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Introduction: Mummy berry is a serious disease that may result in up to 70

percent of yield loss for lowbush blueberries. Practical mummy berry disease

detection, stage classification and severity estimation remain great challenges for

computer vision-based approaches because images taken in lowbush blueberry

fields are usually a mixture of different plant parts (leaves, bud, flowers and fruits)

with a very complex background. Specifically, typical problems hindering this

effort included data scarcity due to high manual labelling cost, tiny and low

contrast disease features interfered and occluded by healthy plant parts, and

over-complicated deep neural networks which made deployment of a predictive

system difficult.

Methods: Using real and raw blueberry field images, this research proposed a

deep multi-task learning (MTL) approach to simultaneously accomplish three

disease detection tasks: identification of infection sites, classification of disease

stage, and severity estimation. By further incorporating novel superimposed

attention mechanism modules and grouped convolutions to the deep neural

network, enabled disease feature extraction from both channel and spatial

perspectives, achieving better detection performance in open and complex

environments, while having lower computational cost and faster

convergence rate.

Results: Experimental results demonstrated that our approach achieved higher

detection efficiency compared with the state-of-the-art deep learning models in

terms of detection accuracy, while having three main advantages: 1) field images

mixed with various types of lowbush blueberry plant organs under a complex

background can be used for disease detection; 2) parameter sharing among

different tasks greatly reduced the size of training samples and saved 60% training

time than when the three tasks (data preparation, model development and

exploration) were trained separately; and 3) only one-sixth of the network

parameter size (23.98M vs. 138.36M) and one-fifteenth of the computational

cost (1.13G vs. 15.48G FLOPs) were used when compared with the most popular

Convolutional Neural Network VGG16.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1340884/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1340884/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1340884/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1340884/full
https://orcid.org/0000-0001-7623-2383
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1340884&domain=pdf&date_stamp=2024-03-28
mailto:hcchyu@gmail.com
https://doi.org/10.3389/fpls.2024.1340884
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1340884
https://www.frontiersin.org/journals/plant-science


Qu et al. 10.3389/fpls.2024.1340884

Frontiers in Plant Science
Discussion: These features make our solution very promising for future mobile

deployment such as a drone carried task unit for real-time field surveillance. As

an automatic approach to fast disease diagnosis, it can be a useful technical tool

to provide growers real time disease information that can prevent further disease

transmission and more severe effects on yield due to fruit mummification.
KEYWORDS

mummy berry disease, multi-task learning, transfer learning, convolutional neural
network, blueberry, Monilinia vaccinii-corymbosi, Vaccinium angustifolium
1 Introduction

Lowbush blueberry or wild blueberry (Vaccinium angustifolium

Aiton), is a North American native berry crop which is both

economically and culturally important in Maine and other

Northern New England states in the US, the Canadian Maritime

provinces and the province of Quebec in Canada. The lowbush

blueberry production system can be a major source of income for

growers in this region (Hanes et al., 2015). The state of Maine is the

world’s largest producer of wild blueberry (Obsie et al., 2020).

Nearly 67.7 million pounds were produced in 2017 (nass.usda.gov).

However, lowbush blueberry is highly susceptible to mummy berry

disease caused by the fungus Monilinia vaccinii-corymbosi (Read)

(MVC) (Penman and Annis, 2005). Mummy berry is a serious

disease for many Vaccinium species and can cause up to 70% of

yield loss, especially in the moist oceanic climate where it grows in

Maine and Maritime Canada, posing an economic challenge to

growers and affecting local economies (Hanes et al., 2015).

Correctly identifying mummy berry infection in its early stages and

providing a reasonable estimation of disease severity could play a vital

role in efficient disease control and prevention in the future. Because

management procedures such as determining the timing and dose of

fungicide sprays, as well as the introduction of commercially available

honey bees (Qu and Drummond, 2018) relies upon sufficient

information regarding where, when and how blueberry plants are

infected (Penman and Annis, 2005). Specific information on the

identification of infection sites on leaves, flowers or fruits;

classification of infection stages; and estimation of disease severity

will be useful in managing mummy berry disease. Considering the

range in size of lowbush blueberry fields, which can be up to hundreds

of hectares, automatic mummy berry infection identification

techniques such as Computer Vision and Image Processing (CVIP)

(Vishnoi et al., 2021) are advantageous, not only because of their

extensive labor-saving potential, but also because of the potential

comprehensive disease relevant measurements that can be used in

directing chemical treatments across large crop land areas over time

(Bock et al., 2010). In the near future, a drone carried disease detection

task unit based on CVIP would be a very efficient tool for field disease

surveillance (Liu and Wang, 2021).
02
Computer Vision and Image Processing methods have

previously been used in a wide variety of diagnosis applications in

precision agriculture such as plant species classification, leaf disease

recognition, and plant disease severity estimation (Liang et al.,

2019). In the last decade, many traditional machine learning

models were proposed for the detection and classification of plant

diseases. Rumpf et al. (2010) studied the early diagnosis and

classification of diseases infecting sugar beet based on spectral

plant indexes using Support Vector Machine (SVM). Ramesh

et al. (2018) proposed a disease classification method using

Random Forest algorithms to identify healthy and diseased

images. Waghmare et al. (2016) proposed a Multiclass Support

Vector Machine as a classification model for grape leaves and they

identified diseases like Black rot with a reported accuracy of 96.6%.

Nevertheless, these traditional CVIP methods are heavily

dependent on experience such as manual selection of disease spot

features plus artificial classifiers, which inevitably lead to objective

disease feature extraction (Sastry and Zitter, 2014). In the real

environment, challenges, such as low contrast, high noise of lesions

with respect to the background, large variations in size and scale of

the target area, unstable illumination conditions, and image capture

shooting angle, can compromise the practicality of these

conventional CVIP methods (Alruily, 2021). In contrast, deep

learning approaches, due to their excellent automatic feature

engineering and self-learning capabilities, have resulted in state-

of-the-art performance when compared to traditional CVIP

approaches in different domains (Alom et al., 2019). Among deep

learning methods, Convolutional Neural Networks (CNN) have

shown extraordinary performance in image recognition tasks

(Fuentes et al., 2017). Geetharamani and Arun Pandian (2019)

trained a 9-layer CNN architecture on the PlantVillage dataset with

different epoch, batch size and dropout rate. In the performance

comparison with popular transfer learning approaches, the

proposed model achieved 96.5% classification accuracy on the test

dataset. Lu et al. (2017) proposed a technique to enhance the

identification ability of CNNs to effectively classify 10 rice

diseases through deep convolution neural networks. A similar

approach was also developed by Ferentinos (2018) to recognize

and diagnose plant diseases based on simple leaf images of healthy
frontiersin.or
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and diseased crops. In addition, Fuentes et al. (2017) developed a

practical solution based on a robust CNNs-based detector for real-

time recognition of diseases and pests of tomato plants.

Although the existing deep learning techniques have achieved

significant success in plant disease detection and diagnosis, they

usually train a single model or a set of separate models to solve a

specific task. For example, when addressing the two tasks, such as

plant disease identification and severity estimation, it is common to

train two separate models to optimize their respective performance

metrics. This idea of problem solving is called single-task learning

(STL). Single-task learning ignores over-lapping information

between related tasks that might be very helpful for enhancing

model generality and promoting model performance. Alternatively,

multi-task learning (MTL) can train a system capable of solving

multiple tasks simultaneously by sharing representations between

them (Ruder, 2017). By doing so, MTL can not only achieve higher

detection accuracy than STL by learning joint generalized

representations (Zhang and Yang, 2017), but can also sufficiently

decrease overfitting risk by using the domain information contained

in the training signals of related tasks as an inductive bias.

Furthermore, the joint training of MTL can also shrink the size of

training data (equivalent to data augmentation), which is critical in

dealing with data deficient problems (Caruana, 1997).

To simultaneously identify mummy berry infection sites,

classify disease stages and estimate the severity level for real

farming conditions is difficult. Unlike controllable conditions in

the laboratory, field-taken images of lowbush blueberry usually have

mixed plant parts (leaves, buds, flowers and fruits) embedded in a

very complex background with low contrast posing great challenges

for current deep learning models. The first one is data scarcity due

to the extremely high manual labelling cost. This is the major

obstacle for training deep learning models for different tasks. The

second is the tiny, low contrast disease features that interfered with

and occluded by a complex environment. This requires precisely

capturing these features across various spatial scales. The third is the

larger parameter size and difficulty in training and using it for real

time application, which requires a smaller deep model favoring both

training convergence and responding speed.

Therefore, the main goal of this research was to propose a novel

deep learning model that integrates the techniques, such as residual

learning, coordinate attention mechanism, and group convolution,

into a deep multi-task learning (MTL) approach to simultaneously

accomplish three disease detection tasks of identifying the infection

site, classifying the infection stage, and estimating disease severity.

This deep MTL model is expected to achieve higher detection

efficiency compared with eight state-of-the-art deep learning

models in terms of detection accuracy and parameter size. The

key contributions of this research are as follows:
Fron
1) A deep multi-task learning (MTL) approach was developed

to simultaneously accomplish three mummy berry disease

detection tasks with limited data;

2) Novel superimposed attention mechanism modules applied

to deep learning was found to enhance disease feature

extraction from both channel and spatial perspectives,
tiers in Plant Science 03
enabling better performance in an open and complex

environment compared to other CNNs;

3) Integrating grouped convolution to MTL enabled it to learn

a varied set of low-level and high-level disease features in a

more parallel manner, resulting in a significant reduction in

computational complexity and faster convergence.
2 Materials and methods

2.1 Overview

This research investigated a deep learning based MTL

framework to simultaneously identify infection sites (where

diseased tissues are located), classify the infection stage (primary

or secondary stage) and estimate the infection severity from raw

images of lowbush blueberry stems. The task of building a deep

MTL framework contains three main procedures represented as

blocks, which are data preparation, model development and model

exploration (Figure 1). In the data preparation block, healthy and

diseased blueberry images were collected from fields and online

resources and were manually labeled with the infection status.

These labeled images were varied for the purpose of

augmentation and were randomly distributed into three training

datasets and three testing datasets. In the model development block,

EfficientNet (Tan and Le, 2019) was used as the protype to establish

the deep MTL framework having one parameter sharing module

and three task-specific modules. Once the deep MTL framework

(model) was formed, four instances of it with variations in

parameters and configurations were generated, trained and tested.

In the model exploration block, the four model instances were first

compared with the state-of-the-art deep solutions in terms of

accuracy and F1-score (see section 3.2 Evaluation metrics), then

the advantages of using multi-task and transfer learning were

determined by two sets of ablation experiments. Finally, several

applications of mummy berry disease detection and feature maps of

the deep MTL structure were visualized.
2.2. Preliminary

The life cycle of mummy berry disease contains two distinct

stages. In the primary infection stage, successfully overwintered

pseudosclerotia beneath fallen blueberry leaves start developing

apothecia which discharge sexual spores (ascospores) in the early

spring to infect leaves and flowers. Infected leaves often turn from

greenish red or greenish pink color to a rosy brown and sometimes

form a shepherd’s crook or curl. The infected emerging floral buds

usually have a brown discoloration or blighted appearance

(McGovern et al., 2012). Following primary infection, secondary

asexual spores (conidia), appearing as a white to grey powder, are

produced on the infected, blighted leaves and flowers. The

production of asexual spores (conidia) is called sporulation and is

regarded as the phase immediately preceding secondary infection,
frontiersin.org
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although for our modeling we included sporulation as the initial

stage of secondary infection because it is the conidia which are

vectored to the flower resulting in flower infection and subsequent

fruit infection that result in secondary infection. Conidia are

vectored by insect pollinators to open flowers, the conidia then

germinate and grow down the style to reach and infect the ovules.

Infected immature blueberry fruit initially appears waxy green, but

begins to discolor as the disease develops. Finally, the infected

mature berries become gray and shriveled while healthy mature

berries are a waxy blue to purplish color. Secondary infection

subsequently results in a mummified berry (Batra, 1983; Batra

and Batra, 1985).

In reviewing the literature on the pathological characteristics of

mummy berry disease, we emphasize that the symptoms occur only

on leaves (primary infection), flowers (primary infection) and fruits

(secondary infection) of lowbush blueberry plants. The color and

shape of the infected plant organs are identifiable features that

indicate the infection site. Since primary infection symptoms are

only present in leaves and flowers, these can be distinguished by

features such as white, powdery conidia on the sporulating organs

just prior to secondary infection, and the mummified berries can act

as a secondary infection symptom, so that the two infection stages

can be classified from images. Also, the number of infected tissues

and their occupied area on the image can provide useful

information for a disease severity estimation. Therefore, our study

site identification refers to the classification between healthy and

diseased leaves, flowers and fruits (Figure 2). Stage classification is

to distinguish infection phases by examining the symptoms that are

exclusively featured by the primary or secondary infection stages

(Figure 3). Severity estimation was performed by calculating the
Frontiers in Plant Science 04
percentage of area occupied by the diseased tissues in relation to the

whole image (Figure 4).
2.3 Dataset

2.3.1 Data collection
The dataset created for this study contains raw images of

healthy and diseased blueberry flowers, leaves and fruits. Our

primary image source was research scientists at the University of

Maine, Orono, Maine USA. Over the past several years, hundreds

of lowbush blueberry images were acquired from the University of

Maine’s lowbush blueberry experimental fields. These images were

taken in a wild blueberry growing environment with a complex

background. However, the number of raw blueberry images were

still far less than the requirement of deep neural network training

and validation. Therefore, we also used python Scrapy

(www.google.com) to search and extract online mummy berry

images, such as Google and the National Ecological Observatory

Network (Bugwood.org) to expand our dataset. The extra images

collected online not only helped to alleviate a data deficiency

problem, but were useful for generalizing the training features of

mummy berry disease, which is an effective way of reducing the risk

of overfitting (Perez and Wang, 2017).

2.3.2 Data labeling
A total of 927 raw blueberry images were collected which

includes the categories of healthy and diseased flowers, leaves and

fruits. The labeling process aimed at manually classifying each

image to the corresponding categories according to its feature.
FIGURE 1

Overview of the three tasks of the mummy berry disease detection research: data preparation, model development and exploration.
frontiersin.org
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For example, an image having the content of mummified berries

was labeled as infected fruit and secondary infection stage. The

labeling process was assisted by domain experts with their

pathological expertise in mummy berry disease. Based on the

obtained images, three datasets were generated to solve the three

tasks of disease recognition. The three datasets were named as

infection site identification dataset (Figure 2), infection stage

classification dataset (Figure 3) and severity estimation

dataset (Figure 4).

The infection site identification dataset consists of the images

featuring healthy and diseased flowers, leaves and fruits, which was

divided into 6 categories (Figure 2, Table 1); the infection stage

classification dataset contains three categories of symptom images.

The first is the healthy category that consists of healthy flowers,

leaves and fruits. The second category is the primary infection stage

involving infected pinkish leaves and emerging floral buds. The

third category is the secondary infection stage featuring sporulating

leaves and flowers, as well as mummified fruits (Figure 3, Table 2):

the severity estimation dataset was created by calculating the

percentage of area occupied by infected tissues in the whole

image. This calculation was done by using an image segmentation

method (Haralick and Shapiro, 1985) with manual corrections

where necessary. For certain severity ranges, labels were assigned

as follows: healthy (< 0.5%), very low (0.5% ~ 5%), low (5% ~ 10%),

high (10% ~ 15%) and very high (>15%) (Figure 4, Table 3).

2.3.3 Data augmentation
Complex models particularly deep learning ones tend to suffer

overfitting when trained with small narrowly constituted datasets
Frontiers in Plant Science 05
(Shorten and Khoshgoftaar, 2019). To address this issue, data

augmentation techniques were used to generate synthetic samples

of the raw data in order to increase the generalization ability of the

deep model (Perez and Wang, 2017). In this work, two distinct

techniques of data augmentation were employed. The first data

augmentation technique utilizes horizontal and vertical mirroring

(Figures 5B, C) of the original images (Figure 5A). While the second

data augmentation technique adjusts brightness, contrast, and

saturation of the original images (Taylor and Nitschke, 2018)

(Figures 5D–F). By doing this, the number of images in the

original three-category dataset was increased. Considering the

balance of data between categories, the total images in each of the

three datasets were expanded to approximately 1200 images.
2.4 The model

2.4.1 Theory of deep multi-task learning
One challenge of mummy berry disease detection is that the

images of blueberry plants are usually a mixture of different plant

parts with various visual focal distances and complex backgrounds.

This challenge greatly restricts the conventional image

segmentation methods for feature extraction and consequently

causes a large uncertainty in recognition and classification. Deep

learning architecture can take advantage of automated feature

engineering to avoid the dependence on prior domain knowledge

and human interventions in feature extraction. Convolutional

neural networks (CNNs) are typical representations of deep

learning architecture for image-based classification. The
B C

D E F

A

FIGURE 2

Examples of mummy berry infection site: healthy flowers (A), healthy leaves (B), healthy fruits (C), infected flowers (D), infected leaves (E) and
infected (mummified) fruits (F).
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procedure of any CNN-based deep learning solution can be divided

into two separated working phases, which are feature extraction and

feature classification. The first phase takes raw images and outputs a

feature vector to the second phase. Then the later processes the

feature vector and outputs the result according to the specific

classification requirements.

Another challenge using MTL is that compared with single task

solutions, the accomplishment of multiple tasks (i.e., infection site

identification, stage classification and severity estimation), may

require larger training sample sizes, take more time to train, and

experience higher risks of overfitting data. However, this problem

can be solved if we sufficiently utilize the common knowledge

among tasks instead of processing them separately, which leads to

the multi-task leaning(MTL) concept in a deep learning
Frontiers in Plant Science 06
architecture (Zhang and Yang, 2017). Multi-task Learning aims to

take advantage of useful information obtained frommultiple related

tasks and by doing so, helps improve the generalization

performance of all the tasks (Caruana, 1997). In order to fully

characterize MTL, we provide a commonly accepted definition of

MTL (Ruder, 2017).

2.4.2 MTL Definition
Givenm learning tasks Ti  f gmi=1 where all the tasks or a subset of

them are related, multi-task learning aims to help improve the

learning ability of a model for Ti by using the knowledge contained

in all or in part of the m tasks. Based on the definition of MTL, we

focus on supervised learning tasks since images in this study were

already precisely labeled. In the setting of supervised learning tasks,
B

C

A

FIGURE 3

Examples of infection stage: healthy (row (A), primary infection (row (B), and sporulation on leaves initiating secondary infection, and secondary
infection of mummified fruit (row (C).
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usually a task Ti is accompanied by a training dataset Di consisting

of ni training samples, i.e.,  Di =   Xi
j , y

i
j

n oni

j=1
, where Xi

j ∈ Rdi is the

jth training instance in Ti and yij  is its label. We denote Xi as the

training data matrix for Ti, i.e., Xi = (Xi
1,…,Xi

ni ). Here we consider a

general setting for MTL that all the Xi are different from each other.

Therefore, our theoretical solution was that within a CNN

architecture, firstly we employed a hard parameter-sharing

technique (Caruana, 1993) to extract feature vectors for the three

tasks because we hypothesized that many features are likely to be

shared between images in the infection site, stage and severity

datasets. For example, features indicating infection stage can be

used to infer the site of infection, e.g., pixels of mummies can also be

used to identify the secondary infection stage. Once the feature

vectors were produced, we utilized the three task-specific deep

structures to simultaneously perform site identification, stage

classification and severity estimation. The theoretical solution is

summarized in Figure 6 (the technical details are given in the

following implementation section).

2.4.3 Deep MTL model implementation
The Deep MTL model for mummy berry disease recognition is

composed of four modules: one Parameter-sharing module and three

Task-specific modules Figure 6. The Parameter-sharing module is the

most front basic module and takes raw pixels of plant images as input

and automatically extracts features feeding the Task-specific modules.

The Parameter-sharing module was constructed based on the basal

deep structure of EfficientNet, which is a family of CNNs released in

2019 by Google AI (Tan and Le, 2019). We chose EfficientNet as the

protype to implement the Parameter-sharing module of the Deep

MTL because it offers excellent scaling ability in several dimensions

such as network width, depth, and image resolution in either a simple

or compound manner. This scaling ability allows EfficientNet to
Frontiers in Plant Science 07
achieve ideal balance between accuracy and the size of

network parameters.

Specifically, the Parameter-sharing module was made up of nine

phase operations Table 4. We intentionally removed the final phase

operation of the EfficientNet to compress the output channel.

Therefore, the output channel of the Parameter-sharing module

was compressed to 320 channels.

The Task-specific module was constructed based on the residual

unit (He et al., 2016) and featuring was performed with the

attention mechanism (Hou et al., 2021) and the group

convolution operation (Su et al., 2020) because successfully

identifying fine features such as conidia on sporulating tissues is

critical for infection stage classification. The Residual unit was

employed to address the degradation problem and difficulties in

learning identity maps for multiple non-linear layers, which have

been proven effective in many visual tasks. Attention mechanisms

(AM), used to “tell” a model ‘what’ and ‘where’ to attend, have been

extensively studied (Mnih et al., 2014; Xu et al., 2015) and widely

deployed for boosting the performance of modern deep neural

networks. There are three typical AMs, i.e., The Squeeze-and-

Excitation Networks (SE) (Hu et al., 2018) focuses on the

attention information of the feature channels, the Convolutional

Block Attention Module (CBAM) (Woo et al., 2018) uses both

channel and spatial AM in a serial manner, and the Collaborative

attention mechanism (CA) (Hou et al., 2021) employes both

channel and spatial AM, but in a parallel manner.

In general, a visual attention mechanism can enhance

information extraction from a channel or spatial perspective, or

both. Channel-based AM boosts specific feature layers (i.e.,

channels) possessing more interesting information and lessens

others in the feature map, while the spatial-based AMs can focus

on specific interesting region of the feature space and ignore the

background. The different characteristics of AM varieties and their

successful applications indicate that the combination of these AMs

in deep neural networks could be effective to solve this problem.
B C D EA

FIGURE 4

Examples of primary infection severity estimation: healthy (A), very low (B), low (C), high (D), very high (E).
TABLE 1 The number of images in each of the six categories of the
infection site identification dataset after data augmentation.

Infection site identification dataset

Healthy flower 222 Infected flower 144

Healthy leaf 104 Infected leaf 90

Healthy fruit 172 Infected fruit 370

Total 1102
TABLE 2 The number of images in each of the three categories of
infection stage classification dataset after data augmentation.

Infection stage classification dataset

Healthy Primary
infection

Secondary
infection

Total

505 384 336 1225
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Because focusing on features of interest across various spatial scale

and abstract levels could be vital for extracting disease features from

complex backgrounds with likely occlusions.

We proposed a superposed structure combining the three

attention mechanisms (SE, the CBAM, CA) in the CNN. After

the convolutional layer, the features are learned in different

channels by the SE attention mechanism, then by CBAM

attention mechanism, learning through both the channel and

space. Next, they are passed to the CA attention module to

extract feature information as well as feature location information

on the feature channels, and finally passed to the pooling layer and

the fully connected layer. Figure 7 delineates the structure of the

Task-specific module.

The grouped convolution was also applied to use different sets

of convolution filter groups on the same input image. It allows one

to create two or more deep learning models that can be trained and

backpropagated in a parallel manner (Su et al., 2020). In other

words, this approach creates a deep network with a limited number

of layers, so that they are replicated to form multiple pathways for

convolutions on a single image.
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The Parameter-sharing module and the three Task-specific

modules formed the main structure of the Deep MTL model,

which was named in this study as the MummyBerryNet. The

workflow of MummyBerryNet is as follows. First, the raw images

of the three tasks are alternately input into the Parameter-sharing

module to obtain three feature vectors. Then, each feature vector is

input into the corresponding Task-specific module, and finally the

classification result is obtained through the fully connected layer.

The architecture of MummyBerryNet is described in Table 5.

2.4.4 Four instances of the deep MTL model
The baseline network, EfficientNet, is a family of eight versions of

CNNs with different tradeoffs between performance and network size

ranging from 5.3M to 66M parameters (Tan and Le, 2019). It provides

a variety of options to achieve an expected accuracy with an affordable

computational cost. Considering the uncertainty and complexity of

mummy berry disease recognition, the exploration of the fitness of

these models to the real and complex environment is worthwhile.

Therefore, our solution was to choose four models to generate four

instances of the Parameter-sharing module. The selection criterion
TABLE 3 The number of images in each of the five categories of severity estimation dataset after data augmentation.

Severity estimation dataset

Healthy Very low Low High Very high Total

531 251 112 130 204 1228
B C

D E F

A

FIGURE 5

Example of data augmentation: original image (A). Images (B, C) represent variants by flipping the original image horizontally and vertically, whereas
images (D-F) represent variants by corrupting the original image in brightness, contrast and saturation, respectively.
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used is as follows: we estimated the accuracy-cost ratio of eight versions

and selected the top four as the candidate baseline networks (Figure 1.

Model Size vs. ImageNet Accuracy of Tan and Le, 2019), which were

EfficientNet-B0, B1, B2 and B3. Their parameter sizes were therefore

compressed into the range between 5.3M and 12M. The four instances

of the Deep MTL model, which was previously named as

MummyBerryNet, were: MummyBerryNet-B0, MummyBerryNet-B1,

MummyBerryNet-B2 and MummyBerryNet-B3. The four instances of

MummyBerryNet were different in the Parameter-sharing module but

were almost the same in the Task-specific modules, as shown in

Table 6, Tables A1-A4 (see Appendix). After model implementation,

we then trained for and conducted experiments on each of the four

instances independently.

2.4.5 Training the deep MTL model
In the training process, we converted the input images (i.e., the

training samples obtained from offline data augmentation, see

subsection 2.3.3.) with the fixed size of 224 × 224 × 3 to meet the

input size requirements of MummyBerryNet. The number of
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images in the training and testing datasets were kept at a 70/30

ratio. To train MummyBerryNet for the three mummy berry

recognition tasks, several batches of computation were conducted.

MummyBerryNet received new image samples from each new

training batch. Each sample consists of images from all three

tasks. The network weights were adjusted repeatedly until

MummyBerryNet learned the most relevant discriminative

features for a given task, i.e., the cross-entropy loss of the deep

neural network converged. The training was performed by adapting

pre-trained networks on the ImageNet dataset, which was achieved

by means of transfer learning (details below). The four instances of

MummyBerryNet were trained end-to-end, without freezing the

training of any other layers. The stochastic gradient descent (SGD)

algorithm was employed to improve the performance for all

experiments. The learning rates were dynamically decreased by 1/

10 at every 15 epochs during training, with the initial learning rate

set at 0.005 for the first step. The weight decay of 0.0001 and batch

size of 16 were used in the training process. The specifications of the

optimizer and parameters for training MummyBerryNet are listed
FIGURE 6

Architecture of our Deep MTL model, which is composed of a parameter-sharing module and three task-specific modules for simultaneously solving
the three tasks (infection site identification, stage classification and severity estimation). FC stands for Full Connected Layer.
TABLE 4 The structure of the Parameter-sharing module based on the EfficientNet baseline network – Each row describes a phase i with Li layers,
with input resolution <Hi, Wi> and output channels Ci (Tan and Le, 2019).

Phase
i

Operator
Fi

Resolution
Hi × Wi

Channels
Ci

Layers
Li

1 Conv3×3 224×224 32 1

2 MBConv1, K3×3 112×112 16 1

3 MBConv6, K3×3 112×112 24 2

4 MBConv6, K5×5 56×56 40 2

5 MBConv6, K3×3 28×28 80 3

6 MBConv6, K5×5 14×14 112 4

7 MBConv6, K5×5 14×14 192 5

8 MBConv6, K3×3 7×7 320 1

9 Conv1×1 & Pooling & FC 7×7 1280 1
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in Table 7. To implement this in Keras, we defined a step decay

function and used LearningRateScheduler callback to take the step

decay function as the argument and return the updated learning

rates for use in the SGD optimizer.

To make the training more efficient and achieve better

performance of the CNN-based MummyBerryNet in the context

of data limitation, the transfer learning technique was applied.

Training was performed by adapting pre-trained networks on the

ImageNet dataset. In this study, we only loaded the pre-trained

weights of EfficientNet into the Parameter-sharing module of

MummyBerryNet, while the weights of the Task-specific modules

were initialized randomly. In particular, in order to apply the pre-

trained weights to the Parameter-sharing module, we eliminated the

weights of the ninth phase of the convolution and the fully

connected layer.
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3 Experiments

3.1 Experimental setup

In order to evaluate the efficacy of our model in solving the

three tasks of mummy berry disease detection, the performance of

training and testing the CNN-based MummyBerryNet was first

evaluated by widely accepted metrics (see below), then three model

exploration experiments were conducted. They were: 1) the

performance comparisons between the state-of-the-art deep

learning models; 2) the ablation experiments for testing the effects

of MTL scheme and transfer learning; and 3) the visualization

for several mummy berry disease detection applications.

Ablation experiments are used to study the performance of an AI

(artificial intelligence) system by removing certain components,

to understand the contribution of the component to the

overall system.

The deep learning frameworks used for performance

comparisons were AlexNet, VGG16, ResNet50, MobileNetV2, and

EfficientNet. The selection of these six deep learning models was

motivated by the fact that, except for EfficientNet, the other eight

models (AlexNet, VGG16, ResNet50, MobileNetV2, EfficientNet-

B0, EfficientNet-B1, EfficientNet-B2 and EfficientNet-B3) have

established themselves as the most renowned and widely used

CNNs for image classification tasks. These CNNs are widely used

as benchmarks for evaluating deep learning models (Chen et al.,

2023). MummyBerryNet was compared with the six state-of-the-art

deep learning frameworks under the same experimental

configuration conditions. In the experimental process, we found

that the initial learning rate had a strong influence on the

performance of all models. By conducting multiple experiments

on a training set, we determined the optimal learning rates for six

models ranged from 0.001 to 0.005. In contrast with the transfer

learning process of MummyBerryNet, which was given previously,

we first loaded all the pre-training weights for the six state-of-the-
FIGURE 7

Structure of the Task-specific modules. Input comes from the feature vectors. The magnified part at the right detailed the structure of the attention
mechanism module imbedded in the left structure. SE stands for the Squeeze-and-Excitation Networks, CBAM stands for the Convolutional Block
Attention Module, and CA stands for the Collaborative attention mechanism.
TABLE 5 The architecture of the Deep MTL model: MummyBerryNet.

Layer name Output tensor Configurations*

Input 3×224×224 Augmented images

Parameter-
sharing module

320×7×7 EfficientNet

Task-specific module 2048×5×5 1� 1,   320

3� 3,   640

1� 1, 1280

3� 3, 2048,C = 32

2
666666664

3
777777775
� 3

FC1 6-classes

FC2 3-classes

FC3 5-classes
*‘1×1′and ‘3×3′indicate the convolution operation with kernel equal 1 or 3; ‘C’ represents
channel of convolution. ‘FC’ stands for Fully Connected Layer.
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art models, and then modified the number of output features of the

fully connected layer to train them.

The ablation experiment had two purposes: 1) evaluate the

impact of transfer learning on model performance in contrast with

the scenario where no transfer learning was applied; and 2) test the

advantages of knowledge sharing for multiple-task learning.

Therefore, we disintegrated the Deep MTL model into several

STL modes, trained them and then compared them with the

original MTL model. The experimental configuration of the two

ablation experiments was basically the same as that in the

comparison experiment.

All experiments were conducted based on the publicly available

code of PyTorch (Machine learning open-source library)

framework and a CPU/GPU platform which was built with a

Xeon(R) 2.20 GHz (E5-2650 v4) CPU, 128 GB of memory and

one Tesla P100-PCIE-12GB Graphics board.
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3.2 Evaluation metrics

To estimate the effectiveness of MummyBerryNet in solving the

MTL problem of mummy berry disease detection, the metric of accuracy

was used. Specifically, the metric of accuracy is defined as the proportion

of true results (including both the True Positives and the True Negatives)

among the total number of samples examined (Equation 1):

Accuracy =
TP   +  TN

TP   +TN   +FP   +   FN
(1)

where TP=True Positive, FP=False Positive, TN =True Negative,

and FN=False Negative rates.

However, accuracy carries more weight on the True Positives

and True Negatives than the False Positives and Negatives. This

may bias perception of the disease detection results. Furthermore,

accuracy has been found to be sensitive to imbalanced samples.
TABLE 6 Configurations of the four instances of MummyBerryNet.

Input layer

Model instances

Input Parameter-sharing
module

Task-specific
Module1

FC12 FC2 FC3

MummyBerryNet-B0 3×224×224 EfficientNet-B0,
Output: 320×7×7

(Table A1)

1� 1,   320

3� 3,   640

1� 1, 1280

3� 3, 2048,

C = 32

2
6666666666664

3
7777777777775

� 3

Output: 2048×5×5

6 classes 3 classes 5 classes

MummyBerryNet-B1 3×240×240 EfficientNet-B1,
Output: 320×8×8

(Table A2)

1� 1,   320

3� 3,   640

1� 1, 1280

3� 3, 2048,

C = 32

2
6666666666664

3
7777777777775

� 3

Output: 2048×6×6

MummyBerryNet-B2 3×260×260 EfficientNet-B2,
Output: 352×9×9.

(Table A3)

1� 1,   320

3� 3,   640

1� 1, 1280

3� 3, 2048,

C = 32

2
6666666666664

3
7777777777775

� 3

Output: 2048×7×7

MummyBerryNet-B3 3×300×300 EfficientNet-B3,
Output:384×10×10

(Table A4)

1� 1,   320

3� 3,   640

1� 1, 1280

3� 3, 2048,

C = 32

2
6666666666664

3
7777777777775

� 3

Output: 2048×8×8
fr
1‘1×1′ and ‘3×3′ indicate the convolution operation with kernel equal 1 or 3 and ‘C’ represent channel of convolution. 2: 2 ‘FC’ stands for Fully Connected Layer.
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To overcome this problem, we added the F1-score to balance

the evaluation metrics, which gives more weight to False Negatives

and False Positives, and also performs better when the sample

classes are imbalanced (Qu and Liu, 2020). The F1-score is defined

as (Equations 2–4):

F1 − score =
2   *  Precision   *  Recall

Precision + Recall
(2)

where,

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
  (4)

The third metric used was certainty, which was used for

mummy berry disease detection applications. For each run of the

MummyBerryNet model, the output is a vector containing the

likelihood that the detection result should be classified to a category.

The category with the maximum likelihood or certainty value is

then regarded as the prediction result of the model. We applied the

Softmax function (Liu et al., 2016) to an n-dimensional vector of the

model output and rescaled them so that the elements of the n-

dimension were in the range [0,1] and summed to 1. The output of

the Softmax function is defined as the detection certainty of an

input image (Equation 5):

Softmax(Xi) =
exp(Xi)

ojexp(Xj)
(5)

where X represents the n-dimensional vector outputted by

MummyBerryNet, Xi represents a component of X, o
j
  exp   (Xj)

represents the sum of X.
4 Results

4.1 Model training and validation

After inspection of the dynamics of cross entropy loss and accuracy

in both the training and validation process of the four instances of

MummyBerryNet, we found that the well trained MummyBerryNet is
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a good-fit model for mummy berry disease detection. Overall, the

training loss decreased very quickly before epoch 10, then continuously

but slowly went down and started to converge after epoch 30,

suggesting an effective training process Figure 8. The differences of

cross entropy loss between training and validation were less than 5%,

which demonstrated that MummyBerryNet can learn the fundamental

patterns of mummy berry disease in the training samples and had

excellent generalizability across different datasets without overlapping.

Our results also showed that MummyBerryNet’s risk of overfitting is

fairly low. As for accuracy, MummyBerryNet also quickly reached the

best performance zone, higher than 95%, after epoch 15. The overall

speed of convergence of the four instances of MummyBerryNet was

better than our expectation, which can be explained by the contribution

of transfer learning and weight sharing among tasks. The total number

of parameters (Parameter-sharing plus Task-specific modules) of the

four instances of MummyBerryNet ranged from 21.4M to 28.4M (see

Table A5 in Appendix A). The four instances were only 30% of the size

of the biggest NefficientNet version (B7).

All four instances of the MummyBerryNet model achieved high

accuracy and F1-scores Table 8 in mummy berry disease detection. In

the infection site identification task, the first instance, i.e.,

MummyBerryNet-B0 had the highest accuracy (96.81%) and F1-

score (97.03%) and the lowest record was obtained by

MummyBerryNet-B2 with an accuracy of 95.63% and F1-score of

95.50%. In the infection stage classification task, MummyBerryNet-B1

achieved the highest accuracy of 97.13% and the highest F1-score of

97.68%, while the lowest accuracy and F1-score were recorded by

MummyBerryNet-B2. The second instance MummyBerryNet-B1 also

achieved the best accuracy of 96.51% and best F1-score of 92.04% in the

severity estimation task, which can be regarded as the best candidate of

the four instances of our Deep MTL model, if we also take into

consideration that it had the second smallest parameter size and the

second lowest computational cost (see Appendix A, Table A5).

A Confusion matrix is an important statistical tool used for

machine learning model analysis to evaluate the performance of a

classification task. It represents the relationship between the

predicted results and the true labels generated by the model. This

matrix is a tabular representation that displays the count of accurate

and inaccurate predictions made by the model through a

comparison of predicted values with the actual values Figure 9.

The elements on the diagonal represent the count of samples

correctly predicted by the model, whereas the off-diagonal

elements represent misclassifications. In multi-class classification

tasks, the accuracy of the model for each category can be accurately

calculated by analyzing the diagonal elements.
4.2 Comparisons

The systematic comparisons between the four instances of

MummyBerryNet model and the eight state-of-the-art CNNs

demonstrated that the MummyBerryNet model outperformed the

eight CNNs (Figure 10; data can be found in the Appendix B, Table

B2). In the site identification task, MummyBerryNet-B0, B1 and B3

achieved the highest accuracy and F1-score, while the AlexNet and

MobileNetV2 were the lowest detectors, which were around 14% lower
TABLE 7 Specification of the optimizer and parameters for
training MummyBerryNet.

Parameter Setting

Optimizer Stochastic Gradient Descent (SGD)

Loss function Cross-Entropy

Learning rate* 0.005

Epochs 50

Batch size 16

Weight decay 0.0001

Momentum 0.9
∗ Decreased by a factor of 1/10 at every 15 epochs.
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TABLE 8 Performance1 of the four instances of MummyBerryNet on the validation dataset.

Instance of the Model Site identification Stage classification Severity estimation

Accuracy F1-score Accuracy F1-score Accuracy F1-score

MummyBerryNet-B0 96.81 97.03 96.26 96.83 95.91 92.31

MummyBerryNet-B1 96.52 96.56 97.13 97.68 96.51 92.04

MummyBerryNet-B2 95.63 95.50 95.68 96.25 95.91 92.14

MummyBerryNet-B3 96.52 96.72 96.55 97.04 95.91 91.12
F
rontiers in Plant Science
 1
3
1The best model performance is shown in bold.
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A

FIGURE 8

The classification cross entropy loss (left) and detection accuracy (right, in percent) during model training and validation. Panels (A–D) were: the
model loss changing with training and testing iterations of the four instances MummyBerryNet-B0 to B3, respectively; and panels (E–H) were the
detection accuracy changing with training and testing iterations of the four instances: MummyBerryNet-B0 to B3.
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than our model. Even the worst instance of our model

(MummyBerryNet-B2) outperforms the other comparison models in

terms of both accuracy and F1 scores. In the stage classification task, all

four instances of MummyBerryNet were listed as the top-4 best

competitors on both accuracy and F1-score. MummyBerryNet-B1, as

the best detector, was 4.5% higher in accuracy and 5% higher in F1-

score than EfficientNet-B2. In the severity estimation task

MummyBerryNet-B1 overwhelmingly outperformed the other

CNNs. Overall, MummyBerryNet had obvious advantages in site

identification and stage classification compared to the eight CNNs,

but the advantages declined around 1.5% in the severity estimation

task. Due to the complex background and high mixture of plant parts,

as well as noise and distortion, all methods faced a great challenge in

estimating the proportion of diseased plant tissues perfectly.
4.3 Ablation experiments

The results of the ablation experiments demonstrated the

effectiveness of applying MTL and transfer learning. In the first
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ablation experiment, two scenarios were compared to determine

differences between MTL and STL learning in mummy berry

disease detection (Figure 11A, data in Appendix B, Table B3). On

average, MTL can increase detection accuracy by 3% compared to

the STL learning scheme. However, the advantage gained by MTL

was dominated by stage classification, which was 6% higher than the

STL scheme and was twice as high as that in severity estimation.

This result revealed that the advantage of using parameter or

knowledge sharing between different tasks might be negatively

correlated to the amount of information in the training samples

because the disease severity needs much more information per unit

to be accurately estimated than the other two categories, even when

we had balanced the samples for the three tasks for training.

In the second ablation experiment, two scenarios in which model

trainings with or without adopting transfer learning were compared.

As shown in Figure 11B (data in Appendix B, Table B4), transfer

learning can increase disease detection accuracy up to 30%, a large

increase that once again demonstrated the effectiveness of transfer

learning. Almost all of the four instances of MummyBerryNet gained

the same level of enhancement by using transfer learning.
BA

FIGURE 10

Comparations of detection accuracy (A) and F1-score (B) between the four instances of MummyBerryNet and the eight state-of-the-art CNNs in the
three detection tasks: the infection site identification; the stage classification; and the severity estimation.
B CA

FIGURE 9

Confusion matrix for MummyBerryNet model for three tasks: the infection site identification task (A); the infection stage classification task (B); and
the severity estimation task (C).
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4.4 Visualization

4.4.1 Applications
MummyBerryNet-B1, having the optimal tradeoff between

accuracy and computational cost among the four instances of

MummyBerryNet, was selected as the best detector and applied to

three mummy berry disease detection tasks. Figure 12 visualized the

detection results for infection site identification (a), stage

classification (b) and severity estimation (c), respectively. In each

task, a randomly selected image was input into MummyBerryNet-

B1. The detection tasks were then calculated, and the detection

result was listed in tables. Each table had three columns indicating

the ranking of detection probability of each predicted class and

certainty. In the middle panel of Figure 12A, for example, both the

likelihood of diseased leaf and flower in the image were detected

with 95.55% and 4.50% certainty for leaf and flower, respectively.

The detected classes were listed and sorted on descending certainty,

while the classes with zero likelihood were removed from the table.

4.4.2 Feature map inside the deep structure
Deep feature visualization of CNNs can help us to understand

the process of feature extraction from the millions of image patches.

This is also useful to adjust the optimal hyperparameters during

training. The visualization results of deep learning shallow

convolutional neural network conform to the image information

understandable by humans using visual perceptions. This helps us

to intuitively observe and understand the focus area of model

feature extraction in specific disease detection tasks. A feature

visualization was constructed to observe the correspondence

behavior of the first convolution layer of MummyBerryNet in

Figure 13. The visualization demonstrated that feature maps

obtained from the first convolution layer primarily focused on the

color and contour extraction of blueberry flowers, leaves and fruits,

which can clearly show that the lesion areas of mummy berry

diseases received special attention and better explained what our

model had actually learned. In order to present the transformation
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of feature extraction in MummyBerryNet, Figure 14 illustrates the

comparisons between different feature maps obtained by the layers

in the Parameter-sharing and Task-specific module. In the feature

maps, each point was a rectified activation, meaning that the

brighter it was, the greater activation value it represented. The

difference between modules and layers clearly demonstrated that

MummyBerryNet was characterized by an excellent learning

process for fine grain aspects of blueberry plant tissue with disease.
5 Discussion

5.1 Detection of mummy berry disease
under a complex background

This study proposed a deep learning-based computer vision

solution for automatic mummy berry disease detection. To the best

of our knowledge, this is the first method in the lowbush blueberry

research community that can automatically and simultaneously

identify infection site, classify infection stage, and estimate severity

from field acquired lowbush blueberry plant images. The primary

advantage of this machine learning approach is that a

Convolutional Neural Network (CNN) was employed to detect

various diseased plant parts interacting with a complex background,

but no explicit feature engineering was involved (Liu et al., 2020).

Although automatic plant disease detection using deep neural

networks is no longer a “cutting-edge” technique, detecting small

lesions mixed with different types of noise and coexisting plant parts

varying in size, shape, angle, focal distance, and contrast is still a big

challenge (Liu and Wang, 2021), it can be solved by the integrated

attention mechanism. In general, a visual attention mechanism can

enhance information extraction from a channel or spatial

perspective, or both. A channel-based attention mechanism

boosts specific feature layers (i.e., channels) possessing more

interesting information and lessens others in the feature map,

while the spatial-based attention mechanisms can focus on a
BA

FIGURE 11

Efficacy of MTL (A) and transfer learning (TL) (B) in network performance enhancement in the three detection tasks: the infection site identification;
the stage classification; and the severity estimation of the four instances of MummyBerryNet.
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specific region of the feature space and ignore the background. The

different characteristics of attention mechanism varieties and their

successful applications indicated that the combination of attention

mechanisms in deep neural networks is effective to solve this

problem. Focusing on features of interest across various spatial

scale and abstract levels is vital for extracting disease features from a

complex background with likely occlusions, which has been proven

by our experimental results.

In addition, we used a unique deep structure design with the help

of visualization to understand how the focus area of model feature

extraction operates for specific disease detection tasks (Figures C1, C2).
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This approach is particularly effective when dealing with small and low

contrast targets. This is because visualization can help to identify

different traits such as color, shape and contour in different layers

(Nagasubramanian et al., 2019) (Figure 14). Furthermore, our four-

instance model exploration method also greatly helped to refine model

structure for mummy berry disease detection (Picon et al., 2019). In

comparison with a similar technical approach in which a depth-

separable CNN was employed instead of a standard convolution to

detect grape leaf disease (Liu et al., 2020), our method performed better

in detection accuracy even if our counterpart already outperformed the

standard ResNet and GoogleNet structure (Thangaraj et al., 2021).
B

C

A

FIGURE 12

Applications of infection site identification (A), stage classification (B) and severity estimation (C) using MummyBerryNet-B1, the best detector among
the four instances of MummyBerryNet model. In A, the right picture in the second row is an example of a false positive identifying a picture of
another leaf spot as primary infection by mummy berry.
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When it comes to plant disease detection in a complex

background, our method has achieved superior detection accuracy

in contrast with the state-of-the-art CNN-based counterparts (Xie

et al., 2020; Chen et al., 2022; Liu and Zhang, 2022). The most

important explanation is the application of grouped convolutions.

Taking one modular block of a filter group and replicating it allowed

us to build wider networks so that the learned features can be largely

diversified. With the help of grouped convolution, our method is able

to learn a varied set of low-level and high-level features, which is vital

to more accurately detect disease in real farming conditions. In

addition, the data augmentation employed in this work is able to
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capture and add some extra hidden features in the original data set,

which is particularly useful in the context of a complex background

where multi-level features are usually needed (Barbedo, 2018). Our

method has shown better practicability when compared with recent

advances in deep learning-based plant disease recognition solutions,

such as the plant disease classification systems developed by

Ferentinos (2018) and Mohanty et al. (2016) where lesions were

finely focused and the target plant organs were imaged in a laboratory

model with high resolution, simple uniform background and no

overlap among plant organs and other tissues. In the real farming

environment, lighting issues and occlusion problems are common
B

C

D

E F

A

FIGURE 13

Visualization of CNNs (MummyBerryNet) in the initial layers, which consist of a 3x3 convolution and batch normalization. Panels (A, C, E) represent
the original images (size 224× 224) of blueberry flowers, leaves, and fruits, respectively; panels (B, D, F) were the feature maps of flowers, leaves, and
fruits with training (size 112 × 112).
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challenges that have to be considered. In comparison with current

advancements (Martinelli et al., 2015; Liu and Wang, 2020a; b), our

deep MTL method with shared feature capturing has shown an

alternative way to overcome complex and chaotic background issues.
5.2 Multi-task learning with lower
computational cost and higher
training efficiency

The second advantage or enhancement in our model is that

the MTL scheme combined with transfer learning has shown a
Frontiers in Plant Science 18
promising solution for image-based agriculture disease detection

with lower computational cost and higher training efficiency.

This advantage came from the parameter sharing mechanism.

Our unique model structure, one Parameter-sharing module

plus three Task-specific modules in MummyBerryNet, not only

can take advantage of correlated knowledge representations

among tasks to effectively decrease the risk of overfitting

(Caruana, 1997), but also can train multiple tasks all together

to implicitly decrease the required training samples as well as

training time. The hypothesis that many features are shared

between images in the infection site, stage and severity datasets

therefore has successfully been tested. One example is that the
B

C D

E F

A

FIGURE 14

Visualization of feature maps inside MummyBerryNet. Panel images (A-E) were obtained by the Parameter-sharing module (layer), Panel (F) images
were obtained by the Task-specific module (layer).
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pixels of mummies can be used to identify both the infection site

and the secondary infection stage.

The most successful instance of the MummyBerryNet model, i.e.

MummyBerryNet-B1, achieved the highest accuracy and the highest

F1-score in both stage classification and severity estimation, but only

had one-sixth of the network parameter size (23.98M vs. 138.36M) and

one-fifteenth of the computational cost (1.13G vs. 15.48G of FLOPs, see

Appendix A, Table A5) compared with the most popular CNN:

VGG16. This advantage can be even larger if transfer learning is

applied. One surprising finding in our ablation experiments was that

transfer learning can significantly boost the accuracy of severity

estimates (up to 30 percent on average). Since the estimation of

disease severity requires much more information than classifying

diseased plant parts and stages, such as differences in size, density,

color and scale to make a reasonable estimation, this feature also made

our solution very promising for future mobile deployment such as a

drone carried task unit for real-time field surveillance.

The grouped convolutions imbedded into the MTL paradigm is

also an important reason for performance superiority. In this

approach, each filter convolves only on some of the feature maps

obtained from kernel filters in its filter group, resulting in less

redundant convolutions. It allows us to drastically lower the

computations to get output feature maps. It also enables efficient

data and model parallelism, which obviously benefits faster

convergence, compared to the methods proposed by Chen et al.

(2022) and Liu and Zhang (2022).
5.3 Limitations and future
research direction

One of the limitations of MummyBerryNet is that we found all

of its four instances had difficulty in detection of sporulation on

shoots. One example was that in the mummy berry disease

detection application (the first image in the B section of

Figure 12), sporulating tissues had a higher probability of

misclassification than other categories, e.g., the certainty of

secondary infection was only 87.65%. This was due to the very

limited samples of sporulation, which cannot train the deep

structure well enough for the generality necessary for the task of

accurate detection. This made the detection probability even lower

when facing the small size and low contrast feature of sporulating

tissues. We may need more relevant training data and particular

attention to the mechanism (Fukui et al., 2019) of deep learning in

the future version of MummyBerryNet to improve the detection

accuracy. The second limitation was difficulty in the estimation of

infection severity. We found that the accuracy of severity estimation

was always the lowest among the three tasks (Figures 10, 11). It is no

doubt that sophisticated image segmentation with a complex

background decreased the accuracy of severity estimation.

However, we still believe that the primary reason was the manual

labeling of severity levels as the function of infected area. Manually

labeling severity levels doesn’t provide enough information

connecting depth and scale of overlapped organs to a severity
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level. In future research, multi-view approaches (Zhou et al.,

2021) integrating scale-aware information (Zhang et al., 2017)

could be a feasible way to tackle this issue.

Aside from the above objective limitations, the technical

limitation is about how multiple attention mechanisms could be

effectively applied and collaborated with CNN. Although our

experimental results suggested that the use of channel and spatial

AMs are effective there is a need for further tuning to better

facilitate real disease detection applications. In our current model,

superimposing three different attention mechanisms in the residual

blocks, may not be the best solution in terms of accuracy and

performance. The superimposed attention mechanisms may be

redundant in the feature extraction process by repeatedly

extracting image features on different channels and spaces,

leading to unexplainable results. However, due to the limitation

of interpretability of deep learning, it is still unclear how these

channel or spatial AMs should be combined and how the

combination of AMs should be incorporated into the deep neural

networks to effectively detect sporulation on shoots. The type of

AMs, the number of AMs and their positions in the deep neural

network need to be systematically investigated in future research.

Due to the limited resources, this research was not able to conduct

this investigation. But it is important to examine this uncertainty of

AM corporation in tiny feature detection in an open and

complex environment.
6 Conclusion

To solve the practical problem of field disease surveillance, this

research proposed an innovative multi-task learning mode for mummy

berry disease diagnosis. The model integrated the techniques, such as

residual learning, coordinate attention mechanism, and group

convolution, into a deep multi-task learning (MTL) approach to

simultaneously accomplish three disease detection tasks of identifying

infection sites, classifying infection stages, and estimating disease

severity. This deep MTL model achieved higher detection efficiency

compared with the state-of-the-art deep learning models in terms of

detection accuracy and performance, due to the three key

contributions: 1) the MTL approach can simultaneously accomplish

three mummy berry disease detection tasks with limited data; 2) A

novel superimposed attention mechanism modules applied to deep

learning can enhance disease feature extraction from both channel and

spatial perspective, enabling better performance in open and complex

environment compared to other CNNs; and 3) Integrating grouped

convolution to MTL enables to learn a varied set of low-level and high-

level disease features in a more parallelism manner, resulting a

significant lower computational complexity and faster convergence.

These features make our solution very promising for future mobile

deployment such as a drone carried task unit for real-time field

surveillance. As an automatic approach to fast disease diagnosis, it

can be a useful technical tool to provide growers real time disease

information that can prevent further disease transmission and more

severe effects on yield due to fruit mummification.
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