
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Salvatore Ceccarelli,
Bioversity International, Italy

REVIEWED BY

Marta Malinowska,
Aarhus University, Denmark
Ram Kumar Basnet,
Rijk Zwaan, Netherlands

*CORRESPONDENCE

Reem Joukhadar

r.joukhadar@sustatability.com

†
PRESENT ADDRESS

Reem Joukhadar,
SuSTATability Statistical Solutions, Melbourne,
VIC, Australia

RECEIVED 13 November 2023

ACCEPTED 23 May 2024
PUBLISHED 24 June 2024

CITATION

Joukhadar R, Li Y, Thistlethwaite R, Forrest KL,
Tibbits JF, Trethowan R and Hayden MJ
(2024) Optimising desired gain indices to
maximise selection response.
Front. Plant Sci. 15:1337388.
doi: 10.3389/fpls.2024.1337388

COPYRIGHT

© 2024 Joukhadar, Li, Thistlethwaite, Forrest,
Tibbits, Trethowan and Hayden. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 24 June 2024

DOI 10.3389/fpls.2024.1337388
Optimising desired gain indices
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Introduction: In plant breeding, we often aim to improve multiple traits at once.

However, without knowing the economic value of each trait, it is hard to decide

which traits to focus on. This is where “desired gain selection indices” come in

handy, which can yield optimal gains in each trait based on the breeder’s

prioritisation of desired improvements when economic weights are not

available. However, they lack the ability to maximise the selection response

and determine the correlation between the index and net genetic merit.

Methods: Here, we report the development of an iterative desired gain selection

index method that optimises the sampling of the desired gain values to achieve a

targeted or a user-specified selection response for multiple traits. This targeted

selection response can be constrained or unconstrained for either a subset or all

the studied traits.

Results: We tested the method using genomic estimated breeding values

(GEBVs) for seven traits in a bread wheat (Triticum aestivum) reference

breeding population comprising 3,331 lines and achieved prediction accuracies

ranging between 0.29 and 0.47 across the seven traits. The indices were validated

using 3,005 double haploid lines that were derived from crosses between parents

selected from the reference population. We tested three user-specified response

scenarios: a constrained equal weight (INDEX1), a constrained yield dominant

weight (INDEX2), and an unconstrained weight (INDEX3). Our method achieved

an equivalent response to the user-specified selection response when

constraining a set of traits, and this response was much better than the

response of the traditional desired gain selection indices method without

iteration. Interestingly, when using unconstrained weight, our iterative method

maximised the selection response and shifted the average GEBVs of the selection

candidates towards the desired direction.
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Discussion:Our results show that themethod is an optimal choice not only when

economic weights are unavailable, but also when constraining the selection

response is an unfavourable option.
KEYWORDS

desired gain indices, genomic prediction, genomic estimated breeding values, selection
indices, genomic selection
Introduction

Plant and animal breeding programmes aim to improve

multiple commercially valuable traits. Traditional selection

methods often overlook the correlation and varying heritabilities

among traits, leading to suboptimal selection response. Selecting for

traits with conflicting influences can be tricky, as progress in one

might harm another (Smith, 1936; Hazel, 1943). Direct selection for

traits with antagonistic correlations can lead to unfavourable

responses for some of the correlated traits, while synergistic

correlations between two or more traits can bias the selection

against the remaining traits. Hence, selection indices that account

for the architecture and the relationships among different traits are

used to simultaneously select for several traits weighted by their

importance to the objectives of the breeding programme to avoid

unfavourable biases towards or against specific traits (Céron-Rojas

and Crossa, 2018).

Selection indices are expected to achieve higher genetic gain

compared to independent culling or sequential selection, especially

when the targeted traits have variable heritabilities, phenotypic and

genotypic correlations, and economic values (Hazel et al., 1994).

Selection indices can be applied to phenotypic records, genomic

estimated breeding values (GEBVs), or phenotypes and genomic

variants (Cerón-Rojas and Crossa, 2020). Despite their utility,

selecting the most appropriate indices remains a challenge,

requiring a deep understanding of trait genetics and pairwise

correlation among the traits (Dekkers et al., 2021). Additionally,

the correlation structure among the traits, whether it is due to

genetic correlation or environmental correlation, also plays a crucial

role (Fernandes et al., 2021). It is important to use a selection index

that considers these complexities to mitigate their effects on the

selection response (Richardson et al., 2021).

Breeders usually calculate selection indices using the economic

values for their traits or through setting a desired gain threshold for

each trait (Pesek and Baker, 1969). However, these values may not

always be available. Desired gain index methods describe the extent

of genetic improvement a breeder intends to achieve for different

traits in their germplasm (Pesek and Baker, 1969). The most
lues; Lr, leaf rust; Prot,

rust; TKW, thousand

r, stripe rust.
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important advantage of these methods is that they do not require

economic weights to be estimated. Desired genetic gain can be

determined from a breeder’s knowledge of the genetic merit of their

materials and traits, although this may not be possible for all

breeding programmes or traits (Céron-Rojas and Crossa, 2018).

Alternatively, breeders can sample arbitrary values for the desired

gain and choose a sample that shifts all traits towards the desired

direction (Li et al., 2017). However, the main problem associated

with desired gain selection index methods is that they neither

maximise the correlation between the net genetic merit of the

individual and the selection index, nor maximise the selection

response for different traits (Itoh and Yamada, 1986, 1988).

Here, we report the development of a new iterative method that

optimises the choice of the input desired gain (Yamada et al., 1975)

to achieve a user-specified selection response for different traits. We

demonstrate our method using a large bread wheat population

composed of 6,336 lines, of which 3,331 lines were used to develop

the selection indices while the remaining 3,005 lines were used as

independent selection candidates. Selection indices were developed

using the GEBVs for seven traits, namely, grain yield, thousand

kernel weight, protein content, screening percentage, and stem rust,

leaf rust, and stripe rust disease resistance.
Materials and methods

Plant materials and phenotyping

A total of 3,331 wheat lines were used including 36 Australian

checks and 2,824 lines developed at the Plant Breeding Institute,

Cobbitty, NSW, Australia from different bread wheat germplasm

pools and diverse exotic resources including emmer wheat,

synthetic wheat, and landraces. More information can be found

in Joukhadar et al. (2021a). The population was planted in 30

irrigated field trials between 2014 and 2020 at Narrabri in New

South Wales, Cadoux, Merredin, and Geraldton in Western

Australia and Horsham in Victoria with population sizes ranging

between 195 and 1,956 lines. A subset of approximately 180 lines

were selected based on their GEBVs for yield and genetic diversity

(Joukhadar et al., 2021b) and replicated across all trials, and

different trials shared different numbers of individuals. Materials

were sown at two times of sowing (TOS) in randomised complete
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block designs of two replicates (each replicate as one block) in

adjacent blocks. The only exception was Horsham in 2017, where

three TOS were used. Details of the 30 trials can be found in

Supplementary Table 1. Another set of 3,005 double haploid lines

were used to validate the selection indices results. These lines were

developed from crosses between various parents selected from the

reference population of 3,331 individuals.

Seven traits were evaluated, namely, grain yield (YLD),

percentage screenings (Screen), protein content (Prot), thousand

kernel weight (TKW), and stem rust (Sr), leaf rust (Lr), and stripe

rust (Yr) disease resistance. Plots were harvested, and harvested grain

weight was subsequently converted to kg/ha as a measure for YLD.

Prot was determined using an Infratec TM 1241 Grain Analyser. A

total of 400 g of seeds from each plot was screened after 40 machine

movements through a screen of 2 mm. The remaining material above

the screen was weighed to calculate the screening percentage. One

hundred visibly viable seeds (excluding cracked, broken, or diseased

seeds) were counted and weighed to determine the 1,000 kernel

weight. The three rust diseases were scored for their resistance in a

scale from 1 (complete resistance) to 9 (complete susceptibility). The

number of trials ranged from 5 for the three rust diseases to 30 for

YLD, while the total phenotypic records ranged from 4,566 for Lr and

Yr to 11,053 for YLD (Table 1). Best linear unbiased estimation

(BLUE) values were calculated for each trial independently by fitting

a spatial linear mixed model considering the field layout (row and

column) and the replications as random effects using ASReml-R

(Gilmour et al., 2009). More details can be found in Joukhadar et al.

(2021a). BLUE values were used to calculate GEBVs that were used to

develop the selection indices.

The reference population of 3,331 individuals was genotyped

with the 90K Infinium SNP array (Wang et al., 2014). SNPs were

filtered to keep only the one with call rate > 60% and minor allele

frequency (MAF) > 5%. Missing genotypes within the 90K SNPs

were imputed using LinkImpute software (Money et al., 2015) and

the previous studies showed that the accuracy of the in silico cross-
Frontiers in Plant Science 03
validation was larger than 0.99 (Joukhadar et al., 2020). The

validation population of 3,005 individuals was genotyped with

40K wheat and barley Infinium SNP array (Keeble-Gagnère et al.,

2021). For all materials, a single plant was genotyped given that all

individuals were even double haploid or fixed lines. Both the

reference population genotyped with 90K and the validation

population genotyped with 40K Infinium SNP arrays were

imputed to exome capture level (He et al., 2019). The imputation

from low density to high density was previously reported to have an

accuracy of 92.4% (Joukhadar et al., 2021a). A total of 218,092 were

common across the reference and the validation imputed SNP sets,

which were used for subsequent analyses (Joukhadar and

Daetwyler, 2022).
Genetic correlation and genomic estimated
breeding values

Trait variances and narrow-sense heritability (SNP based

heritability) was calculated using the univariate restricted

maximum likelihood (REML) analysis implemented in MTG2

software (Lee and Van der Werf, 2016) by fitting the phenotypic

records as well as the genomic relatedness matrix. The genetic

covariances and genetic correlations between each pair of traits

were calculated using bivariate REML analysis implemented in the

same software. For both analyses, the trials were fitted as a covariate.

The genetic correlation analysis was performed with two aims: (1)

to calculate the genetic correlation between the two times of sowing

(TOS1 and TOS2) to assess the level of genotype by environment

interaction between both TOSs; and (2) to calculate the genetic

covariances among traits, which is required to develop the

selection indices.

GEBVs were calculated using the BayesR software, previously

described in Breen et al. (2022). BayesR models SNP effects from a

mixture of four normal distributions (Erbe et al., 2012). The aim is

to simultaneously assign the SNPs with large, medium, small, and

no effect. Marker effects were sampled from one of the following

four normal distributions: N(0, 0 s 2
g ) zero effect, N(0, 0.0001 s 2

g )

small effect, N(0, 0.001 s 2
g ) medium effect, and N(0, 0.01 s 2

g ) large

effect, where s2
g is the additive genetic variance. The genomic

relatedness matrix was calculated following VanRaden (2008).

The prior proportions of loci attributed to each marker effect

distribution were 0.94, 0.049, 0.01, and 0.001, respectively. A total

of 50,000 iterations for the BayesR analysis were used, of which the

first half was considered as burn in. For cross-validation, half of the

phenotypic records for each trait were randomly selected as a

reference to predict the other half, which was considered the

validation set. Prediction accuracy was calculated as the

correlation coefficient between the GEBVs and the actual

phenotypes in the validation set. The cross-validation strategy was

repeated 100 times, wherein the population was randomly

partitioned into reference and validation sets in each replicate.

Prediction accuracies for each trait were averaged across the 100

replicates, and the standard deviation of the average accuracies was

subsequently calculated.
TABLE 1 Number of trials, total number of phenotypic records, genetic
correlation between TOS1 and TOS2 for the studied traits, and
prediction accuracy using BayesR.

Trait Number
of trials

Number
of

records

Genetic
correlation

Prediction
accuracy

YLD 30 11,053 0.89 0.29 (± 0.03)

TKW 21 9,872 0.91 0.39 (± 0.04)

Prot 17 7,491 0.98 0.32 (± 0.03)

Screen 23 8,557 0.92 0.30 (± 0.03)

Sr 5 4,633 . 0.40 (± 0.04)

Yr 5 4,566 . 0.47 (± 0.05)

Lr 5 4,566 . 0.42 (± 0.04)
Prediction accuracy columns show the average of the 100 cross-validation replicates and the
value between the brackets represent the standard deviation of the average accuracies. Lr, leaf
rust; Sr, stem rust; Yr, yellow rust; Prot, protein content; Screen, screening percentage; TKW,
thousand kernel weight; and YLD, grain yield. Genetic correlation was not calculated for the
rust diseases because they were only scored in TOS1.
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Desired gain index

Selection indices were calculated for the following traits: grain

yield, thousand kernel weight, screening percentage, protein

content, and leaf, stem, and yellow rust disease resistance. We

used the desired trait gain index method described in Yamada et al.

(1975). The method uses the following equation:

b = P−1G(GP−1G)−1d (1)

where b is the final desired gain-based index; P is the

phenotypic variance–covariance matrix (in our case, the

correlation between GEBVs); G is the genetic variance–covariance

matrix; and d is a vector of the desired gains. Variances in G were

calculated using the previous univariate REML analysis for each

trait, while the covariances were calculated by applying the bivariate

REML model to analyse each pair of traits.

Yamada et al. (1975) suggested choosing arbitrarily values for d
until the averages for all traits in the selected lines were shifted

towards the desired direction (e.g., increasing yield and reducing

screening percentage). Instead of choosing arbitrary values for d, we
developed a new strategy that optimises the choice of d to calculate

an optimal index (b) that can achieve a user-specific level of

improvement (selection response) for each trait. The user-

specified selection response (dg) is defined as the number of

standard deviations (positive or negative) the average phenotypes

of the selected lines can be shifted from the average of the whole

population for each trait. The method samples values for d within

an iterative process and selects the sample that develops an index

that best matches the desired selection response. For each iteration,

the method calculates b and use it to calculate the genetic gain g of
the sampled d. Then, g is used to calculate the goodness of fit for the
sampled d for each trait with the following equation:

gof =
logbase (

base2

gj j )
base2
gj j

(2)

where “base” is the base of the logarithm that can be calculated

with the following equation: base =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� dgj jp

, in which e is the

Euler’s number. Specifically, the base determines the scaling of the

logarithmic transformation applied to the ratio of g to dg.
Therefore, under the proposed equation, gof gets maximised

(gofMAX) when g=dg, which means that we achieved the desired

selection response in the selection candidates. The penalty of the

sampled d for all traits (q) is given by the following equation:

q =on
i
gofMAXi − gof i

gofMAXi
(3)

where n is the number of traits. Q serves as a measure of

deviation between the observed and desired selection responses

across traits, guiding the iterative optimisation process. A lower

value of q indicates better alignment between g and dg. The value of
q from each iteration is compared to the sample of the previous

iteration and is accepted if the selection response improves, i.e.,

getting a smaller q. The sampling mean for each trait in each
Frontiers in Plant Science 04
iteration is updated from the most recently accepted sampled

weights. The analysis was run for 1,000 iterations.

We used the GEBVs for the phenotyped reference population of

3,331 lines to develop genotypic and phenotypic covariance matrices.

The calculated covariance matrices calculated on the reference

population were then applied to the GEBVs of the 3,005 double

haploid selection candidates. From the selection index ranked lines, a

total of 100 lines were selected. Selection response for the selected

lines was expressed as the number of standard deviations their

average differed from the average of the whole population for each

trait. Three different indices were calculated. The user-specified

selection response was first set to +0.5 standard deviations for

yield, TKW, and protein, and −0.5 standard deviations for

screening the three rust diseases (INDEX1) to ensure equal weights

for all traits. Another yield dominant user-specified selection

response was used with +2 standard deviations for yield, +0.5

standard deviation for TKW and protein, and −0.5 standard

deviation for the three rust diseases (INDEX2). A third index was

calculated with high user-specified selection responses at +4 standard

deviations for yield, TKW, and protein, and −4 standard deviations

for screening the three rust diseases (INDEX3) to maximise the

potential selection response for all traits. Each index was run for 20

replicates and the correlations among replicates were averaged to

ensure that the different replicates produced comparable solutions.
Results

The analysis revealed high genetic correlations among all traits,

indicating limited genotype by environment interactions for TOS1

and TOS2. Notably, the smallest correlation observed was 0.89 for

grain yield while the largest correlation was equal to 0.98 for protein

percentage (Table 1). This analysis was not possible for the three

rust diseases given that the disease resistances were scored only in

optimal sowing time (TOS1). Additionally, the BayesR model

demonstrated varying levels of prediction accuracy for the studied

traits, ranging from medium to low, with values between 0.29 for

YLD and 0.47 for Yr (Table 1). Particularly noteworthy were the

higher prediction accuracies observed for resistances to the three

rust diseases, averaging at 0.43, compared to an average of 0.33 for

the remaining four traits.

The narrow-sense heritability and genetic correlations among

the studied traits were summarised in Table 2. Narrow-sense

heritability values varied across the traits, ranging from 0.21 for YLD

to 0.59 for Yr. Additionally, the examination of genetic correlations

revealed generally low values among the seven traits, spanning from

−0.21 to 0.28, underscoring the relative independence of these traits in

terms of their genetic basis. However, a striking exception to this

pattern was observed in the strong negative correlation of −0.61

between TKW and screening percentage, which is expected given

that small, low weight seeds are the ones that pass through the screen.

Overall, these findings contribute to a deeper understanding of the

genetic relationships and heritability of the studied traits, providing

valuable insights for future breeding efforts aimed at improving crop

performance and resilience.
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Iterative index analysis (Equations 2, 3), run using the

parameters of the three tested indices, identified a subset of

samples with average GEBVs that were all shifted towards the

desired direction of increased yield, TKW, and protein; reduced

screenings; and low rust disease resistance scores (Tables 3–5). The

iterative method showed better performance compared to the

standard desired genetic gain method (Yamada et al., 1975) with

no iterations. For INDEX1 (equal weight for all traits), the absolute

standard deviation of the response ranged between 0.46 and 1.02

with an average of 0.68, which was very close to the targeted user-

specified response of 0.5 for all traits. On the other hand, without

iteration, the absolute standard deviation of the response ranged

between 0.12 and 1.69. The iterative method also successfully

developed an index when the targeted response was biased

towards a subset of trait(s). INDEX2 (the yield dominant index)

had a higher weight for yield and selected lines with the iterative

method had, on average, standard deviations 1.71 higher than the

whole population. The average of the remaining traits was higher at

approximately 0.5 standard deviations, which equalled the user-

specified targeted response (Table 4). However, protein content was

negatively selected when the index was used without iterations,

indicating the superiority of the new method.

The last index, INDEX3, had a targeted response of 4 standard

deviations across all traits, which was impossible to achieve given
Frontiers in Plant Science 05
that only 100 lines were selected from a population of 3,005

individuals (~3.3%). This index was designed to maximise the

genetic gain for all traits in the selected materials as, theoretically,

only 0.05% of the whole population could be above or below 4

standard deviations for a single trait. The average GEBVs of the

selected materials had an absolute average of 1.04 standard

deviations from the average of the whole population across the

seven traits, which ranged from 0.64 for TKW to 1.24 for screenings

percentage (Table 5). Calculating this index without iterations

resulted in the same answer as INDEX1 given that they both have

equal weights across the traits and d is a scaler in Equation 1.

Therefore, the ranking of individuals will be the same for both

INDEX1 and INDEX3. Figure 1 shows the distribution of YLD for

the selection candidate whole population as well as the selected lines

using the three indices (INDEX1, INDEX2, and INDEX3).

The method was validated using 3,005 double haploid lines,

which were independent from the reference set that was used to

calculate the phenotypic and genotypic covariance matrices. The

selection response for the independent validation set was very

similar but slightly higher than that calculated on the reference

population (Tables 3–5). In other words, the average phenotypes for

the selection candidates in both the reference and the validation sets

had an equivalent number of standard deviations above (for YLD,

TKW, and protein) or below (for screening and the three rust
TABLE 3 Selection response from INDEX1.

Trait
Sampled desired

gain (d)
Index (b)

Targeted
response (dg)

Response
NoIteration

Response
SD Ref

Response
SD Cand

YLD 1.06 16.39 0.5 0.50 0.67 0.83

TKW 3.37 1.34 0.5 1.69 0.57 1.02

Prot 0.72 1.26 0.5 0.48 0.87 0.66

Screen −1.22 0.15 −0.5 −0.12 −0.43 −0.46

SR −0.55 −2.91 −0.5 −0.31 −0.55 −0.56

LR 0.03 −1.67 −0.5 −0.95 −0.58 −0.61

YR −0.60 −1.14 −0.5 −0.29 −0.53 −0.62
The sampled desired gain (d), final index (b), user-specified targeted selection response (dg), and number of standard deviations for the genetic gain of the selected lines [NoIteration, using the
standard desired gain index method of Yamada et al. (1975), our method with the reference, Ref, and candidate, Cand, populations] using INDEX1 (equal weights for all traits). Lr, leaf rust; Sr,
stem rust; Yr, yellow rust; Prot, protein content; Screen, screening percentage; TKW, thousand kernel weight; and YLD, grain yield; SD Ref, standard deviation reference population; and SD
Cand, standard deviation selection candidates.
TABLE 2 Narrow-sense heritability (diagonal) and genetic correlations (off diagonal) between the studied traits.

YLD TKW Prot Screen SR YR LR

YLD 0.21 (± 0.01) −0.21 (± 0.07) −0.03 (± 0.09) 0.10 (± 0.09) 0.16 (± 0.09) 0.12 (± 0.08) 0.16 (± 0.09)

TKW −0.21 (± 0.07) 0.50 (± 0.01) −0.01 (± 0.07) −0.61 (± 0.05) −0.05 (± 0.07) 0.14 (± 0.06) 0.28 (± 0.07)

Prot −0.03 (± 0.09) −0.01 (± 0.07) 0.30 (± 0.02) 0.15 (± 0.08) −0.10 (± 0.07) −0.15 (± 0.07) 0.13 (± 0.08)

Screen 0.10 (± 0.09) −0.61 (± 0.05) 0.15 (± 0.08) 0.49 (± 0.01) −0.06 (± 0.08) −0.14 (± 0.07) −0.18 (± 0.08)

SR 0.16 (± 0.09) −0.05 (± 0.07) −0.10 (± 0.07) −0.06 (± 0.08) 0.35 (± 0.02) −0.07 (± 0.06) 0.11 (± 0.08)

YR 0.12 (± 0.08) 0.14 (± 0.06) −0.15 (± 0.07) −0.14 (± 0.07) −0.07 (± 0.06) 0.59 (± 0.01) 0.28 (± 0.07)

LR 0.16 (± 0.09) 0.28 (± 0.07) 0.13 (± 0.08) −0.18 (± 0.08) 0.11 (± 0.08) 0.28 (± 0.07) 0.34 (± 0.02)
Values between brackets represent the standard errors of the estimations. Lr, leaf rust; Sr, stem rust; Yr, yellow rust; Prot, protein content; Screen, screening percentage; TKW, thousand kernel
weight; and YLD, grain yield.
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diseases) the average of the whole reference or validation

populations, respectively. Running 20 replicates for each analysis

showed that the iterative method produced indices with high

repeatability. The average correlation coefficients over all

replicates for the three indices were 0.95, indicating robust

divergence after 1,000 iterations as well as consistently highly

optimised weights for different traits.
Discussion

We utilised a large population of Australian bread wheat

cultivars and breeding lines that were phenotyped in diverse

environments across the Australian wheatbelt, stretching from

Narrabri in New South Wales to Geraldton in Western Australia.

The materials were planted at both optimal (TOS1) and late (TOS2)

times of sowing and irrigated to avoid drought stress so that heat

tolerance during anthesis and grain filling periods could be assessed

(Thistlethwaite et al., 2020).

To develop robust selection indices for different traits, it is

important to quantify the level of genotype by environment
Frontiers in Plant Science 06
interaction between the optimal and the late sowing trials by

calculating their genetic correlation. The high genetic correlation

observed implied that the ranking of the lines had minimal change

between the two sowing times for all traits. This is essential to

decide whether a trait will need a single weight regardless of heat

treatment or if two different weights will be needed, one for each

treatment. All traits showed high correlations between both TOSs of

which protein content had almost no genotype by environment

interaction with a genetic correlation between TOS1 and TOS2 of

0.98 (Table 1). This was not unexpected given that protein content

is affected more by nitrogen availability in the soil than weather

(McDonald, 1992) and TOS1 and TOS2 were planted in adjacent

fields in each environment and subjected to the same management

practises. These results indicated that TOS1 and TOS2 did not need

different weights when developing the selection indices and could

be considered as a single trait.

The prediction accuracy for resistance to the three rust diseases

was comparable to accuracies reported in previous studies that

investigated diverse wheat germplasms (Daetwyler et al., 2014;

Juliana et al., 2017). He et al. (2019) used a subset of the data

used in the present study that included 10 trials conducted at
TABLE 4 Selection response from INDEX2.

Trait
Sampled desired

gain (d)
Index
(b)

Targeted
response (dg)

Response
NoIteration

Response
SD Ref

Response
SD Cand

YLD 1.61 19.70 2 2.01 1.33 1.71

TKW −0.28 0.58 0.5 0.74 0.33 0.46

Prot 0.48 1.27 0.5 −0.35 0.44 0.51

Screen 0.01 0.04 −0.5 −0.08 −0.45 −0.50

SR 0.70 1.40 −0.5 −0.21 −0.46 −0.54

LR 0.53 −0.01 −0.5 0.13 −0.44 −0.54

YR 0.65 −0.61 −0.5 −0.45 −0.42 −0.54
The sampled desired gain (d), final index (b), user-specified targeted selection response (dg), and number of standard deviations for the genetic gain of the selected lines [NoIteration, using the
standard desired gain index method of Yamada et al. (1975), our method with the reference, Ref, and candidate, Cand, populations] using INDEX2 (yield dominant). Lr, leaf rust; Sr, stem rust; Yr,
yellow rust; Prot, protein content; Screen, screening percentage; TKW, thousand kernel weight; and YLD, grain yield; SD Ref, standard deviation reference population; and SD Cand, standard
deviation selection candidates.
TABLE 5 Selection response from INDEX3.

Trait
Sampled desired

gain (d)
Index (b)

Targeted
response (dg)

Response
NoIteration

Response
SD Ref

Response
SD Cand

YLD 0.24 5.47 4 0.50 0.78 1.05

TKW 1.35 0.28 4 1.69 0.53 0.64

Prot 0.57 1.33 4 0.48 0.73 1.10

Screen −3.05 −0.40 −4 −0.12 −0.49 −1.24

SR −0.62 −2.53 −4 −0.31 −0.50 −1.09

LR −0.75 −2.35 −4 −0.95 −0.65 −1.06

YR −0.78 −0.74 −4 −0.29 −0.60 −1.11
The sampled desired gain (d), final index (b), user-specified targeted selection response (dg), and number of standard deviations for the genetic gain of the selected lines [NoIteration, using the
standard desired gain index method of Yamada et al. (1975), our method with the reference, Ref, and candidate, Cand, populations] using INDEX3 (maximum gain). Lr, leaf rust; Sr, stem rust; Yr,
yellow rust; Prot, protein content; Screen, screening percentage; TKW, thousand kernel weight; and YLD, grain yield; SD Ref, standard deviation reference population; and SD Cand, standard
deviation selection candidates.
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Narrabri, New South Wales between 2013 and 2017. They reported

comparable prediction accuracies to our results for grain yield and

screening percentage for models that did not fit genotype by

environment interactions. However, their accuracies for protein

content and TKW were much higher compared to our results. The

latter could be a result of the inclusion of field trials with more

diverse climates and soil types in the reference population used in

our study. He et al. (2019) also showed that prediction accuracy was

further improved for protein content and grain yield when fitting

the genotype by environment interaction in the model. However,

our research focussed on improving the development of indices to

maximise the selection response regardless of the statistical model

applied for genomic prediction.

The seven studied traits showed low to medium narrow-sense

heritability (Table 2). Daetwyler et al. (2014) reported comparable

heritability values to our estimates for resistance to the three rust

diseases. Various studies have reported comparable heritability

values for the remaining traits, especially low heritability for YLD
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which is often highly influenced by environmental variability

(Babar et al., 2007; Heffner et al., 2011; He et al., 2019; Watson

et al., 2019). The genetic correlations among different traits were

generally low and in most cases the value was smaller or equivalent

to two standard errors, except for the negative correlation between

TKW and screening percentage of −0.61 (Table 3). A negative

correlation is expected given that a higher screening percentage

implies smaller seeds. The remaining traits showed low genetic

correlations between −0.21 and 0.28, indicating that selection

applied to a given trait will not significantly affect another trait.

Previously developed unconstrained linear phenotypic or

genomic selection indices do not have control over the direction

of the selection response; i.e., whether genetic gain is increased or

decreased (Smith, 1936; Dekkers, 2007; Togashi et al., 2011; Cerón-

Rojas and Crossa, 2019). For this reason, attempts have been made

to constrain the genetic gain for a subset of traits. Kempthorne and

Nordskog (1959) developed a method to prevent changing of the

genetic gain for a subset of traits (in other words, the gain is equal to
FIGURE 1

Boxplots showing the distribution of the GEBV values (y-axis) for the seven selected traits. GEBVs: the whole selection candidates’ population; Equal:
INDEX1 that has equal weight for all traits; Yield: for INDEX2 that has higher weight for grain yield; and Max: for INDEX3 that maximises the response
for all traits. For YLD, TKW, and Prot, the aim is to increase the trait while the aim for Screen, SR, LR, and YR is to reduce the trait.
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zero), while others generalised this method to allow the setting of a

predetermined level of genetic gain for a subset of traits (Mallard,

1972; Harville, 1975; Tallis, 1985). These methods improved the

choice of selection candidates with better shifts in genetic gain in the

desired direction. However, all these methods required an economic

weight for each trait to be predefined, information that may not be

always available for all traits or breeding programmes.

While the advantage of the desired gain indices is that economic

weights are not required, their main disadvantage is inability to

maximise the selection response (Itoh and Yamada, 1986, 1988).

This results because of the subjective choice of the desired gain values

that are usually approximated using the breeder’s knowledge of the

traits or arbitrarily sampled to achieve a proper selection response

(Céron-Rojas and Crossa, 2018). Cerón-Rojas and Crossa (2020)

argued that the constrained linear phenotypic selection index is

similar in principle to the desired gain indices with the advantage of

maximising the selection response as well as the correlation between

the selection index and the net genetic merit of each individual. Our

iterative method optimises the choice of the desired gain to achieve a

user-specified selection response for the targeted traits. Our results

show that our method can efficiently move the genetic gain in the

desired direction regardless of whether the breeding objective

requires some traits to be constrained (INDEX1 and INDEX2) or

unconstrained (INDEX3). Our method optimises the selection

response not only when the economic weights are unavailable, but

also when constraining a subset of traits is not the ideal option.

While our method succeeded in maximising the selection

response for all traits in the desired direction, it is still not

possible to determine if the method maximises the correlation

between the selection index and net genetic merit. This is because

the covariance between both is undefined given that it depends on

the estimation of the economic weight (Cerón-Rojas and Crossa,

2020); thus, this parameter cannot be theoretically assessed using

our method. However, as our validation population of 3,005 lines

was developed from crosses between a selected subset of parents

from the reference population of 3,331 individuals, the former

materials can be considered as the next generation in a

continuous breeding programme that was not included in the

reference population. Hence, this population can empirically help

assess the unobserved genetic merit. Similar results were previously

obtained using unconstrained and constrained linear phenotypic or

genomic selection indices using real data with two breeding cycles

or simulated data with six cycles derived from the reference

population (Cerón-Rojas and Crossa, 2019, 2020).

Our new approach holds significant practical implications for

enhancing breeding efficiency and accelerating genetic gain in

improving breeding programmes. Our method aids breeders in

the selection of superior cultivars with broad adaptability

simultaneously for multiple traits without biasing the selection

towards or against a specific trait. Additionally, our iterative

method for optimising selection responses, particularly in

scenarios where economic weights are unavailable or when

constrained selection is not ideal, offers a flexible and efficient

approach to breeding programme management. Overall, our

study contributes to advancing breeding methodologies tailored
Frontiers in Plant Science 08
to modern breeding objectives, ultimately facilitating the

development of improved varieties with enhanced yield potential,

stress resilience, and end-use quality.
Conclusion

We developed a new method that extends the application of

desired trait gain selection indices to maximise the selection

response for multiple constrained or unconstrained traits. We

showed that our method shifts the selection response in non-

reference individuals in the targeted direction to increase or

decrease the trait average in the selection candidates. We

demonstrated that our method has the power to maximise the

genetic gain when using unconstrained weights and to achieve the

targeted selection response set by the breeder for different traits in

the appropriate direction. However, more empirical testing is

required using multi-breeding cycle data to ensure that the

calculated indices are sufficiently powerful to maximise the

correlation between the index and the net genetic merit.
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SUPPLEMENTARY TABLE 1

Summary of the field trials, number of phenotyped individuals, and traits. Trail

names were recorded as (Location_year_TimeOfSowing). NoGeno: Number
of Genotypes; Prot, protein%; Screen, screening%; TKW, thousand kernel

weight (g); YLD, yield (t/ha); Lr, leaf rust; Sr, stem rust; Yr, stripe rust.
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