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The mutation atlas of giant
kelp (Macrocystis pyrifera): a
mutation database resource
for natural knockouts
Jose Francisco Diesel, Gary Molano and Sergey V. Nuzhdin*

Department of Molecular and Computational Biology, University of Southern California, Los Angeles,
CA, United States
Giant kelp (Macrocystis pyrifera) is a paramount species of immense ecological

and economic importance. It forms dense underwater forests, providing crucial

habitat and serving as a foundation species for diverse marine ecosystems.

Understanding the genetics of giant kelp is essential for conservation and

sustainable farming, safeguarding these valuable ecosystems and their benefits.

By analyzing mutations based on their impact, we can gain insights into the

potential functional consequences and implications for the organism, helping to

identify critical genes or regions that may play a significant role in adaptation,

development, and environmental response. To achieve this, we annotated the

effects and impact of spontaneous mutations in 559 giant kelp individuals from

four different populations. We found over 15.9 million mutations in genes of giant

kelp, and classified them into modifier, low, moderate, and high impact

depending on their predicted effects. The creation of this mutation effect

database, attached to the seedbank of these individuals, offers several

applications, including enhancing breeding programs, aiding genetic

engineering with naturally occurring mutations, and developing strategies to

mitigate the impact of environmental changes.
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Introduction

Giant kelp (Macrocystis pyrifera) is a prominent marine organism that plays a

significant role in maintaining the ecological balance of coastal ecosystems (Graham et

al., 2007; Reed and Brzezinski, 2009). As the largest and fastest-growing species of algae on

Earth, it provides habitat, food, and shelter for a diverse range of marine species (Edwards

et al., 2015). However, giant kelp populations are facing unprecedented challenges due to

increasingly frequent and severe heatwaves. These heatwaves have negatively impacted

giant kelp, leading to episodes of mass die-offs and threatening its genetic diversity (Filbee-

Dexter et al., 2020; Smale, 2020). Beyond its ecological significance, giant kelp holds
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immense promise for human benefit, particularly in the fields of

kelp farming and ecosystem restoration (Campbell et al., 2014;

Buschmann et al., 2017; Layton et al., 2020).

Giant kelp farming has garnered growing interest as an

alternative means of bolstering the world’s food supply,

producing biofuels, and sequestering carbon dioxide from the

atmosphere (Duarte et al., 2021; Spillias et al., 2023). The

cultivation of giant kelp has demonstrated remarkable potential

for sustainable aquaculture practices due to its rapid growth rates,

ability to absorb excess nutrients from surrounding waters, and its

lack of competition for agricultural land, fertilizer, or freshwater

resources (Gerard, 1982; Stewart et al., 2009; Rassweiler et al., 2018).

Recent advances in kelp genetics, including the release of many high

quality annotated genomes, are helping to unlock the vast potential

of genomics in improving giant kelp commercial cultivation and

restoration efforts (Paul et al., 2022; Denoeud et al., 2024).

Genetic resources, including high-quality annotated reference

genomes and a sequenced founding populations, are essential for

advancing breeding programs and maximizing desirable traits in

crops (Galluzzi et al., 2020; Pour-Aboughadareh et al., 2021). By

utilizing comprehensive genetic data, scientists and farmers can

identify and select individual kelp specimens with favorable traits,

such as enhanced growth rates, improved nutritional content, and

heightened resistance to environmental stressors (Briggs, 1998).

Genetic information could aid in developing novel techniques to

cultivate kelp strains better adapted to diverse oceanic conditions

and various aquaculture systems. Moreover, studying naturally

occurring mutations provides an alternative to artificially

produced mutations and offers a valuable approach to addressing

some concerns associated with genetically modified organisms, with

benefits in permitting, safety perception, and preserving genetic

diversity. Over 60 newly annotated brown macroalgae reference

genomes, including two giant kelp genomes, greatly increase the

genetic resources available to aid in giant kelp breeding. However,

the lack of whole-genome mutational data from many individuals

across different giant kelp populations hinders genomics-assisted

breeding efforts (Paul et al., 2022; Diesel et al., 2023; Denoeud

et al., 2024).

This research contributes to genomic tools bridging the

macroalgae knowledge gap by providing a detailed study of the

mutation landscape of giant kelp. It aims to uncover insights into

mutation patterns, selective pressures, and create a mutation effect

database for a seedbank, thereby facilitating breeding efforts and

scientific research. By understanding the genetic basis of desirable

traits and naturally occurring mutations, this research aims to pave
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the way for the sustainable and efficient cultivation of giant kelp

while contributing to the preservation of marine biodiversity in the

face of environmental challenges.
Results and discussion

We classified single nucleotide polymorphisms (SNPs) from

559 individuals from four populations (Catalina Island [CI], Camp

Pendleton [CP], Arroyo Quemado [AQ], and Leo Carrillo [LC])

into modifier, low-impact, moderate-impact, and high-impact

mutations based on their predicted effects on gene sequences,

according to SnpEff list of effects (Cingolani et al., 2012). All four

populations are located within a narrow band between 11 m and

1.8 km from the shoreline of Southern California, with yearly

average sea surface temperatures ranging from 15.5°C to 17.7°C

(Table 1), and have previously been identified as distinct

populations (Johansson et al., 2015). We found over 28 million

variants, resulting in more than 42 million predicted effects. Of

those, 97% were modifiers, expected to have no significant impact

on a gene. Low- and moderate-impact mutations account for 1.5%

and 1.4% of mutations, respectively, while high-impact mutations

make up 0.05% of all mutations (Table 2). The average number of

low-, moderate-, and high-impact mutations per individual is

approximately 36,100, 33,300, and 6,000, respectively (Figure 1).

The Catalina Island population exhibited a disproportionately

higher ratio of high-impact mutations compared to the other

populations (Figure 2). Further investigation into the underlying

causes of this disparity could provide valuable insights into the

genetic adaptations of giant kelp in response to local conditions.

Genome annotation often relies on comparative genomics,

where similarities between the target species’ genes and those of

well-annotated model species are used to infer gene function. In the

case of brown macroalgae like giant kelp, recent advances in kelp

genomics increase the resources available for comparative studies

(Cormier et al., 2017; Shan et al., 2020; Paul et al., 2022; Denoeud

et al., 2024). However, the novel pathways found in brown algae,

such as alginate metabolism, require additional validation (Mazéas

et al., 2024). While increasing sequencing data for kelp is important,

integrating experimental approaches—such as gene knockdowns,

overexpression studies, or associating specific genes with

phenotypic traits—will be key to advancing our understanding of

kelp’s gene functions. The giant kelp genome contains 25,900 genes,

but only about 8,000 have known annotated functions and are

mapped to Eukaryotic Orthologous Groups (KOG). Here,
TABLE 1 Sampling location for all populations, average sea surface temperature (SST) in degrees Celsius, and distance from shore in meters.

Population Average SST (°C) Distance from
shore (m)

Latitude Longitude

Arroyo Quemado 15.59 198 34.468783 − 120.121417

Catalina Island 17.73 11 33.446747 − 118.485044

Camp Pendleton 18.05 1,880 33.290910 − 117.490997

Leo Carrillo 17.11 67 34.042933 − 118.934500
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annotated genes tend to be larger in size and have fewer impactful

mutations compared to genes that are not annotated (Figure 3).

This suggests a higher degree of conservation among annotated

genes, likely due to factors such as ascertainment bias in annotation

and the unique functional specialization of giant kelp, which

diverges from traditional model organisms (Armengaud et al.,

2014; Parikesit et al., 2014).
Mutation distribution and
selective pressure

While we will focus on annotated genes in giant kelp, we first

examined the mutation distribution across all genes. Regardless of

their number, mutations are distributed similarly between annotated

and unannotated genes in terms of their relative position within a

gene (Figure 4). To understand how mutations were distributed

among annotated KOG genes, we calculated the sum of all effect

mutations relative to the total length of the annotated genes in each
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pathway per individual. This approach provides insights into the

mutational landscape across different biological pathways. Pathways

exhibiting the smallest number of mutations relative to their size were

nuclear structure and translation, ribosomal structure, and biogenesis,

with means of 1.6 × 10−4 and 1.9 × 10−4, respectively. These pathways

appear to be relatively conserved, likely due to selective pressure,

indicating strong evolutionary constraints acting upon them. The

pathways with the highest number of mutations relative to pathways

size were extracellular structures and cell walls, with means of 3.3 ×

10−4 and 3.6 × 10−4, respectively (Figure 5). These findings

underscore how the pathways involved in brown algal cell walls

and extracellular components may accumulate mutations to help

them interact with the dynamic marine environment, including

responses to climate stressors such as warmer and more acidic

water, as wells as pathogen defense (Michel et al., 2010; Wernberg

et al., 2018; Wu et al., 2019).

We can use nonsynonymous substitutions (dN)/synonymous

substitutions (dS) to measure whether natural selection is acting to

preserve or change amino acid sequences in a protein (Miyata and

Yasunaga, 1980). dN/dS is derived from comparing the rates of

nucleotide substitutions that result in changes to the amino acid

sequence of a protein (dN) with the rates of nucleotide substitutions

that do not change the amino acid sequence (dS) (Johansson et al.,

2015). Here, we used high- and low-impact mutations as proxies for

non-synonymous and synonymous substitutions, respectively, to

identify which pathways are the most constrained by selection. The

pathways with the lowest ratio of high/low mutations were defense

mechanisms and inorganic ion transport and metabolism, while

transcription and nucleotide transport and metabolism exhibited the

highest ratio (Figure 5). It is worth mentioning that genes in
FIGURE 1

Histogram showing the number of impactful mutations per individual.
TABLE 2 Predicted impact of mutations, including their respective
counts and the percentages they represent within the total
mutation dataset.

Impact Count Percent

Neutral 41,710,434 97.793

Low 437,670 1.026

Moderate 456,837 1.071

High 46,825 0.11
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FIGURE 2

Distribution of the ratio of high-impact mutations per individual to the total number of impactful mutations across four populations.
FIGURE 3

Representation of gene length and the quantity of high-impact mutations based on annotation status. (A) Boxplot representation of gene length
distribution categorized by gene annotation status. (B) Boxplot depiction of the number of high-impact mutations in annotated and nonannotated
genes, with each dot representing a gene.
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FIGURE 4

Histogram illustrating the frequency distribution of mutations normalized to a relative gene length of 1,000 nucleotides.
FIGURE 5

Mutation distribution and selective pressure. (A) The sum of all effect mutations in a pathway normalized by the total pathway length per individual.
(B) Proxy for dN/dS, where high- and low-impact mutations serve as nonsynonymous and synonymous mutations, respectively. Each point
represents an individual.
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annotated pathways are more constrained when compared to all

genes in the genome, further highlighthing the bias toward

conserved genes in annotations.
Population genetics and selection

To better understand whether any set of genes was under selection,

we first calculated nucleotide diversity (Pi), Tajima’s D, and Fst for each

gene in the giant kelp genome (Figure 6). The average nucleotide

diversity in giant kelp genes was 0.0105 (Nei and Li, 1979). Previous

measurements of nucleotide diversity in giant kelp, conducted by

Molano et al., were based on a set of highly conserved genes and

showed an average nucleotide diversity five times smaller (Molano

et al., 2022). Our whole-genome results indicate a moderate level of
Frontiers in Plant Science 06
genetic variation within giant kelp, suggesting that the genome harbors

considerable genetic diversity, which may support adaptation and

evolutionary resilience in changing environments.

Tajima’s D was slightly negative at − 0.839, indicating an excess

of low-frequency mutations (Tajima, 1989). Similar values of

Tajima’s D in giant kelp were found in previous studies,

suggesting purifying selection (Molano et al., 2022). The average

Fst was 0.146, which is relatively high and reflects a significant

degree of differentiation among the three populations studied,

consistent with previous studies (Johansson et al., 2015; Molano

et al., 2022; Gonzalez et al., 2023). No significant difference was

found between different gene functions when using these

population genetics metrics. This suggests that selective pressures

acting on specific gene functions are not readily apparent from these

metrics alone, or the limited number of annotated genes may not be
FIGURE 6

Distribution of Tajima’s D, nucleotide diversity, and Fst across genes annotated with KOG categories.
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large enough to obtain a signal. Therefore, further investigations are

needed to uncover potential adaptive patterns.
Biomass

Predicting biomass in kelp farming can significantly influence

breeding programs by providing valuable data and insights that

enhance the efficiency and success of selective breeding initiatives.

These breeding programs aim to develop kelp varieties with

desirable traits such as fast growth, high biomass production,

disease resistance, and improved product quality. Previously, 500

females from the four populations were crossed with one male from

Leo Carillo and outplanted at a kelp farm near Santa Barbara, CA.

Biomass, carbon, and nitrogen data were then collected from the

resultant sporophytes (Miyata and Yasunaga, 1980). In this context,

we aimed to explore the potential influence of high-impact

mutations on an individual’s biomass, carbon, and nitrogen levels.

We assessed the correlation between these factors and the number
Frontiers in Plant Science 07
of high-impact mutations. However, we found no significant

association between any of the factors and the number of

high-impact mutations when using a linear model (Figure 7).

This suggests that the number of high-impact mutations may not

directly influence biomass differences in giant kelp, indicating that

more comprehensive modeling approaches, such as genome-wide

association studies, may be needed for more accurate biomass

predictions and to identify other economically relevant traits.
Resource for natural knockouts

The discovery and documentation of existing knockouts in wild

giant kelp populations offer a compelling advantage when seeking

permits for farming and restoration efforts. Unlike introduced genetic

modifications, these knockouts result from spontaneous genetic

mutations that occur without targeted intervention, maintaining

the existing genetic diversity within the species (Monroe et al.,

2020). Consequently, using kelps with spontaneous knockouts may
FIGURE 7

Linear model showing the relationship between the number of high-impact mutations and mean biomass, carbon, and nitrogen concentrations. No
significance was found using a linear model.
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help alleviate some of the concerns and regulatory hurdles associated

with genetically modified organisms.

Knockouts and knockdowns have emerged as powerful tools in

algae research, significantly enhancing photosynthetic productivity,

biomass yield, and cold tolerance (Baek et al., 2016; Kotchoni et al.,

2016). A well-documented example is the knockdown of AMP

deaminase, leading to remarkable improvements in biomass

production, cold tolerance, and oil content in green algae

(Kotchoni et al., 2016). As a testament to the database’s utility,

we explored AMP deaminase mutations. Among the variants, three

were categorized as moderate-impact missense mutations, while

one was identified as a high-impact splice acceptor variant. Two

individuals harboring distinct missense mutations (Gly11Glu and

Arg527His) exhibited higher biomass than the average of the entire

sample. However, the third missense mutation, present in seven

individuals, showed no observable impact on biomass. The high-

impact splice acceptor variant was found in 70 individuals within

the cohort. While this variant appears to be associated with a slight

increase in biomass among carriers, statistical analysis did not

reveal significance (Figure 8). CRISPR/Cas-9 offers a highly

efficient and targeted method for modifying genes, enabling

precise alterations that can enhance traits like photosynthesis,

growth, and stress tolerance in algae. CRISPR/Cas-9 has been

successfully adapted for use in marine algae, including brown

macroalgae, and can now be used to validate candidate knockout

mutations (Nymark et al., 2016; Badis et al., 2021). However, its
Frontiers in Plant Science 08
current regulation in farming is strict, limiting its widespread

application in crop development.
Conclusion

Giant kelp holds great ecological and economic significance,

serving as a cornerstone species in marine ecosystems and

supporting diverse marine life. However, it faces challenges

including habitat degradation, climate change impacts, and a lack

of the genetic resources required for effective restoration efforts and to

maximize its farming potential. To help address this issue, we

established a comprehensive database of naturally occurring

mutations in a seedbank containing 559 individuals and explored

the effects of these gene mutations. We annotated over 15.9 million

mutations in 25,900 genes of the giant kelp genome. While the results

can provide valuable insights, it is important to note the limitations of

this dataset, as only 8,000 of the genes have functional annotation and

are placed in a KOG pathway. This underscores the need for

improved gene annotation methodologies for brown macroalgae

like giant kelp. Recent genomic advances in brown macroalgae

research have the potential to significantly improve predictions of

mutation effects and enhance the use of natural knockouts.

In conclusion, establishing this comprehensive mutation

database represents a significant milestone in conserving and

sustainably managing giant kelp populations. By leveraging
FIGURE 8

AMP deaminase mutations and their possible effect on biomass. No significant differences were observed between the splice acceptor variant and
wild-type variant. Blue and red dots represent individuals with respective missense mutations, neither of which carry the high-impact splice
acceptor variant.
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genetic insights, we now have a valuable resource to guide

restoration efforts and identify preexisting gene knockouts for

breeding programs aimed at cultivating resilient and productive

kelp farms.
Materials and methods

Details on sporophyte collection, gametophyte isolation, DNA

extraction and sequencing, farm design, and phenotyping are

described in Osborne et al (Osborne et al., 2023). Briefly,

sequencing was performed on an Illumina S4 Novaseq platform

(150 bp paired-end) at the BGI North American NGS lab, generating

approximately 11.2 GB or 87 million reads per sample. Raw reads

were then trimmed using fastp (version 0.20.1) (Chen et al., 2018).

Trimmed reads were then aligned to the giant kelp reference genome

using hisat2 v2.1 with standard parameters (Tajima, 1989). The

genome-wide coverage per sample was approximately two to three

times the expected depth (Kim et al., 2019; Diesel et al., 2023). Bam

files had their duplicates marked using the GATK4 v4.1.2 command

“MarkDuplicates”, and then multiple bam files for a single individual

genotype were collapsed into a single bam file using Samtools (Li

et al., 2009; Van der Auwera et al., 2013).

Genetic variants were called using the GATK4 v4.1.2 with a

ploidy set to 1 (Van der Auwera et al., 2013). Individual GVCF files

were then merged and converted into a raw VCF file containing

variant information and used for downstream applications using

GATK v4.1.2 (Van der Auwera et al., 2013). The raw nuclear VCF

file containing 559 individuals, was then filtered for downstream

genotype-phenotype modeling applications based on vcftools and

GATK4 best practices (Van der Auwera et al., 2013; Danecek et al.,

2021). Mutation classification was done with Snpeff (Cingolani

et al., 2012). A nonstandard database was created using the giant

kelps genome, and the General Feature Format (GFF) is publicly

available from the JGI algal genome portal PhycoCosm (https://

phycocosm.jgi.doe.gov/Macpyr2) (Grigoriev et al., 2021; Diesel

et al., 2023). SnpEff was run with standard settings. Bcftools view

-r was used to generate gene-specific vcf files (Danecek et al., 2021).

For each gene, a vcf file was read into R using vcfR (Knaus and

Grünwald, 2017), and hierfstat was used to calculate Fst, nucleotide

diversity, and Tajima’s D (Goudet, 2005).
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