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1 Introduction

The greatest food crop in the world, maize, is crucial to ensuring national food security

and an efficient supply of agricultural goods (Collins et al., 2018; Hall et al., 2021; Song et al.,

2022). The first step in increasing corn yields is to pick high-quality cultivars

(Xanthopoulos, 2020; Tu et al., 2022). Seed vigor is an essential test item in the

protocols for inspecting the quality of seeds due to it could accurately measure and

predict the quality of seed development in the field as well as the potential germination rate,

seedling emergence rate, seedling growth potential, plant resistance, and production

potential. It is a key indicator for assessing the quality of seeds (Huayta-Hinojosa et al.,

2022; Jin et al., 2022; Tetreault et al., 2023). High-vigor seeds are a crucial assurance of

successful harvests and higher agricultural product yields since they have apparent growth

advantages and output potential (Riveiro et al., 2020). The International Association of

Seed Testing (IAST) recommends several methods for determining seed vigor, including

germination, cold resistance, accelerated aging, conductivity, and enzyme activity

(Fenollosa et al., 2020; Ma et al., 2020; Ali et al., 2022; Zhang et al., 2023). Traditional

vigor testing techniques have drawbacks including lengthy measurement times, heavy seed

usage, subpar measurement accuracy, and low sensitivity (Peng et al., 2018; Zhu et al., 2019;

Pang et al., 2020, Pang et al., 2021). The advancement of seed vigor detection technology

has raised the bar for modern agriculture. The hotspot and trend of current mainstream

research is machine learning-based detection technology, which is a non-contact direct

measuring method with the benefits of being direct, quick, true, and dependable (Medeiros

et al., 2020; Wen-ling et al., 2020; Sun et al., 2021; Tu et al., 2023).By using RGB to obtain

corn seed images, the authors combined HSI and 3DCNN to establish an optimal classified

corn seed vitality model (Fan et al., 2023). In farming, measuring seed vigor is crucial, and a

non-destructive machine vision method for detecting seed vigor can aid in a more accurate

assessment of seed quality. This provides seed companies with a better basis for decision-
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making when selecting cultivars and managing plantings (Yasmin

et al., 2019; Tu et al., 2023). The digital image of soybean was

obtained by using RGB, and the character of soybean was evaluated

automatically by using Python Algorithm (Ghimire et al., 2023).

The performance of a neural network-based model to identify plant

species from paramo seeds via optical RGB images (Ropelewska

et al., 2023). High-quality datasets are crucial for accurate machine

vision algorithms in seed vigor detection and classification. Yet,

current datasets still suffer from several problems below.
Fron
(1) Sample imbalance: The dataset for seed vitality has an

unequal distribution of seed samples across various

categories, leading to a significant gap between the

number of samples in each category. It could cause the

model to be biased towards predicting categories with more

seed samples, thus decreasing the accuracy of predicting

categories with fewer samples. Eventually, the accuracy of

the model will be negatively impacted.

(2) Sample noise: Obtaining accurate seed vigor sample data is

important to ensure proper analysis and model

construction. Measurement errors, disturbances during

data collection, sampling errors, and other factors can

lead to inaccurate data that may mask the true pattern of

the data and lead to misinterpretation. Additionally, seeded

vitality datasets may contain noisy data, such as mislabeled

and duplicate samples, which would negatively impact

model training and testing and ultimately reduce

model accuracy.

(3) Lack of data diversity: An unbalanced and incomplete

distribution of state data in a seeded vitality dataset, even

failing to encompass the entire data space or relevant

situations, is likely to have a negative impact on the

performance of the model and its ability to classify effectively.

(4) Incomplete data: When the data in the seed vitality dataset

is incomplete, it means that there are missing values or

important features of the seed that are not included, which

will affect the accuracy and interpretability of the model.

(5) Inconsistencies in data sources: The dataset contains

samples from various seed data sources or collection

methods, resulting in differences that cause issues like

spatial and temporal inconsistencies between the data.

Such inconsistencies would negatively affect the training

and prediction of the model and eventually impacts the

overall efficacy of the model (Liu et al., 2020).
To improve the accuracy of corn seed vigor detection, a new

corn seed vigor dataset was created that included a standard

germination test under six contrasting conditions. The dataset

includes photographs of corn seeds taken at regular intervals and

categorized based on their germination status, primary and

secondary root growth. The dataset allows researchers to

predicting and grading seed germination and vigor, providing a

reliable data source for the study of improving corn seed vigor.

Additionally, the method of data collection provides a reference for

other seed vigor prediction data collection and improves the validity
tiers in Plant Science 02
of non-destructive seed vigor identification and testing data in

smart agriculture. It also provides a more scientific approach to

seed vigor data collection.
2 Values of the data

(1) We conducted an experiment to collect a substantial amount

of data on the germination process of maize seeds. The goal was to

observe the changes in characteristics, morphology, and color

throughout the entire process. Non-fixed shooting was used to

capture diverse germination data. By recording germination data at

hourly intervals, it was possible to efficiently analyze the seed

development process and create accurate and automated testing

models for seed quality assessment. This dataset is reliable and

useful as it reduces the impact of sample imbalances, inconsistent

data sources, and incomplete data.

(2) Seed vigor detection greatly benefits from the seed dataset of

RGB images, which is enriched in feature information including

morphology, structure, and texture. Compared to traditional

methods, RGB images of seeds offer advantages such as low cost,

easy obtainability, non-contact capability, and low computational

consumption. These advantages make nondestructive seed vigor

detection more practical and valuable for research and application.

(3) The datasets complement databases for the detection of seed

vigor and standard germination processes. These data are vital for

researching seed vigor classification, predicting germination, and

evaluating and detecting vigor. By analyzing the data, the

researchers can accurately detect seed vigor and predict

germination ability, leading to improved seed quality and

crop yield.
3 Materials and methods

3.1 Selection of materials

In the experiment, we selected Meiyu 817 maize seeds. The

seeds are known for their strong resistance, high production rate,

and wide cultivation in Northeast China. Figure 1 displays the

various stages of germination for the sample, including

ungerminated, germinating, germinated, primary root, and

secondary root. These stages depict the different phases of seed

germination, and the sample is visible in Figure 1 below.
3.2 Experimental condition

The experiment consisted of six groups, with each group

consisting of 200 seeds. Initially, the maize seeds were

categorized into three groups based on the aging experiment,

with aging times of 0d, 3d, and 6d, respectively, in a 45°C constant

temperature oven. The remaining three groups were stored in

environments with temperatures of 20°C, 0°C, and -20°C,

respectively. The seed grouping and 100-grain weight are

presented in Table 1 below.
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3.3 Standard germination test

According to the Technical Regulations on Crop Seed

Germination (GB/T 3543.4-1995), the seeds were placed in a

germination chamber that maintained a constant temperature of

25°C. There were six subgroups, each consisting of 200 seeds, with

varying temperatures (-20°C, 0°C, 20°C) and durations (3d, 6d, 9d).

Then, placed 20 subgroups of each subgroup in Petri dishes, for a

total of 120 Petri dishes with 10 seeds each (1,200 seeds in total).

After that, the seeds were evenly spaced to ensure enough space for

growth and to prevent mold. Finally, sprayed water every 2-3 hours
Frontiers in Plant Science 03
to keep the bed moist, and did not cover the dishes to ensure

sufficient oxygen supply. As for data collection, diffused light was

used during the day and 45w incandescent light at night to

photograph the germination process. A Huawei Honor V10

mobile phone was used to take photos from a height of 20-25cm

every hour. However, we removed any moldy or dead seeds and

labeled the remaining seeds into five categories based on their

germination vigor. 1. ungerminated; 2. germinating; 3. germinated;

4. primary root; 5. secondary root.

The corresponding germination states were: (1) seeds were not

germinated, decayed, or dead; (2) primary root 0-2mm; (3) primary

root germinated 2mm; (4) there was and there was only one

primary root, and the seed primary root exceeded more than

2mm; (5) there was more than one secondary root in addition to

the primary root. Figure 2 below shows the time series of seed

germination status of 6 groups of comparison tests:
3.4 Construction of the dataset

During the germination tests, photos were taken for a total of 6

days and 21 hours. The test was concluded 3 hours earlier than the

specified 7-day time periods, as the samples had already reached

their highest germination rate. One photo was taken per hour

throughout the experiment, and the result was 120 photographs per
TABLE 1 Experimental groupings.

Experiment
number

Number of
grains (pcs)

Prerequisite Hundred
grains

weight (g)

1 200 20°C 36.68

2 200 0°C 37.29

3 200 -20°C 37.04-37.05

4 200 age 3d; 45°C 36.93-36.94

5 200 age 6d; 45°C 36.5

6 200 age 9d; 45°C 36.57
FIGURE 1

Different germination states of maize seeds in standard germination test.
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hour. Throughout the experiment, one photo was taken every hour,

resulting in 120 photos per hour. In total, 19,800 RGB images with

3456 x 4608 pixels, were collected and annotated using LabelImg.

Data annotation is stored in the format of the PASCAL VOC

dataset, and is set to.xml format. A total of 181,250 valid data were

labeled, while fuzzy or obscured images were removed to reduce

data noise. The number of labels corresponding to the five different

states were: 1. ungerminated:149842; 2. germinating:7042; 3.

germinated:1936; 4. primary root:5087; 5. secondary root:17343.

For easier download, we uploaded the 120-folder dataset separately,

which was generated each hour. It could be accessed on the Kaggle

public dataset titled Seed Vigor Detection RGB Image. The dataset

is available at the following two address: https://www.kaggle.com/

datasets/chengchengchen/seed-vigor-detection-rgb-image http://
Frontiers in Plant Science 04
ieee-dataport.org/documents/rgb-image-dataset-seed-germination-

prediction-and-seed-vigor
3.5 Seed viability object
detection experiments

In order to verify the validity of the dataset, we perform

experiments on the seeds vitality object detection using the two-

stage object detection model Faster RCNN (Girshick, 2015), the

one-stage model SSD (Liu et al., 2016), YOLOv3 (Redmon and

Farhadi, 2018), YOLOv5 (Jocher et al., 2020), RTMDet (Lyu et al.,

2022), and the anchor-free model FCOS (Tian et al., 2019); and we

optimize the feature extraction capability by change the backbone.
FIGURE 2

Chronological germination status of six seed groups.
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The average accuracy mAP of several target categories, the

recognition accuracy mAP50 and mAP75 for IoU thresholds of

0.5 and 0.75, and the recognition accuracy of each category are

recorded in the experiment results.

All experiments are run on a server with an Inter(R) Xeon(R)

Platinum 8336C CPU at 2.3 GHz, two NVIDIA GeForce RTX 3090

24G GPUs, and 256 GB of RAM. The experimental results are

shown in Table 2, and it could be seen that the results of two-stage

network structure detection are better than the one-stage and

anchor-free models, where backbone is ResNeXt101, the network

combined with FPN and Faster RCNN provides the best results.

The recognition accuracy of RTMDet in one-stage is the highest.

The recognition accuracies of the one-stage model and the anchor

free model are lower in the categories Germinating and

Germinated, but the two-stage model significantly improves the

recognition accuracies of these two categories. It indicates that the

average recognition accuracy as well as the recognition accuracy of a

single category can be changed by adjusting the backbone, adding

FPN structure, and adjusting the complexity of the model structure.
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TABLE 2 Seed Viability Object Detection Experiments.

Model Backbone mAP
(%)

mAP
.5(%)

mAP
.75(%)

Ungerminated Germinating Germinated Primary
root

Secondary
root

Faster
RCNN

ResNet50 0.765 0.908 0.896 0.836 0.696 0.617 0.799 0.875

Faster+FPN ResNet 50 0.783 0.921 0.912 0.854 0.734 0.640 0.815 0.873

Faster+FPN ResNeXt101 0.808 0.943 0.931 0.862 0.758 0.705 0.83 0.887

YOLOV3-
SPP

Darknet53 0.635 0.826 0.792 0.813 0.563 0.391 0.695 0.711

FCOS ResNet50 0.637 0.796 0.763 0.839 0.566 0.379 0.703 0.699

SSD VGG 0.512 0.689 0.625 0.779 0.168 0.318 0.633 0.664

RTMDet CSPDarknet 0.757 0.887 0.87 0.85 0.682 0.562 0.801 0.889

YOLOv5-n CSPDarknet 0.625 0.758 0.739 0.842 0.461 0.3 0.729 0.795

YOLOv5-s CSPDarknet 0.739 0.868 0.855 0.863 0.709 0.47 0.8 0.851
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