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Homogentisate Phytyltransferase (HPT) catalyzes condensation of homogentisate

(HGA) and phytyl diphosphate (PDP) to produce tocopherols, but can also

synthesize tocotrienols using geranylgeranyl diphosphate (GGDP) in plants

engineered for deregulated HGA synthesis. In contrast to prior tocotrienol

biofortification efforts, engineering enhanced tocopherol concentrations in

green oilseeds has proven more challenging due to the integral role of

chlorophyll metabolism in supplying the PDP substrate. This study show that

RNAi suppression of CHLSYN coupled with HPT overexpression increases

tocopherol concentrations by >two-fold in Arabidopsis seeds. We obtained

additional increases in seed tocopherol concentrations by engineering increased

HGA production via overexpression of bacterial TyrA that encodes chorismate

mutase/prephenate dehydrogenase activities. In overexpression lines, seed

tocopherol concentrations increased nearly three-fold, and resulted in modest

tocotrienol accumulation. We further increased total tocochromanol

concentrations by enhancing production of HGA and GGDP by overexpression

of the gene for hydroxyphenylpyruvate dioxygenase (HPPD). This shifted

metabolism towards increased amounts of tocotrienols relative to tocopherols,

which was reflected in corresponding increases in ratios of GGDP/PDP in these

seeds. Overall, our results provide a theoretical basis for genetic improvement of

total tocopherol concentrations in green oilseeds (e.g., rapeseed, soybean)

through strategies that include seed-suppression of CHLSYN coupled with

increased HGA production.
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chlorophyll synthase, homogentisate phytyltransferase, homogentisate, phytyl
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1 Introduction

Vitamin E tocochromanols are a class of fat-soluble

antioxidants that contain a homogentisate (HGA)-derived

aromatic head group linked to an isoprenoid-derived

hydrocarbon tail. Vitamin E tocochromanols are comprised of

tocopherols and tocotrienols that differ based on the saturation of

the hydrocarbon tail: tocopherols are saturated and tocotrienols are

tri-unsaturated (Hunter and Cahoon, 2007). Additionally, a, b, g
and d forms of tocopherols and tocotrienols occur that have

differing numbers or arrangements of methylation of the head

group that affect their bioavailability (Netscher, 2007; Yang et al.,

2020). Vitamin E biosynthesis occurs in photosynthetic organisms

such as higher plants, algae, and cyanobacteria (Lichtenthaler, 1968;

Sattler et al., 2004) and is present in a number of plant organs

(Hunter and Cahoon, 2007).

Vitamin E is a required nutrient in human and animal diets and

functions as an antioxidant that quenches free radicals derived from

processes such as unsaturated fatty acid peroxidation (Warner et al.,

2003). Vitamin E tocochromanols typically accumulate in seeds are

components of seed oils that contribute to their oxidative stability

by quenching free radicals arising from unsaturated fatty acid

peroxidation (Grusak and DellaPenna, 1999; Kanwischer et al.,

2005; Muñoz and Munné-Bosch, 2019). Vitamin E has also been

widely incorporated in the food and cosmetic industries as a

supplement for prolonging food stability and preventing UV and

ozone skin damage (Thiele and Ekanayake-Mudiyanselage, 2007;

Kmiecik et al., 2019).

Given the nutritional and economic importance of vitamin E

tocochromanols, considerable efforts have been directed toward

their biofortification in oilseeds (Shintani and DellaPenna, 1998).
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Homogentisate geranylgeranyl transferase (HGGT) and

homogentisate phytyltransferase (HPT or VTE2) are rate-limiting

enzymes involved in the biosynthesis of tocotrienols and

tocopherols, respectively, and have been the targets of research

focused on tocochromanol production (Savidge et al., 2002; Cahoon

et al., 2003; Rippert et al., 2004). HGGT was originally identified in

seeds of monocots, including barley, wheat, and rice and is most

active with geranylgeranyl diphosphate (GGDP) as its substrate

(Cahoon et al., 2003; Yang et al., 2011; Zhang et al., 2013; Chen

et al., 2017). Previous work has shown that heterologous expression

of barley HGGT in soybean and corn leads to a six to tenfold

increase in seed tocochromanols, principally in the form of

tocotrienols (Cahoon et al., 2003; Konda et al., 2020). HPT

primarily uses phytyl diphosphate (PDP) for tocopherol synthesis,

but may also appropriate GGDP as a substrate for tocotrienol

synthesis when the homogentisate level is high (Figure 1)

(Cahoon et al., 2003; Collakova and DellaPenna, 2003; Yang

et al., 2011; Zhang et al., 2013).

HGA, produced from the shikimic acid pathway, is substrate for

both HGGT and HPT in the initial step of tocochromanol synthesis

(Cahoon et al., 2003; Zhang et al., 2013) and is considered a limiting

precursor for vitamin E production (Rippert et al., 2004;

Karunanandaa et al., 2005; Yang et al., 2011; Stacey et al., 2016).

Experiments aimed at generating large increases in HGA

concentrations to enhance tocopherol production have resulted,

instead, to the unexpected production of tocotrienols, with only

small increases in tocopherol concentrations. This result is

presumably due to limiting PDP pools for tocopherol biosynthesis

that shifts the relative PDP : GGDP ratios to promote HPT-

mediated tocotrienol biosynthesis. For example, the deregulated,

enhanced HGA production by co-expression of transgenes for the
FIGURE 1

Schematic biosynthetic pathways of tocopherol and tocotrienol synthesis. CHLSYN, chlorophyll synthetase; HPPD, p-hydroxyphenylpyruvate
dioxygenase; HPT, homogentisate phytyltransferase; GGR, geranylgeranyl reductase; HGGT, homogentisate geranylgeranyl transferase; VTE5, phytol
kinase; TyrA, prephenate dehydrogenase. HPT*: When the endogenous level of homogentisate is high, HPT can also catalyze the step from GGDP to
MGGBQ towards tocotrienol synthesis.
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yeast prephenate dehydrogenase and hydroxyphenylpyruvate

dioxygenase (HPPD) in tobacco leaves yielded nearly no increase

in tocopherol concentrations. This, instead, conferred production of

tocotrienols and their accumulation to amounts ~ten-fold higher

than tocopherols (Rippert et al., 2004). Similarly, overexpression of

the E. coli tyrA gene and Arabidopsis HPPD gene generated large

increases homogentisate concentrations in Arabidopsis leaves,

which was accompanied by accumulation of tocotrienols, which

are not normally present in Arabidopsis (Figure 1) (Zhang et al.,

2013). Furthermore, co-overexpression of HPPD, TyrA, and HPT

transgenes in transgenic canola and soybean seeds led to a two- to

three-fold increase in total tocochromanol concentrations,

primarily as tocotrienols rather than tocopherols (Karunanandaa

et al., 2005).

The findings above highlight the feasibility of generating large

increases in vitamin E tocochromanols, but these increases are

largely the result of enhanced tocotrienol production. By contrast,

biofortification of similar large increases in tocopherol content of

plant organs has proven more elusive. It has succeeded in only more

modest enhancement in tocopherol levels in plants. Findings from

the Arabidopsis vte5 mutant that is impaired in phytol kinase

activity have indicated that PDP biosynthesis is a major limitation

for tocopherol production in leaves and green seeds. These studies

showed that nearly 80% of PDP required for tocopherol synthesis is

derived from cycling and reduction of geranylgeraniol through

chlorophyll (Valentin et al., 2005; Ischebeck et al., 2006; Zhang

et al., 2015). Phytol formed from geranylgeranyl reductase activity

using geranygeraniol on chlorophyll is released and converted to

PDP by two sequential phosphorylation steps catalyzed by VTE5

and VTE6 kinases (Valentin et al., 2005; Gutbrod et al., 2019;

Gutbrod et al., 2021). The resulting PDP is available for use in

tocopherol biosynthesis. In Arabidopsis vte5 mutants, seed

tocopherol levels were reduced to 20% of those in wild type

plants, suggesting that a large fraction of phytol generated

through the chlorophyll turnover is used for PDP and

subsequently tocopherol biosynthesis (Valentin et al., 2005;

Ischebeck et al., 2006). The Arabidopsis CHLSYN knockout

mutant had only 20-26% tocopherol in leaves with severe

photosynthetic defects, suggesting a major portion of PDP for

tocopherol synthesis comes from the chlorophyll salvage pathway

(Vom Dorp et al., 2015; Zhang et al., 2015). Downregulation of

CHLSYN by RNAi in Arabidopsis resulted in reduced chlorophyll

content and higher levels of tocopherols in leaves, though

tocochromanol levels in seeds were not determined (Zhang et al.,

2015). This result was consistent with a negative correlation

between CHLSYN expression levels and tocopherol content, in

accordance with the competition for PDP between the

ch lorophy l l and tocophero l b io synthe t i c pa thways .

downregulation of CHLSYN expression on tocopherol content in

seeds may provide a route for enhancement of overall seed

tocopherol concentrations.

In this study, we first found that the tocopherol content in

Arabidopsis seeds is also negatively correlated with CHLSYN

expression levels, as observed in CHLSYN overexpression and

down-regulation lines. In a seed-specific CHLSYN RNAi

background, we overexpressed TyrA and HPT with seed-specific
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promoters to stimulate tocopherol synthesis with high HGA input.

We obtained Arabidopsis seeds displaying high vitamin E content

primarily composed of tocopherols. We also found that elevated

HGA production shifts the relative amount of PDP and GGDP and

determines metabolic flow into tocopherol and tocotrienol

biosynthesis. Overall, our findings provides a strategy for

vitamin E biofortification of green oilseeds for enhanced

tocopherol concentrations.
2 Materials and methods

2.1 Plant materials and growth conditions

Wild-type and transgenic Arabidopsis thaliana lines used for

this study were of the Columbia-0 ecotype. Arabidopsis vte5-2 seeds

were previously described (Vom Dorp et al., 2015). Homozygous

seeds carrying the 35S:TyrA and 35S:AtHPPD-35S:TyrA

overexpression constructs were previously generated by our

laboratory (Zhang et al., 2013). Plants were grown on plates with

½ MS agar supplemented with 2% (w/w) sucrose. Pot growth was

performed in a growth chamber at 22°C under a 16 h day, with light

intensity at 100 μmol m-2 sec-1.
2.2 Arabidopsis transformation

Arabidopsis plants were grown in a growth chamber in long day

conditions. 4-5 weeks old healthy plants were chosen for

Agrobacteria transformation using floral dip method (Clough and

Bent, 1998; Zhang et al., 2015). The transformed plants were grown

and seeds were harvested. Transgenic seeds were selected based on

mCherry marker, followed by genotyping using gene-

specific primers.
2.3 Vector construction and selection of
transgenic plants

The vector pBinGlyRed3 containing a DsRed fluorescent

protein marker under the control of the 35S promoter was used

in this studies (Jach et al., 2001; Nguyen et al., 2013).

CHLSYN (AT3G51820) was amplified from Arabidopsis cDNA

using primers as following: CHLSYN-F: 5’- GCTCTAGA

CCGTCGGTTCTATGACTTCGAT-3’ and CHLSYN-R: 5’-

CCCCTCGAGTCAAAATACGCCTTTTTCAGT-3’ (restriction

sites underlined). All PCR reactions were performed using

Phusion polymerase (Vazyme, Wuhan, China). The PCR product

was cloned into pBinGlyRed3 using XbaI/XhoI sites. The resulting

plasmid with AtCHLSYN flanked by glycinin promoter and glycinin

terminator was designated as SYN-OE.

A specific AtCHLSYN 430bp fragment was chosen for

constructing the CHLSYN RNAi (RNA interference) vector. The

forward segment Si01 was amplified using the following primers:

Si01-F, 5’-CCGCTCGAGGACGCAATTAATGAGCCATATCG-3’

a n d S i 0 1 - R , 5 ’ - G G A C T AG T T G C C AA AAGC T A
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CTGGGAGAGAC-3’. A second fragment Si02 was amplified using

Si02-F: 5’-GCTCTAGAGACGCAATTAATGAGCCATATCG-3’

a n d S i 0 2 - R : 5 ’ - C C C A A G C T T T G C C A A A A G

CTACTGGGAGAGA-3’. The Si01 segment was cloned into the

pINTRON vector using XhoI/BcuI sites. Into the resulting vector

pIN-Si01 the second Si02 segment was ligated using HindIII/XbaI

sites (Nguyen et al., 2013). The resulting vector pIN-Si containing a

NotI fragment with Si01-intron-Si02 was subcloned into vector

pBetaCon with glycinin promoter (seed-specific promoter) and

phaseolin terminator. Finally, the complete expression cassette

(glycinin promoter:Si01-intron-Si02::phaseolin terminator) was

sub-cloned into pBinGlyRed3 using the SgsI site. The final

interference vector pBinGlyRed3-CHLSYN: RNAi was abbreviated

as SYN-RNAi.

For HPT overexpression, HPT (AT2G18950) cDNA was

amplified from Arabidopsis cDNA using the following primers:

A tHPT -E c oR I - LP , 5 ’ -CCGAATTCTCACTTCAAAA

AAGGTAACAG-3’; AtHPT-SmaI-RP, 5’-TTCCCGGGATGG

AGTCTCTGCTCTCTAGT-3’ (restriction sites underlined). The

PCR product was cloned into pBinGlyRed3 with EcoRI/SmaI

sites, the resulting vector pBinGlyRed3-35S:AtHPT was

designated 35S:AtHPT.

The SgsI fragment from 35S:AtHPT containing a complete

cassette was inserted into the SgsI site of pBinGlyRed3 and the

MluI site of Red3-Si to construct pBinGlyRed3 –Ole : AtHPT

(OleAtHPT) and pBinGlyRed3-CHLSYN: RNAi + Ole-HPT.

Primer Red3-BamHI-F GCGTATGGATTATGGAACTATCA and

AtHPT-YZ-R AAAGGAGATATATCAGAAACCTTCTC were

used to confirm the transcription orientation of the two cassettes.
 

2.4 HPLC analysis of tocochromanol
content and composition

An HPLC with fluorescence detector was used for

quantification of seed tocochromanol contents, using 5,7-

dimethyltocol as standard (Yang et al., 2011). ~5 mg of dried

seeds, 1 ml methanol/dichloromethane (9:1 v/v) and 5 ml internal
standard 5,7-dimethyltocol (Matreya, www.matreya.com) were

added to a 2 ml centrifuge tube, the sample was ground with steel

balls, then incubate at room temperature for 3 h and centrifuged.

Tocochromanols were separated on an Agilent Eclipse XDB-C18

reversed-phase column (4.6 × 150 mm, 5 mm particle size,

www.agilent.com), with isocratic conditions of methanol/water

(95:5 v/v) at flow rate of 1.5 ml/min. The abundance of each

compound was monitored by excitation at 292 nm and emission

at 330 nm.
2.5 Semi-quantitative PCR analysis

Total RNA was extracted from seeds harvested 10 days after

flowering, with the TRIzol Reagent Kit (Ambion) according to the

manufacture’s protocol. RNA was reverse transcribed to cDNA

using the HiScript II 1st Strand cDNA Synthesis Kit (Vazyme).

qRT-PCRs was performed with the SYBRgreen qPCR Master Mix
Frontiers in Plant Science 04
(Vazyme) using the CFX Connect™ real-time PCR detection

system (BIO-RAD, Hercules, CA, USA). The following qRT

primers were used: qAtHPT-F1-1, 5’-TCGCAAAACCGA

A G T T T A G G A A C - 3 ’ ; q A t H P T - R 1 - 1 , 5 ’ -

TGTTTGCTATTCGAGTCGAAAGC-3’ for AtCHLSYN. Actin7

(AT5G09810) was chosen as reference gene, qRT primers:

bActin7-F, 5’-GATATTCAGCCACTTGTCTGTGAC-3’; and

bActin7-R: 5’-CATGTTCGATTGGATACTTCAGAG-3’.
2.6 Quantification of GGDP, PDP and HGA
contents in seeds

Mature Arabidopsis seeds were used for GGDP and PDP

determination (Valentin et al., 2005). Prenyl-transferase assays

were based on a previously described method (Collakova and

DellaPenna, 2003; Yang et al., 2011). UPLC LC-MS system linked

to a QTRAP4500 mass spectrometer was used for the determination

of HGA, the method is described by Karunanandaa et al. (2005).
2.7 Statistical analysis

We have quantified the seed VitE contents in transgenic

materials with single-copy T-DNA insertion based 3:1 segregation

ratio of the mCherry marker in T2 generation to avoid gene dosage

effect. All transgenic lines have their corresponding non-transgenic

control. Due to the fluctuation of seed VitE contents by

environmental factors, the tocopherol contents were normalized

to 540 μg/g as “wild type” value based on literature (Karunanandaa

et al., 2005) and our empirical Col.0 seed records under conditions

used in this study. Positive transgenic seeds (Red) and negative

segregant seeds of Ole : HPT/Col-0, (SYN-RNAi+Ole : HPT)/Col-0

and (SYN-RNAi+Ole : HPT)/35sTyrA transgenic lines were

separated according to their segregation ratio of 3:1 in the T2

generation. According to this, we calculated the seed

tocochromanol contents in T2 generation based on seeds with red

fluorescence accounting for 75% of the total T2 seeds and non-

transgenic seeds accouting for 25% from a heterozygous T1 plant.

The tocochromanols of T2 seeds ¼ levels from red ðtransgenicÞ seeds
�  75%þ  levels from non� transgenic seeds  �  25%
3 Results

3.1 Chlorophyll synthase expression levels
and seed tocopherol content are
negatively correlated

RNAi lines of CHLSYN were generated and annotated as “SYN-

RNAi” (Figures 2A, C). The T-DNA in the expression vector for these

lines contained a DsRed selection marker to facilitate the screening

procedure for transgenic events. From 68 T1 positive lines, we isolated

3 heterozygous lines from the T2 generation with a single copy of the
frontiersin.org
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SYN-RNAi insertion. qRT-PCR results indicated that RNAi lines had

reduced transcript levels of the CHLSYN gene (Figure 2A). The SYN-

RNAi seeds upon maturation had higher tocochromanol contents,

with up to 34% increases of tocopherol concentrations compared to

amounts in non-transgenic segregant seeds (Figure 2C). AtCHLSYN

was also overexpressed under the control of the strong seed-specific

glycinin promoter. Positive transgenic lines were selected and

annotated as “SYN-OE” (Zhang et al., 2015). We obtained a total

of 54 SYN positive lines in the T1 generation, and picked 3 single-

copy insertion T2 plants in the heterozygous state based on their 3:1

segregation ratio through DsRed marker selection. qRT-PCR results

indicated that SYN-OE lines had higher transcript levels of the

CHLSYN gene than control (Figure 2B). In the T2 generation, lines

with seed-specific over-expression of CHLSYN showed large

reduction in tocopherol content, with reductions of ≤42%

compared to levels in isogenic wild type segregant seeds

(Figure 2C). Young seedlings of SYN-RNAi were yellow but

gradually turned green during later development, whereas the

SYN-OE seedlings were morphologically similar to wild type plants
Frontiers in Plant Science 05
(Figure 2D). Collectively, results from the SYN-OE and SYN-RNAi

transgenic lines suggest that transcript levels of CHLSYN are

negatively correlated with seed tocopherol contents in Arabidopsis

transgenic plants.

VTE5 catalyzes the conversion of phytol to PMP during

chlorophyll degradation (Figure 1). We investigated whether a

negative correlation also exists when the level of PDP is low. For

these studies, the vte5 mutant, which has altered PDP accumulation

was used. We crossed the vte5 mutant with the SYN-RNAi or SYN-

OE transgenic plants and measured the seed tocopherol

concentrations of the progeny. Measurements were conducted with

the homozygous state for vte5 (knock-out background) and a

heterozygous state for SYN-OE or SYN-RNAi to investigate the

effect of up- or down- regulation of CHLSYN (Figure 2E). As

shown in Figure 2, average tocopherol concentrations in non-

transgenic vte5 seeds was 140 mg/g, a reduction in tocopherol

concentrations compared to wild type seeds (400~500 mg/g,
Figure 2C). Knocking out VTE5 dramatically decreased the

tocopherol content to ~20% of that in wild type. Despite this, a
A B

D E

C

FIGURE 2

Expression pattern of AtCHLSYN and quantification of seed tocochromanol contents in Arabidopsis transgenic lines. (A, B), qRT-PCR of AtCHLSYN
expression in SYN–RNAi (RNAi line of AtCHLSYN) or SYN (overexpression line of AtCHLSYN) transgenic seeds (10 days after flowering).
(C) Tocopherol contents in T2 mature seeds of SYN-RNAi and SYN transgenic plants. (D) Growth phenotype of young seedlings of SYN-RNAi
transgenic plants, SYN and Col-0. (E) vte5-2 homozygous mutants crossed with SYN-OE and SYN-RNAi transgenic lines, cross1 and cross2 represent
F3 plants of vte5 carrying SYN-OE and SYN-RNAi constructs respectively. Tocopherol contents of seeds with DsRed fluorescence (transgenic) and
seeds lacking DsRed fluorescence (non-transgenic) from F3 progeny. Seed tocopherol contents were calculated from three biological replicates.
** represents significance level of p < 0.01 by student t-test.
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negative correlation could still be observed between CHLSYN

transcript level and tocopherol content in engineered vte5

seeds (Figure 2E).
3.2 Modest increase in tocopherol content
in seeds of transgenic Ole : AtHPT and
AtCHLSYN RNAi plants

HPT is a rate-limiting enzyme for tocopherol biosynthesis

(Figure 1). Under most conditions, this enzyme only catalyzes the

condensation of PDP with HGA during tocopherol synthesis, but in

the presence of high levels of homogentisate, the HPT enzyme may

also resort to using GGDP for condensation with HGA during

tocotrienol synthesis (Yang et al., 2011). Utilizing the seed-specific

oleosin promoter to drive AtHPT expression, seed tocochromanol

contents in transgenic plants were measured (Figure 3). After two

generations of selfing from the T1 positive transgenic lines, 13 T2 lines

with a single copy insertion of Ole : AtHPT (Ole : HPT/Col-0) were
Frontiers in Plant Science 06
obtained (Figure 3). These seeds had ~1.8 times the seed tocopherol

concentration relative to wild type segregants (Figure 3,

Supplementary Table 1). On the basis of this result, we further

combined SYN-RNAi with Ole : HPT/Col-0 in a single construct

that was transferred into transgenic plants (Figure 3). As shown in

Figure 3, the seed tocopherol concentration in (SYN-RNAi+Ole :

HPT)/Col-0 plants was ~2.1 times higher than that in non-transgenic

segregant plants (Figure 3, Supplementary Table 2). The seeds of

(SYN-RNAi+Ole : HPT)/Col-0 plants revealed a higher seed

tocopherol content than seeds overexpressing the HPT gene alone.

These data suggest that the SYN-RNAi transgene may dramatically

reduce the CHLSYN activity for PDP recycling, and allow more PDP

to be available for tocopherol biosynthesis.
3.3 Seed tocopherol content was increased
in seeds with CHLSYN RNAi background
carrying Ole : AtHPT and 35S:
TyrA constructs

HGA along with PDP is substrate for tocopherol synthesis and is

formed from the shikimic acid pathway (Raclaru et al., 2006).

Overexpression of TyrA has been shown to effectively increase

HGA content in Arabidopsis seeds (Karunanandaa et al., 2005).

We introduced the (SYN-RNAi+Ole : HPT)/Col-0 construct into a

plant homozygous for 35S:TyrA/Col-0. We annotated these lines as

“(SYN-RNAi+Ole : HPT)/35S:TyrA”. Transgenic T2 plants with

single copy insertions were used for seed tocochromanol content

determination (Figure 3). We found that the tocopherol content of

non-red seeds (carrying 35S:TyrA only) were 1.7 times of wild type

seeds on average (Figure 3, Supplementary Table 3), and tocopherol

content of red seeds (carrying (SYN-RNAi+Ole : HPT)/35S:TyrA)

were ≤2.7 times those of wild type seeds (Figure 3, Supplementary

Table 3). The maximum tocopherol content of (SYN-RNAi+Ole :

HPT)/35S:TyrA-9 seeds was or ~1,600 μg/g seed wt or 2.7 times those

of the wild type seed concentrations. In our knowledge, this is the

highest reported accumulation of tocopherols in Arabidopsis seeds.

In contrast, low amounts of tocotrienols were detected in red seeds

(carrying (SYN-RNAi+Ole : HPT)/35S:TyrA) and non-red seeds

(carrying 35S:TyrA only), with the average tocotrienol content

being 8% and 5% of total tocochromanol, respectively (Figure 3,

Supplementary Table 3). The RNA interference of the CHLSYN gene

did not alter the fatty acid content and composition of Arabidopsis

seeds in the wild type, 35S:TyrA/Col-0 and (SYN-RNAi+Ole : HPT)/

Col-0 backgrounds (Supplementary Table 4).

TyrA-encoded bifunctional chorismate mutase/prephenate

dehydrogenase catalyzes the conversion of chorismate to HPP.

HPPD catalyzes the conversion of HPP to HGA (Figure 1). A

transgenic Arabidopsis plant with HPPD and TyrA over-expression

constructs containsmore available HGA than lines with 35S:TyrA/Col-

0 only (Zhang et al., 2013). Reciprocal crossing was performed using

(35S:TyrA+35S:HPPD)/Col-0 plants with the above (SYN-RNAi+Ole :

HPT)/Col-0 plants (Figure 4). In crosses with (35S:TyrA+35S:HPPD)/

Col-0-2-4 as maternal parent but different paternal (SYN-RNAi+Ole :

HPT)/Col-0 lines, we observed altered tocopherol and tocotrienol

concentrations (Figure 4), suggesting that the expression levels of
FIGURE 3

Synergistic role of HPT and TyrA overexpression in combination with
SYN-RNAi on seed tocopherol or tocotrienol accumulation.
Tocochromanol contents in mature T2 seeds from Col-0
transformed with Ole : HPT construct (Ole : HPT/Col-0) and SYN-
RNAi+Ole : HPT construct ((SYN-RNAi+Ole : HPT)/Col-0)
respectively. CK-1 and CK-2 represent the separated seeds lacking
DsRed fluorescence from Ole : HPT/Col-0 and (SYN-RNAi+Ole :
HPT)/Col-0 transgenic plants. Tocochromanol contents of seeds
from Col-0 transformed with 35S:TyrA construct (35S:TyrA/Col-0)
and 35S:TyrA/Col-0 transformed with SYN-RNAi+Ole : HPT
construct. Seed tocochromanol contents were calculated from
three biological replicates. ND, below the limit of detection.
** represents significance level of p < 0.01 by student t-test.
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CHLSYN and HPT influence seed vitamin E synthesis. On the other

hand, when (SYN-RNAi+Ole : HPT)/Col-0 was fixed but different

(35S:TyrA+35S:HPPD)/Col-0 lines used as paternal parent, no major

difference was observed (Figure 4), suggesting that HPT and CHLSYN

are dominating factors over HPPD and TyrA for seed tocopherol and

tocotrienol synthesis.

We further measured tocochromanol contents in the seeds of

the F1 progeny. In the crosses, using (35S:TyrA+35S:HPPD)/Col-0
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as paternal parent and (SYN-RNAi+Ole : HPT)/Col-0 as maternal

recipient, a maximum of 1664 mg/g total tocochromanol was

observed in F1 seeds of (35S:TyrA+35S:HPPD)/Col-0-2-4 x (SYN-

RNAi+Ole : HPT)/Col-0-3. The total tocochromanol, which

includes considerable amount of tocotrienols (35%) is equivalent

to 3.1 times that of the wild type control (Figure 4, Supplementary

Table 5). Another reciprocal combination (SYN-RNAi+Ole : HPT)/

Col-0-1 ×(35S:TyrA+35S:HPPD)/Col-0-2-4, resulted in slightly

lower total tocochromanol but considerably less tocotrienol

content (11%, Supplementary Table 5). In the F2 population of

(TyrA+HPPD)-OE-2-4 x (SYN-RNAi+Ole : HPT)/Col-0-3 and

(SYN-RNAi+Ole : HPT)/Col-0-1 ×(TyrA+HPPD)-OE-2-4, the

maximum seed tocochromanol concentration was 1953 μg/g,

which is 3.4 times that of wild type control (Supplementary

Table 6). Seed tocopherol concentrations ranging from 1.9 to 2.4

those that of wild type seeds Tocotrienols accounted for 10% to 30%

of the total seed tocochromanol (Supplementary Table 6).

Overexpression of the HPPD gene in the (SYN-RNAi+Ole :

HPT)/Col-0-1×35S:TyrA background further increased the total

content of tocochromanols, but the content of tocopherol was

slightly reduced.

The tocochromanol content of red fluorescent seeds and non-

red seeds were separately measured in the T2 population. In order to

compare our results to those of the Karunanandaa et al., 2005

studies, the values in this study were adjusted to the same level

(Table 1). The converted results show that the average tocopherol

content of (SYN-RNAi+Ole : HPT)/35S:TyrA line was 2.2 times as

high as those of the wild type, providing a significant improvement

compared to the Napin : HPT+Napin : TyrA line and the Napin :

HPPD+Napin: TyrA+Napin : HPT line (Karunanandaa et al.,

2005). The average seed tocotrienol of these prior studies was

further increased to 54% of the total tocochromanols upon

introducing Napin : HPPD due to a higher level of HGA (Savidge

et al., 2002; Karunanandaa et al., 2005). In our study, the proportion

of tocotrienols was significantly lower than results from
FIGURE 4

Measurements of total tocochromanol contents in seeds harboring
the combination of (35S:TyrA+35S:HPPD)/Col-0 and (SYN-RNAi
+Ole : HPT)/Col-0 constructs. Total tocochromanol contents from
F2 seeds from crosses between lineA: (35S:TyrA+35S:HPPD)/Col-0
and lineB: (SYN-RNAi+Ole : HPT)/Col-0. ND, below the limit
of detection.
TABLE 1 Comparison of seed tocopherol content between this study and prior results.

Transgenic lines

Tocopherols Tocotrienols

Maximum
(µg/g)

Fold
Average
(µg/g)

Fold
Maximum
(µg/g)

Maximum
percentage

Average
(µg/g)

Average
percentage

Current study

Ole : HPT/Col-0 a 929 1.7x 848 1.6x 0 0% 0 0%

(SYN-RNAi+Ole : HPT)/Col-0 b 1195 2.2x 989 1.8x 0 0% 0 0%

(Ole : HPT+SYN-RNAi)/35S:TyrA c 1344 2.5x 1186 2.2x 244 16% 97 8%

(SYN-RNAi+Ole : HPT)/Col-0 x (35S:
TyrA+35S:HPPD)/Col-0 d 1319 2.4x 1158 2.1x 498 27% 271 19%

Karunanandaa et al. (2005)

Napin : HPT+Napin : TyrA e 1179 2.2x 860 1.6x 279 23% 120 12%

Napin : HPPD+Napin : TyrA
+Napin : HPT f 1022 1.9x 702 1.3x 1688 62% 834 54%
a, b, c: Data from T2 population.
d: Data from F2 population.
e,f: Data from Karunanandaa et al. (2005).
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Karunanandaa et al., 2005. By inhibiting the expression of the

CHLSYN gene, the average seeds tocotrienol contents vary from 8%

to 19% in (SYN-RNAi+Ole : HPT)/35S:TyrA line and (SYN-RNAi

+Ole : HPT)/Col-0 x (35S:TyrA+35S:HPPD)/Col-0 line (Table 1).
3.4 High HGA and GGDP led to the
tocotrienol biosynthesis in
Arabidopsis seeds

Based on the results above, it is observed that genes from

different metabolic pathways can be used together to boost seed

vitamin E content. When comparing the vitamin E contents and

compositions between (SYN-RNAi+Ole : HPT)/35S:TyrA and

(SYN-RNAi+Ole : HPT)/Col-0 x (35S:TyrA+35S:HPPD)/Col-0,

a substantial amount of tocotrienol was observed in the latter case.

In order to verify the synthesis of tocotrienol, we quantified PDP,

GGDP and HGA contents in mature seeds of 35S:TyrA/Col-0 and

(35S:TyrA+35S:HPPD)/Col-0 (Figure 5). High HGA contents

were detected in two transgenic seeds with similar level

(Figure 5A). We also found that GGDP levels in transgenic

seeds were increased in various degrees, the improvement of

GGDP contents in (35S:TyrA+35S:HPPD)/Col-0 seeds were ten-

fold than those in wild type seeds, it is far greater than the 35S:

TyrA/Col-0 seeds (Figure 5B). Our results from seeds confirm the

conclusion that a high level of HGA and GGDP concentration

lead to the tocotrienol synthesis in seeds. PDP levels of (35S:TyrA

+35S:HPPD)/Col-0 seeds were doubled increased than wild type,

rather than 35S:TyrA/Col-0 seeds (Figure 5C). We hypothesize

that high GGDP contents might be the reason for the

improvement of PDP, but high GGDP/PDP ratios is

unfavorable to the synthesis of tocopherols.
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4 Discussion

In this work, we used biotechnological approaches to increase

total Arabidopsis seed tocochromanol concentrations, and in

particular, tocopherol concentrations. First, our results confirmed

that the negative correlation between CHLSYN expression and

tocochromanol synthesis, previously observed in Arabidopsis

leaves, also occurs in seeds. Second, we achieved the highest

report tocopherol concentrations in mature Arabidopsis seeds via

genetic combination of Ole : HPT, 35S:TyrA/Col-0 and SYN-RNAi

(Table 1). In the transgenic lines with TyrA and HPPD

overexpression, the resulting high HGA and GGDP input

triggered HPT activity to use GGDP as a substrate for tocotrienol

synthesis (Figure 6). In combination with SYN-RNAi, which

increases the pool size of PDP available for tocopherol synthesis,

HPT-OE and 35S:TyrA/Col-0 create a genetic background

favorable for high accumulation of tocopherol, resulting in a

maximum of 2.5 times the seed tocopherol elevation compared to

WT (Table 1).

A key conclusion from this study is the negative correlation

between chlorophyll synthase (CHLSYN) expression levels and

tocopherol concentrations in Arabidopsis seeds. Indeed, we

propose that the metabolic flow from either GGDP or PDP to

tocotrienol or tocopherol synthesis, respectively, is critical for the

final proportion of tocochromanols in mature seeds (Figure 6). Our

data suggests that starting from the background of CHLSYN

downregulation and HPT overexpression, simultaneous

overexpression of HPPD and TyrA resulted in an optimal

accumulation of total tocochromanol and tocopherols

(Figure 6B). The overexpression of HPPD and TyrA boosts HGA

supply and therefore increases the pool size of GGDP and PDP

(Figure 5, Figures 6A, B). Furthermore, at high levels of HGA, HPT
A B C

FIGURE 5

Measurement of HGA (A), GGDP (B), PDP (C) contents in seeds of 35S:TyrA/Col-0, 35S:TyrA+35S:HPPD plants. Data calculated from three biological
replicates, * and ** indicate significant differences at p < 0.05 and p < 0.01 respectively, by Student’s t-test.
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reveals a tendency toward using both GGDP and PDP for

tocotrienol and tocopherol synthesis, respectively. Introduction of

the CHLSYN RNAi construct results in the increased availability of

PDP for tocopherol synthesis. Together with the elevated pool sizes

of both GGDP and PDP, the balance shifts towards tocopherol

production resulting in high seed tocopherol accumulation

(Figure 6B). As seed tocopherol accumulation is a highly dynamic

process, it would be useful to quantify the level of PDP and GGDP

at different stages of seed development. However, the technique of

PDP and GGDP measurement in minute amounts of seed material

is not currently available. Although we could not observe a

significant change of the PDP and GGDP pools in CHLSYN-

RNAi or CHLSYN-OE seeds, the effect from (35S:TyrA+35S:

HPPD)/Col-0 is apparent (Figure 5). Pool sizes at seed

maturation reflect biosynthetic ability during seed development.

Accordingly, we propose that the content and ratio of GGDP and

PDP are critical for metabolic flow toward the synthesis of

tocotrienols or tocopherols, as previously suggested (Yang et al.,

2011; Zhang et al., 2013).

The genetic manipulations reported in this study can be

theoretically used for the improvement of tocopherol

concentrations in any photosynthetic “green” oilseed crop,

including canola and soybean. While most studies on oilseeds

have achieved significant increases in tocotrienol concentrations,

enhancing tocopherol accumulation has been more elusive. Our

current work demonstrates that RNAi of CHLSYN in the

chlorophyll salvage pathway can reduce the final proportion of

tocotrienols in total seed tocochromanols. We proposed a scenario

in which overexpression of TyrA and HPT combined with

CHLSYN suppression created a condition that favors tocopherol

biosynthesis (Figure 6B). These data will provide important

information to guide future genetic engineering for increasing

seed tocopherol contents in oil seed crops. Since many crop
Frontiers in Plant Science 09
species, e.g. Brassica napus, are polyploid, in contrast to

Arabidopsis, the numbers of CHLSYN homologs are higher.

Therefore, the use of CRISPR technology would be instrumental

in generating mutants for disrupting some of the multiple

CHLSYN loci for increasing PDP input. Based on these mutant

backgrounds, suitable genetic material accumulating elevated

amounts of tocopherols in mature seeds could be obtained by

overexpressing TyrA and HPT.
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