the mature leaves along the one-year-old shoot, where

VcFT-CX results in the emergence of non-blooming floral

buds, VcAP1 and VcFUL experience upregulation, while

VcSOC1 and VcSVP are repressed (Walworth et al., 2016).

3) Within nonchilled VcFT-CX buds, VcLFY expression is

elevated, whereas VcFUL, VcSOC1, and VcSVP experience

repression (Walworth et al., 2016).

4) When considering VcFT-CX influence in roots, VcFUL and

VcSPLs encounter increased expression, while VcSOC1 and

VcSVP are repressed (Song et al., 2019).
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These intricate observations collectively suggest that VcFT-CX

induces signals for floral bud formation, at least partly through the

upregulation of VcAP1 and VcFUL in leaves. Additionally, the

expressions of VcSOC1 and VcSVP appear pivotal in determining

the timing of both developing and mature floral bud break. The

promotion of flowering by AP1 in various woody plants supports

these findings (see Table 1). Counter to the flowering promotion led

by VcFT-CX, the functional opposite, VcTFL1, triggers flowering

delay (Omori et al., 2020; Omori et al., 2021; Omori et al., 2022).

Intriguingly, VcFT-CX resulted in a reduction in VcTFL1 expression

within young leaves (Walworth et al., 2016). Drawing parallels from

Arabidopsis, where FT competes with TFLs for FD binding (Hanano

and Goto, 2011; Zhu et al., 2020b). VcFT-CX led to a surprising

decrease in VcFD expression within nonchilled flower buds. This

observation underscores the likelihood of an interaction between

VcFT and VcFD within floral buds, indicating their interplay.

The hereditary promotion offlowering through FT-CX has been

substantiated within both self- and cross-pollinated Eucalyptus

seedlings (Klocko et al., 2016). Conversely, in poplar, the

constitutive expression of LFY, AP1, and CO resulted in marginal

to negligible advancements in early flowering, a contrast to the

robust effect observed with FT-CX (Rottmann et al., 2000; Zhang

et al., 2010; Klocko et al., 2016). Similarly, the hereditary

transmission of VcFT-CX translated to a remarkable reduction in

flowering time for cross-pollinated, transgenic blueberry seedlings,

swiftly transitioning them to bloom within a few months, in

comparison to the 2-3 years characteristic of their nontransgenic

counterparts (Our unpublished data). Clearly, FT-CX emerges as a

potent factor in accelerating the transition from the juvenile phase.

FT has consistently remained a prominent candidate in the

pursuit of identifying the elusive florigen. FT originates within

leaves and subsequently moves to the meristems (Turck et al., 2008;

Fornara et al., 2010; Krzymuski et al., 2015). Intriguing insights

have indicated from transgrafting experiments involving FT-CX

materials, underscoring the role of FT-CX in signaling the onset of

flowering. In several instances, the FT-CX generated within

transgenic leaves, functioning as either a direct or an indirect

florigenic signal, exhibited the remarkable capacity to promote

flowering in nontransgenic scions through long-distance

transportation (Ye et al., 2014; Song et al., 2019; Wu et al., 2022).

This phenomenon diverges distinctly from parallel transgrafting

studies where FT-CX produced in transgenic roots and stems (in

the absence of transgenic leaves) failed to incite flowering in

nontransgenic scions (Zhang et al., 2010; Srinivasan et al., 2012;

Wenzel et al., 2013; Bull et al., 2017).

In transgrafted blueberry where the transgenic leaves were

retained, the influence of VcFT-CX within the transgenic

rootstock precipitated floral bud formation within the shoot tips

of nontransgenic scions. However, VcFT exhibited negligible

alterations, while a cluster of phytohormone genes in

nontransgenic scions showed varying expressions (Song et al.,

2019). Collectively, the evidence demonstrates the status of FT as

a universal catalyst for the initiation of floral bud formation and the

hastening flowering process. To gain a more comprehensive

understanding of the long-range florigenic signals originating

from FT or FT-CX, whether in the form of FT protein, FT
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mRNA, or other derivatives such as phytohormones, further

investigations are needed to unravel this intriguing aspect (Wilkie

et al., 2008; Izawa, 2021).
3.2 SOC1-centered floral activation

SOC1 stands as a central integrator within the flowering

pathway (see review by Lee and Lee, 2010). Evidence across

various plant species highlights SOC1’s role as a ubiquitous

accelerator of flowering, underscoring its significance (Table 1)

(Lee et al., 2004; Lee et al., 2008; Seo et al., 2009; Alter et al.,

2016; Han et al., 2021; Song et al., 2021). In Arabidopsis, SOC1 takes

on the role of a coordinator, integrating signals from diverse

pathways. These connections include the aging pathway,

mediated by SPLs, the vernalization/autonomous pathway

through FLC, the photoperiod pathway involving FT, and the GA

pathway, facilitated by GA (Figure 2). Notably, SOC1’s influence

extends to the activation of the LFY gene, a key step in establishing

the identity of floral meristems or organs (Lee and Lee, 2010).

SOC1, alongside FLC, AP1, AGL24, SVP, FUL, and CAL,

represents a cohort of MADS box genes encoding MIKCc type

proteins characterized by four conserved domains: MADS (M-),

intervening (I-), Keratin-like (K-), and C-terminal (C-) (Gramzow

and Theissen, 2010; Gramzow and Theissen, 2015). This array of

MADS box genes assumes dual roles, vital both in the context of the

ABC model of floral development and in governing the temporal

aspects of flowering (Amasino, 2010; Heijmans et al., 2012;

Smaczniak et al., 2012; Su et al., 2018). Conventionally, AP1 and

SOC1 have emerged as accelerators of flowering across diverse plant

species. Conversely, FLC serves as a repressor, exerting repression on

the expression of both FT and SOC1 in Arabidopsis. Within

Arabidopsis’ vernalization pathway, the antagonistic action of

negative regulators, FLC and SVP, counters the positive regulators

SOC1 and AGL24 (Fornara et al., 2010; Lee and Lee, 2010). The

investigations on CR-mediated flowering woody plant flowering have

identified five groups of MADS box genes, specifically the orthologs

of FLC, SOC1, SVP, AGL24, and DAMs (Table 1). Amidst these gene

clusters, one consensus emerges: the SOC1 group, a positive regulator,

can steer the course of floral initiation and hasten flowering. Yet, the

roles of the remaining four gene groups exhibit divergence across

diverse plant species. For instance, while FLC-like genes have been

identified, the extent of their conserved functions in woody plants

remains largely unknown (Table 1). Notably, apple’s FLC-like genes

do not mirror FLC’s functions precisely (Porto et al., 2015; Nishiyama

et al., 2021). Divergent from expectations, a kiwifruit FLC-like variant

expedites flowering, in contrast to FLC’s recognized role in delaying it

(Voogd et al., 2022). Similarly, the constitutive expression of an apple

FLC3 variant accelerates flowering in blueberry (Zong et al., 2019;

Kagaya et al., 2020).

In woody plants, the CR is orchestrated by MADS box genes

DAMs, AGL24-like genes, and SVP-like genes (SVLs), which are

prominent genes akin to FLC functions albeit the scarcity of

reverse genetic substantiation (Zhu et al., 2020a; da Silveira

Falavigna et al., 2021; Jewaria et al., 2021). These CR-associated

MADS box genes act upstream of SOC1 orthologs and can steer the
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course of floral development. With chilling accumulation, SOC1

orthologs are activated. For instance, the grape, blueberry, and

apple exhibit an increase in expression of SOC1 orthologs in

response to the accrual of chilling hours (Hattasch et al., 2008;

Song and Chen, 2018b; Kamal et al., 2019). In poplar (Populus

tremula × alba), overexpression of a SOC1-like variant leads to bud

break (Gómez-Soto et al., 2021; Goralogia et al., 2021). In kiwifruit

(Actinidia delicious), SOC1-like genes potentially influence the

duration of dormancy, although their role in the transition to

flowering remains inconclusive (Voogd et al., 2015). Genetic

investigations have shown a linkage between alleles of SOC1

orthologs and the chilling requisites in apricot (Prunus armeniaca

L.) and peach genotypes, underlining a pronounced correlation

(Trainin et al., 2013; Halasz et al., 2021). Collectively, it is the

expression of SOC1 orthologs that governs the poised readiness for

floral bud break and activation subsequent to fulfilling the chilling

requirement in woody plants.

In Arabidopsis, the decreased expression of SVP during

vernalization sets in motion the activation of SOC1 (or SOC1-like

gene), thereby initiating the onset of flowering. However, in woody

plants, the involvement of SVP homologs and SVLs in the flowering

process exhibits a spectrum of variance contingent upon the

particular SVP homologs in play. To illustrate, the SVP homologs

and SVLs in kiwifruit, trifoliate orange (Poncirus trifoliata L. Raf.),

apple, and sweet cherry (Prunus avium L.) play the role of

suppressors, effectively suppressing budbreak and the flowering

cycle (Gregis et al., 2006; Li et al., 2010; Wu et al., 2017a; Wu

et al., 2017b; Wang et al., 2021). Meanwhile, in grapevines, the SVP

homologs unveil a degree of inconsistency, alternating between

acting as promoters or inhibitors of flowering (Diaz-Riquelme et al.,

2012; Li-Mallet et al., 2016; Arro et al., 2019; Kamal et al., 2019;

Dong et al., 2022).
4 Flowering mechanism: a case study
in blueberry

The highbush blueberry (2n = 4x = 48), a prominent cultivated

member of the Vaccinium fruit crop family, has a rather substantial

chilling requirement, typically surpassing 800 chilling units, thatmust be

met to initiate dormancy release during spring (Song et al., 2011; Edger

et al., 2022). Over the course of past decades, extensive investigations

have been carried out to reveal the flowering mechanism (Song et al.,

2023). A summary of these blueberry studies can serve as an illustrative

example, providing insights into the network of factors that underlie

flowering mechanisms in woody plants.
4.1 VcFT is a major floral initiator

The impact of VcFT-CX is evident across different plant species. In

tobacco (Nicotiana tabacum) and petunia (Petunia x hybrid), VcFT-CX

not only induced early flowering but also led to plant dwarfing (Song

et al., 2013b). Similarly, under nonchilling conditions, the northern

highbush blueberry cultivar Aurora exhibited precocious flowering as a
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result of VcFT-CX (Song et al., 2013b). At the transcript level, VcFT-CX

triggered a substantial increase in VcFT expression in leaves and

nonchilled floral buds, while its effect on young roots was not

significant (Walworth et al., 2016; Song et al., 2019; Song et al., 2023).

Notably, VcFT-CX displayed distinct effects on various tissues and

developmental stages (Walworth et al., 2016; Song et al., 2019; Song

et al., 2023). In young leaves, it upregulated the expressions of VcAP1/

VcFUL, blueberry SEPALLATA (VcSEP),VcLFY,VcSOC1, andVcTFL1,

with no significant changes inVcSVP andVcFD (Figure 3A) (Walworth

et al., 2016). In mature leaves, VcFT-CX enhanced VcAP1/VcFUL and

VcSEP expressions, while repressing VcSOC1 and VcSVP, and it had

minimal impact on VcLFY, VcFD, and VcTFL1 (Figure 3B) (Song et al.,

2023). In nonchilled flower buds, VcFT-CX upregulated VcLFY

expression, downregulated VcSEP, VcSOC1, VcSVP, VcFD, and

VcTFL1, while VcAP1/VcFUL expression remained relatively

unaffected (Figure 3C) (Song et al., 2023). In young roots, VcAP1/

VcFUL expression increased, while VcSOC1 and VcSVP decreased;

VcSEP, VcLFY, VcFD, and VcTFL1 showed no significant changes

(Figure 3D) (Song et al., 2019). Key takeaways from the analysis of

VcFT-CX tissues include: 1) Varied responses of major flowering

pathway genes (e.g., VcSEP3, VcSOC1, and VcSVP) to VcFT-CX

across tissues and developmental stages, with a consistent promotion

of VcLFY and VcAP1/VcFUL expression; 2) Enhanced expressions of

VcAP1/VcFUL andVcSEP in leaf tissues due to VcFT-CX, indicating the

potential role of these genes in floral initiation, while VcFD and VcTFL1

seem less involved in promoting floral initiation; 3) Repression of VcFD

and VcTFL1 expressions in nonchilled floral buds by VcFT-CX; and 4)

Likely pivotal roles ofVcSOC1 andVcSVP in the activation offloral buds

under chilling conditions.

Moreover, as rootstocks, VcFT-CX produced signals in leaves that

were effectively conveyed through transgrafting to nontransgenic

scions (cv. Legacy), yielding a distinctive enhancement in floral bud

formation (Song et al., 2019). Intriguingly, at the transcript level, VcFT-

CX in rootstocks did not trigger differential expression of VcFT, VcFD,

VcTFL1, VcAP1/VcFUL, VcLFY, VcSVP, and VcSEP3 in the grafted

nontransgenic scions. Interestingly, expression of VcSOC1 was

significantly downregulated (Figure 3E). Notably, there is an instance

where none of the identified major flowering pathway genes (e.g.,

VcFT, VcAP1/VcFUL, VcSOC1, and VcLFY) appear to solely account

for the promoted floral bud formation, indicating that an escalated

VcFT expression is not always the sole requirement for initiating

flowering (Song et al., 2019). As for the potential long-distance

florigenic signals inducing from VcFT-CX, their precise nature

remains to be discerned from candidates like VcFT protein/mRNA,

cytokinin, or other hormonal factors (Gao et al., 2016; Walworth et al.,

2016; Song et al., 2019).
4.2 VcSOC1 is a major floral activator

Comparative analyses offloral buds have been conducted for four

genotypes, including a nontransgenic northern highbush variety

Aurora, a VcFT-CX transgenic ‘Aurora’, a nontransgenic southern

highbush variety Legacy, and a transgenic Legacy mutant (Mu1-

Legacy) (Figure 4) (Song and Chen, 2018b; Song and Walworth,
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2018; Song et al., 2023). Among these four comparisons: 1) VcFT

expression demonstrated either negligible differential expression in

nontransgenic cultivars or downregulation in the two transgenic

genotypes, suggesting that VcFT may not a primary target of

chilling accumulation for bud break; 2) Expression of VcLFY,

VcTFL1, and VcFD remained either suppressed or constant post

full chilling; 3) VcAP1/VcFUL expression increased in three

genotypes and decreased in VcFT-CX ‘Aurora’; and 4) VcSOC1

expression was upregulated in three genotypes and exhibited no

significant differential expression in VcFT-CX ‘Aurora’, while VcSVP

expression was elevated in all four genotypes (Figure 4). Collectively,

VcSOC1 and VcSVP played key roles in chilling requirement-

mediated floral activation. Interestingly, in transcriptomic

comparisons between late pink buds and fully chilled stages for two

genotypes, expressions of VcFT, VcFD, VcTFL1, VcAP1/VcFUL,

VcLFY, and VcSOC1 were uniformly repressed in late pink buds

(Figure 4) (Song and Chen, 2018b).

Further evidence supporting VcSOC1 as a significant floral

activator is the fact that the constitutive expression of the K

domain of VcSOC1 (VcSOC1K-CX) led to the flowering of

transgenic ‘Aurora’ plants under nonchilling conditions, a

condition where nontransgenic ‘Aurora’ plants remained unable to

flower (Song and Chen, 2018a). SOC1 is classified as a type-II plant-

specific MIKC protein, characterized by its conserved MADS (M-),

intervening (I), keratin-like (K-), and C-terminal (C-) domains

(Theissen et al., 1996). The K domain is instrumental in facilitating

interactions among various MADS box genes. Remarkably,

VcSOC1K-CX has also demonstrated the ability to accelerate

flowering in tobacco and maize (Song et al., 2013a; Song and Han,
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2021). In blueberry, the promotion of flowering through VcSOC1K-

CX was associated by the increased expression of VcSOC1, which in

turn led to the repression of VcFT, VcFD, VcTFL1, VcAP1/VcFUL,

VcLFY, and VcSVP, offering another piece of evidence that the

elevation of VcFT expression is not always a prerequisite for

flowering promotion in ‘Aurora’ (Figure 3F) (Song and Chen, 2018a).

While the expression of VcSOC1 is indeed crucial for CR-

mediated floral activation in blueberry, it is important to note that

VcSOC1 does not always play an obligatory role in floral bud

activation. An intriguing instance is presented by the Mu1-Legacy

genotype, which carries an overexpressed blueberry DWARF AND

DELAYING FLOWERING 1 gene (VcDDF1), allowing it to flower

under nonchilling conditions, a feat nontransgenic ‘Legacy’ plants

could not achieve (Song and Walworth, 2018). Remarkably, in this

scenario, none of the major genes—VcSOC1, VcFT, VcAP1/VcFUL,

VcLFY, VcSVP, and VcSEP3—displayed discernible differential

expression in both young leaves and floral buds (Figure 5) (Song

and Walworth, 2018; Lin et al., 2019).

As of now, functional FLC-like candidates have not been

definitively identified, despite the presence of orthologues of

many other vernalization pathway genes from Arabidopsis in

blueberry (Walworth et al., 2016). Notably, the intriguing case of

an apple FLC3-like gene stands out, as its constitutive expression

surprisingly promotes flowering instead of causing the expected

delay (Zong et al., 2019). Although there have been studies

examining the effects of chilling accumulation on the expression

of flowering pathway genes, the impact of warm accumulation on

the activation of fully chilled floral buds remains an area yet to be

thoroughly explored. In light of the available literature, it is
A B C

D E F

FIGURE 3

RNA-sequencing data reveals impact of VcFT-CX (A-E) and VcSOC1K-CX (F) on major flowering pathway genes in different tissues.
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apparent that among the genes within the flowering pathway,

VcSOC1 plays a pivotal role as a major floral activator.
4.3 A VcFT/VcSOC1 regulatory module in
blueberry flowering

In general, the expression of FT within leaves is significantly

influenced by light conditions, whereas SOC1 expression is

modulated in response to temperature changes. Notably, VcFT

attains its peak expression in floral buds, while VcSOC1 reaches its
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highest expression level in leaves (Walworth et al., 2016). Recently, a

regulatory framework centered on the ratio of FT-to-SOC1

expression (VcFT/VcSOC1) has been proposed, providing a

valuable lens through which to comprehend the processes of floral

initiation and activation. According to this model, an elevated VcFT/

VcSOC1 ratio in leaves serves to stimulate floral initiation, while

heightened VcSOC1 expression can lead to early flowering. Within

flower buds, the VcFT/VcSOC1 ratios often decline in chilled buds

due to the increasing VcSOC1 expression during chilling

accumulation, whereas emerging flower buds exhibit rising VcFT/

VcSOC1 ratios due to the more rapid decline of VcSOC1 expression
FIGURE 4

Distinctive gene expression patterns observed in the comparisons between fully chilled floral buds (CB) and nonchilled floral buds (NB), as well as
late pink bud (LPB) versus CB, across different genotypes.
FIGURE 5

The identification of differential expression of genes (DEGs) in blueberry mutants indicates that elevated VcFT expression is not always a prerequisite
for achieving precocious or early flowering.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1336892
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2024.1336892
relative to VcFT (Song et al., 2023). This principle is further bolstered

by observations of reduced FT/SOC1 ratios in polar buds during

chilling accumulation, marked by an upsurge in SOC1 expression

alongside neutral FT levels (Gómez-Soto et al., 2021). Nonetheless,

it’s important to acknowledge that thisVcFT/VcSOC1 ratio might not

be universally applicable to all tested blueberry genotypes; for

instance, the altered flowering pattern in the Legacy-mutant1 was

not attributable to major flowering pathway genes (Song and

Walworth, 2018). Collectively, this FT/SOC1 ratio emerges as a

potential determinant of both leaf-based floral initiation and bud-

based floral activation, given that these genes hold pivotal roles as

integrators within the flowering pathway.
4.4 Other regulatory genes for floral
initiation or activation beyond flowering
pathway genes

In addition to the well-defined flowering pathway genes, there

exists a range of genes from other pathways that exert influence over

floral initiation and activation. A notable instance, as discussed earlier,

is the altered floral initiation and activation process observed in Mu1-

Legacy, wherein neither VcFT nor VcSOC1 played a role (Figure 5).

Upon scrutinizing the transcriptomic analysis of blueberry flowering

pathway genes, it becomes evident that numerous genes from

hormone and sugar pathways are intricately linked to floral bud

initiation or activation, whether through direct or indirect means (Gao

et al., 2016; Lin et al., 2019; Song et al., 2019). This underlies the fact

that hormones and sugar pathway genes, in conjunction with the

flowering pathway genes, likely participate in a coordinated manner to

regulate the process of flowering (Izawa, 2021).
5 Conclusion

The well-established genetic framework governing flowering

pathways in Arabidopsis has served as a cornerstone for unraveling

the intricate mechanisms operating in other plants. Woody plants,

however, have developed notably complex flowering pathways

compared to Arabidopsis, although some key flowering pathway genes

maintain largely conserved roles (Table 1, Figure 2). The CO-FTmodule

within the photoperiod pathway, which is crucial in Arabidopsis, appears

to be considerably conserved in woody plants, although the functions of

CO orCOL orthologues in this context warrant further investigation. The

miR156-SPL module of the age pathway exhibits conservation across all
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plant species, notwithstanding the varied roles of SPLs in woody plants.

In the GA pathway, the interactions involving GA and DELLA factors

demand deeper exploration in bothArabidopsis andwoody plants due to

their extensive influence on both floral initiation and activation. The

FLC-mediated vernalization pathway, a central mechanism in

Arabidopsis, exhibits the least conservation in woody plants, where

effective chilling is requisite to initiate flowering. Nonetheless, it’s

noteworthy that MADS-box genes play significant roles in floral

activation. In essence, among the individual flowering pathway genes,

FT and its orthologues serve as pivotal floral initiators, while SOC1 and

its orthologs stand as the principal floral activators. Remarkably, this

pattern remains highly conserved across plant species.
Author contributions

G-qS: Conceptualization, Writing – original draft, Writing –

review & editing. ZL: Writing – review & editing. G-yZ: Writing –

review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Albani, M. C., and Coupland, G. (2010). Comparative analysis of flowering in annual
and perennial plants. Curr. Top. Dev. Biol. 91, 323–348. doi: 10.1016/s0070-2153(10)
91011-9

Alexandre, C. M., and Hennig, L. (2008). FLC or not FLC: the other side of
vernalization. J. Exp. Bot. 59 (6), 1127–1135. doi: 10.1093/jxb/ern070

Almada, R., Cabrera, N., Casaretto, J. A., Ruiz-Lara, S., and Gonzalez Villanueva, E.
(2009). VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during
flower induction and dormancy in grapevine buds. Plant Cell Rep. 28 (8), 1193–1203.
doi: 10.1007/s00299-009-0720-4

Alter, P., Bircheneder, S., Zhou, L. Z., Schluter, U., Gahrtz, M., Sonnewald, U., et al.
(2016). Flowering time-regulated genes in maize include the transcription factor
zmMADS1. Plant Physiol. 172 (1), 389–404. doi: 10.1104/pp.16.00285

Amasino, R. (2010). Seasonal and developmental timing of flowering. Plant J. 61 (6),
1001–1013. doi: 10.1111/j.1365-313X.2010.04148.x
frontiersin.org

https://doi.org/10.1016/s0070-2153(10)91011-9
https://doi.org/10.1016/s0070-2153(10)91011-9
https://doi.org/10.1093/jxb/ern070
https://doi.org/10.1007/s00299-009-0720-4
https://doi.org/10.1104/pp.16.00285
https://doi.org/10.1111/j.1365-313X.2010.04148.x
https://doi.org/10.3389/fpls.2024.1336892
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2024.1336892
Andres, F., and Coupland, G. (2012). The genetic basis of flowering responses to
seasonal cues. Nat. Rev. Genet. 13 (9), 627–639. doi: 10.1038/nrg3291

Andres, F., Porri, A., Torti, S., Mateos, J., Romera-Branchat, M., Garcia-Martinez, J.
L., et al. (2014). SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the
Arabidopsis shoot apex to regulate the floral transition. Proc. Natl. Acad. Sci. United.
States America 111 (26), E2760–E2769. doi: 10.1073/pnas.1409567111

Arora, R., Rowland, L. J., and Tanino, K. (2003). Induction and release of bud
dormancy in woody perennials: a science comes of age. HortScience 38, 11.
doi: 10.21273/HORTSCI.38.5.911

Arro, J., Yang, Y., Song, G.-Q., and Zhong, G.-Y. (2019). RNA-Seq reveals new
DELLA targets and regulation in transgenic GA-insensitive grapevines. BMC Plant
Biol. 19 (1), 80. doi: 10.1186/s12870-019-1675-4

Atkinson, C. J., Brennan, R. M., and Jones, H. G. (2013). Declining chilling and its
impact on temperate perennial crops. Environ. Exp. Bot. 91, 48–62. doi: 10.1016/
j.envexpbot.2013.02.004

Bai, S., Tuan, P. A., Saito, T., Ito, A., Ubi, B. E., Ban, Y., et al. (2017). Repression of
TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia
Nakai) concomitant with change in gene expression of plant hormone-related genes
and transcription factors. J. Exp. Bot. 68 (17), 4899–4914. doi: 10.1093/jxb/erx296

Bao, S. J., Hua, C. M., Shen, L. S., and Yu, H. (2020). New insights into gibberellin
signaling in regulating flowering in Arabidopsis. J. Integr. Plant Biol. 62 (1), 118–131.
doi: 10.1111/jipb.12892

Baurle, I., and Dean, C. (2006). The timing of developmental transitions in plants.
Cell 125 (4), 655–664. doi: 10.1016/j.cell.2006.05.005

Bielenberg, D. G., Wang, Y., Li, Z. G., Zhebentyayeva, T., Fan, S. H., Reighard, G. L.,
et al. (2008). Sequencing and annotation of the evergrowing locus in peach [Prunus
persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate
genes for regulation of terminal bud formation. Tree Genet. Genomes 4 (3), 495–507.
doi: 10.1007/s11295-007-0126-9

Böhlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A. M., Jansson, S.,
Strauss, S. H., et al. (2006). CO/FT regulatory module controls timing of flowering and
seasonal growth cessation in trees. Science 312 (5776), 1040–1043. doi: 10.1126/
science.1126038

Boss, P. K., Sreekantan, L., and Thomas, M. R. (2006). A grapevine TFL1 homologue
can delay flowering and alter floral development when overexpressed in heterologous
species. Funct. Plant Biol. 33 (1), 31–41. doi: 10.1071/fp05191

Boss, P. K., and Thomas, M. R. (2002). Association of dwarfism and floral induction with
a grape ‘green revolution’ mutation. Nature 416 (6883), 847–850. doi: 10.1038/416847a

Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., and Coen, E. (1997).
Inflorescence commitment and architecture in Arabidopsis. Science 275 (5296), 80–
83. doi: 10.1126/science.275.5296.80

Branchereau, C., Quero-Garcia, J., Zaracho-Echague, N. H., Lambelin, L., Fouche,
M., Wenden, B., et al. (2022). New insights into flowering date in Prunus: fine mapping
of a major QTL in sweet cherry. Horticult. Res. 9, uhac042. doi: 10.1093/hr/uhac042
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