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Introduction: Weeds are one of the main factors affecting crop growth, making

weed control a pressing global problem. In recent years, interest in intelligent

mechanical weed-control equipment has been growing.

Methods: We propose a semantic segmentation network, RDS_Unet, based on

corn seedling fields built upon an improved U-net network. This network accurately

recognizes weeds even under complex environmental conditions, facilitating the

use of mechanical weeding equipment for reducing weed density. Our research

utilized field-grown maize seedlings and accompanying weeds in expansive fields.

We integrated the U-net semantic segmentation network, employing ResNeXt-50

for feature extraction in the encoder stage. In the decoder phase, Layer 1 uses

deformable convolution with adaptive offsets, replacing traditional convolution.

Furthermore, concurrent spatial and channel squeeze and excitation is

incorporated after ordinary convolutional layers in Layers 2, 3, and 4.

Results: Compared with existing classical semantic segmentation models such

as U-net, Pspnet, and DeeplabV3, our model demonstrated superior

performance on our specially constructed seedling grass semantic

segmentation dataset, CGSSD, during the maize seedling stage. The Q6mean

intersection over union (MIoU), precision, and recall of this network are 82.36%,

91.36%, and 89.45%, respectively. Compared to those of the original network, the

proposed network achieves improvements of 5.91, 3.50, and 5.49 percentage

points in the MIoU, precision, and recall, respectively. The detection speed is 12.6

frames per second. In addition, ablation experiments further confirmed the

impactful contribution of each improvement component on the overall

semantic segmentation performance.

Discussion: This study provides theoretical and technical support for the

automated operation of intelligent mechanical weeding devices.
KEYWORDS

smart weeding equipment, grass seedling identification, semantic segmentation,
computer vision, precision agricultural
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1 Introduction

Weed control presents a significant challenge in agricultural

production (Guo et al., 2018; Marchioro and Krechemer, 2018;

Horvath et al., 2023). In this context, weeds such as dandelions,

nettles, and pigweeds are typically characterized as wild plants

growing in undesired locations. Since they rapidly grow and

compete with crops for essential resources such as water, sunlight,

and nutrients, they considerably hamper crop yields (da Conceição

de Matos et al., 2019; Moreau et al., 2022). Presently, the primary

methods for weed control are chemical and mechanical (Machleb

et al., 2020; Zhao et al., 2023). Chemical weed control relies on

agrochemicals to control weeds. However, this approach not only

introduces environmental side effects but also leads to certain weeds

developing resistance to these pesticides, making them difficult to

eliminate. The widespread adoption of herbicides has led to a

concurrent increase in weed resistance in fields. By contrast,

mechanical weeding offers advantages such as lower labor costs,

reduced environmental pollution and improved work efficiency.

However, due to the irregular growth patterns of weeds in diverse

environments, mechanical weeding machinery often struggles to

distinguish between weeds and crops, potentially harming crops

during this process. Therefore, accurate identification of weeds is

pivotal in the mechanical weeding process. Therefore, devising a

system through the application of advanced artificial intelligence

technology for the automated identification of crops and weeds

holds positive significance for improving weeding efficiency and

reducing crop damage (Raja et al., 2020; Wu et al., 2020; Rai

et al., 2023).

In recent years, with the widespread application of artificial

intelligence technology in the agricultural sector (Ma et al., 2023;

Wang et al., 2023; Yang et al., 2023), researchers have actively

engaged in studies related to weed and seedling identification

(Wang et al., 2019; Ashraf and Khan, 2020; Coleman et al., 2022).

These studies primarily rely on advanced technologies in machine

learning and computer vision. In weed identification methods based

on machine learning, image processing techniques must be

integrated, including the extraction and preprocessing of features

such as color, shape, and texture (Ruslan et al., 2022). Alhwaiti et al.

(2023) proposed an image analysis method for weed classification to

support early weed detection in agriculture. To mitigate the

influence of environmental factors , they introduced

homomorphic filtering for preprocessing. For feature extraction,

they innovatively introduced an adaptive feature extraction method

that accurately estimated the direction of edges using edge detection

and non-maximum suppression. This method has the advantages of

user friendliness and scalability. Ultimately, through logistic

regression to evaluate the extracted features, the weighted average

recognition rate reached an outstanding 98.5% in natural

environments, providing robust support for the further

development of weed classification systems. Parra et al. (2020)

presented a weed recognition method based on edge detection

technology, aiming to reduce pesticide usage by early detection of

invasive plants. They applied 12 edge detection filters to small

experimental plots inside IMIDRA facilities and golf course images,

representing ornamental lawns and sports lawns, respectively.
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Through in-depth analysis, they identified the sharpening (I) filter

and minimum aggregation technique as optimal, with a unit size of

10, for achieving the best results. Finally, by adjusting the threshold

to meet the evaluation metrics (precision, recall, and F1 score), 78

was confirmed to be the optimal threshold. This study provides an

effective and environmentally friendly detection method for early

weed identification. Although these weed recognition methods

based on traditional machine learning have achieved good

identification results, feature extraction is laborious and

susceptible to various factors. Hence, they face challenges in

expressing the complete content of images, leading to severe

constraints on the generalizability, real-time performance, and

repeatability of such recognition methods (Chen et al., 2020). To

address the limitations of machine learning methods in weed

recognition tasks, researchers are extensively exploring computer

vision-based approaches. This method can automatically learn and

extract complex features from images, effectively overcoming the

constraints of manually designed features and achieving a more

comprehensive understanding of images. This approach

significantly enhances the accuracy and real-time performance of

weed recognition, allowing it to reach state-of-the-art levels of

performance (Hu et al., 2024). Computer vision-based approaches

can be further subdivided into subtasks such as image classification,

object detection, and semantic segmentation. This segmentation

allows us to address different recognition problems more effectively.

Image classification helps to accurately identify weed categories in

images (Hasan et al., 2023); object detection can discover and locate

multiple instances of weeds in images, while semantic segmentation

provides a detailed division of weeds and backgrounds at the pixel

level (Wu H. et al., 2023). By employing these computer vision

methods, we can handle complex scenarios more flexibly and

capture details in images more accurately (Veeragandham and

Santhi, 2024). This approach not only contributes to enhancing

the overall performance of weed recognition but also lays a solid

foundation for further improvement and development of related

technologies (Hu et al., 2024). In the task of weed image

classification, Wu Y. et al. (2023) proposed a method that

integrates a convolutional neural network (CNN) and a support

vector machine (SVM) to train and test the DeepWeeds public

multiclass weed dataset. The proposed fusion methods, ResNet-50-

SVM and VGG16-SVM, achieved the best accuracy compared to

the contrasted CNN methods VGG16, ResNet-50, GoogLeNet,

DenseNet-121, and PSO-CNN. However, due to the use of SVM

as a classifier, the model’s runtime is relatively slow. Mu et al. (2023)

introduced an ECA attention mechanism into a DenseNet weed

classification model. Through comparative experiments with

DenseNet, VGGNet-16, VGGNet-19, and ResNet-50 on processed

weed image datasets, the improved model achieved the best

accuracy. However, this model solely classifies weeds and does

not consider crop and soil information. In the task of weed

detection, Zhang et al. (2022) proposed an improved Faster-

RCNN algorithm for corn seedling and weed recognition. They

compared VGG16 and ResNet as feature extraction networks and

ultimately chose VGG16 to implement Faster-RCNN for corn and

weed recognition. However, this method has a slow recognition

speed, making it challenging to meet real-time recognition needs.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1344958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cui et al. 10.3389/fpls.2024.1344958
Pei et al. (2022) used an improved YOLOv4 model as a weed

detection model, introducing the Meta-ACON activation function,

adding the convolutional block attention module (CBAM), and

replacing non-maximum suppression (NMS) with soft non-

maximum suppression (Soft-NMS). However, this approach

struggles with detection when corn seedlings and weeds overlap

or occlude. In the task of weed semantic segmentation, Guo et al.

(2023) utilized a vision transformer (ViT) as the feature extraction

network for a U-net semantic segmentation network. They used the

Python Imaging Library algorithm to segment green plant leaves

from binary images, enhancing feature extraction. This improved

method demonstrated high accuracy in corn seedling and weed

recognition. However, ViT is prone to overfitting on small datasets,

making the matching of model complexity and data volume

important considerations. Mu et al. (2022) proposed a

recognition method based on an improved Faster R-CNN using

ResNeXt as the feature extraction network and an integrated feature

pyramid network (FPN) for feature pyramid fusion. Although

fusing information from different scales can improve recognition

accuracy, it also increases the computational complexity of the

model. Therefore, real-time segmentation is challenging in this two-

stage semantic segmentation model. Zhang et al. (2023) presented a

weed recognition model based on an improved Swin-Unet model.

The model initially adopts U-Net as the semantic segmentation

framework, introduces the Swin Transformer module to enhance

performance, and finally uses an improved morphological

processing algorithm to identify and segment weedy regions.

Comparative experiments with DeepLabv3+, PSANet, and Mask

R-CNN on a weed dataset showed that the improved Swin-Unet

model achieved optimal performance, demonstrating good

adaptability of the encoder-decoder structure semantic

segmentation network for weed recognition. Liu et al. (2023)

proposed an improved multi-scale efficient residual factorized

network (MS-ERFNet) model for identifying corn seedling rows.

In comparative experiments with DeepLabv3+, ENet, ERFNet,

FCN-8s, U-Net, and MS-ERFNet on a corn seedling row test set,

the average intersection over union and pixel accuracy were greater

for the MS-ERFNet model than for the other models. This finding

suggested that semantic segmentation is a suitable seedling

recognition method for effectively alleviating the issue of reduced

recognition accuracy due to mutual occlusion between seedlings. In

summary, deep learning-based detection methods have become the

dominant approach in the field of weed recognition (Hu et al.,

2024). Through automatic learning, deep learning can extract the

required features from data, effectively overcoming the limitations

of manual feature engineering methods. In weed recognition tasks,

we face various challenges, such as diversity in the size and shape of

weeds, mutual occlusion between weeds and crops, and the

identification of densely distributed targets. To address these

challenges, an increasing number of researchers are attempting to

apply semantic segmentation algorithms in deep learning for weed

recognition. Semantic segmentation algorithms based on deep

learning have the advantage of pixelwise classification, enabling

effective segmentation of irregularly shaped and densely distributed

objects. However, current semantic segmentation models for weed

recognition face several challenges. These include the complexity of
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recognition models, difficulty in ensuring real-time performance,

limited ability to handle overlapping occlusions, and the need for

improvement in recognition accuracy.

Aiming at the problems existing in seedling grass recognition

within maize seedling fields, we propose an improved semantic

segmentation network, RDS_UNet, based on the U-net network.

This enhanced model demonstrated superior semantic

segmentation performance on our self-constructed seedling grass

semantic segmentation dataset, CGSSD, which was specifically

tailored for maize seedling fields. By doing so, we aim to support

seedling grass recognition in intelligent precision weeding

operations. Our main contributions include the following

three aspects:
1.ResNeXt-50 was adopted for feature extraction by the

encoder. The integration of residual and inception

structures within ResNeXt ensures the mitigation of

vanishing gradient issues and obtains better feature

extraction at lower computational costs.

2.In the decoder’s Layer 1, traditional convolution is

supplanted by deformable convolution, which is equipped

with learnable offsets. This deformable convolution

increases the receptive field, improves the pixel

correlation for segmentation, and increases the robustness

of the model.

3.After standard convolution in the decoder, layers 2, 3, and 4

were enriched with the concurrent spatial and channel

squeeze & excitation (scSE) hybrid attention mechanism.

This hybrid attention mechanism—channel and spatial—

effectively curtails superfluous features, thereby improving

semantic segmentation accuracy.
2 Materials and methods

2.1 Construction of semantic segmentation
dataset for seedling grasses in the field
during seedling stage of maize

2.1.1 Data acquisition
Our study focused on maize plants and their associated weeds.

Between May 10th and 20th, 2023, experimental images were

collected multiple times from the Heilongjiang Bayi Agricultural

Reclamation University’s experimental base located in Anda city,

Heilongjiang Province. The images were captured using a YH-IPC-

U 33 WH camera equipped with a 3MP definition, a 1/3 inch

photosensitive area, a 6 mm focal length, a horizontal rotation

spanning 0°–355°, and a vertical rotation from -5°–90°. Positioned

vertically 0.8 m above the ground, this ball machine camera

recorded videos with a resolution of 1280 × 720 pixels. These

videos were then segmented into images of the same resolution in

JPEG format. After removing consecutive frames containing the

same corn plants and their associated weeds, 500 sample images

containing corn plants and their companion weeds (including

grassy and broadleaf weeds) were manually selected by
frontiersin.org
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agricultural experts. These sample images encompass various weed

sizes, weed densities, diverse weed phenotypic information, and

typical instances of seedling overlap and occlusion. Postprocessing

involved adjusting these images to 224 × 224 pixels. Subsequently,

annotations were made using Labelme, with “corn” indicating

maize seedlings and “grass” denoting the associated weeds. These

annotations were compiled into a JSON-formatted file, which was

later converted to the Pascal VOC format, producing the CGSSD.

Representative images from the CGSSD can be viewed in Figure 1.

2.1.2 Data augmentation
Data enhancement not only increases the number of data

samples but also improves their diversity. Thus, our approach

reduces the overfitting of certain features, improves the model’s

generalization capability, and enhances its robustness in simulating

complex field environments. Our enhancement strategies, which are

conducted randomly at a 50% probability, include increasing

Gaussian noise to simulate conditions such as rain and fog.

Random rotation angles are introduced to simulate different

camera angles. The color properties, including brightness,

contrast, and histogram, were adjusted to represent the different

light intensities. Motion blur was incorporated to simulate the

blurring effect experienced in field photography. Following the

data augmentation strategy described above, the original dataset

was augmented to 4000 images using the torchvision.transforms

module in PyTorch. We allocated data in an 8:2 ratio for both the

training and testing sets, with the training dataset further divided

into an 8:2 ratio for the purpose of training and validation.

Enhanced data sample visualizations are depicted in Figure 2.
2.1.3 Data preprocessing
The annotation of the image is extensive. Color images are

converted into black and white (brightness) images, with a grayscale

range of 0–255. Converting from color to grayscale not only

conserves memory but also expedites the process. Following the

grayscale image conversion, the contrast within the images was
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increased visually to highlight the target area during processing. The

processed images are displayed in Figure 3.
2.2 Experimental environment of semantic
segmentation network of field seedlings in
maize seedling stage

The technical environment included Windows 10 Professional

(64-bit) and was enhanced by software platforms such as Anaconda

3.5.0, CUDA8.2, and CUDNN10.2. The computer was equipped

with 16 GB of RAM, powered by an Intel(R) Core(TM) i7-10750H

processor, and utilized an NVIDIA GeForce GTX1660Ti graphics

card for GPU-intensive tasks. For deep learning target detection,

models were constructed within the PyTorch framework. Python

served as the primary development language, and the chosen

integrated development environment was PyCharm Community

Edition 2022.1.3.
2.3 Construction of semantic segmentation
network of field seedlings in maize
seedling stage

2.3.1 General steps for semantic segmentation
network construction

The construction of a semantic segmentation network has

common stages, such as the encoder, decoder, and training of the

semantic segmentation network. By improving the foundation of

the U-net semantic segmentation network (Ronneberger and

Fischer, 2015), we propose a new semantic segmentation network

that obtains better semantic segmentation performance.

The U-net framework stands out as an essential foundation for

recognizing field weeds through semantic segmentation (Mu et al.,

2022; Zou et al., 2022; Yang et al., 2023). The structure of the U-net

semantic segmentation network, illustrated in Figure 4, is

symmetrical. The left segment encapsulates the downsampling
FIGURE 1

Example of a CGSSD data sample.
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process or the encoder, while the right side encompasses the

upsampling process or the decoder. Within the encoder, each

layer consists of two 3 × 3 convolutional kernels, both of which

employ the ReLU activation function, followed by a 2 × 2 maximal

pooling layer for downsampling, with a pooling layer step size of 2.

The feature channels progressively double in number throughout

the downsampling process. Within each layer of the decoder, a 2 × 2

convolution is first executed to reduce the number of original

feature channels to half. Subsequently, the corresponding cropped

feature maps are cascaded, and two 3 × 3 convolution operations,

which utilize the ReLU activation function, are performed. Owing

to potential losses of boundary pixels during convolution, it is

essential to crop the feature maps. The process concludes by

mapping each 64-dimensional feature vector to the network’s

output layer via a 1 × 1 convolution kernel. The U-net obtains

the image ’s shallow features through convolution and

downsampling in the encoder, whereas it extracts more profound

features via convolution and upsampling in the decoder. In the

middle, the feature maps from both the encoder and decoder stages
Frontiers in Plant Science 05
are superimposed by overlaying, which refines the image by

combining both shallow and deeper features. The final step

involves making predictive segmentations based on the obtained

feature maps.

2.3.2 Encoder construction
The encoder plays a very important role in semantic

segmentation networks and is characterized by its multiple

convolutional and pooling layers. Its purpose is to methodically

extract features from the input image while compressing the spatial

scale of such information. The superior performance of ResNeXt-50

(Xie et al., 2017) in the ResNet (Krizhevsky et al., 2012) series makes

our encoder a clear choice in the improved semantic segmentation

network. The integration of the residual structure (Krizhevsky et al.,

2012) and inception structure (Szegedy et al., 2015) in the ResNeXt

network helps avoid issues such as vanishing gradients, all while

obtaining better feature extraction at a lower computational cost.

The conceptual framework of the ResNeXt network (Xie et al.,

2017) derives inspiration from the split-transform-merge strategy
FIGURE 3

Example of grayscale processing samples.
FIGURE 2

Example of data enhancement samples.
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used in GoogLeNet’s “Inception” module (Szegedy et al., 2015) and

further improves upon the ResNet network (Krizhevsky et al.,

2012). By melding the “Inception” concept into ResNet’s residual

module, a three-layer structure emerges: a 1 × 1 convolution in

Layer 1, a 3 × 3 convolution in Layer 2, and another 1 × 1

convolution in Layer 3. The convolutions in Layers 1 and 3 are

responsible for dimensionality adjustments, both reducing and

enhancing, respectively. This is illustrated in Figure 5A). By

incorporating the “Inception” concept, ResNeXt’s residual module

replaces single-channel convolution with a grouped convolution

approach. While the “Inception” module adopts various

convolution kernel sizes in each group to obtain features of

different scales, enhancing recognition accuracy, the ResNeXt

network standardizes the convolution kernel size across groups.

This simplification not only streamlines the network’s structure but

also improves the accuracy without increasing the parameter
Frontiers in Plant Science 06
complexity. Additionally, the residual module solves potential

gradient and degradation problems as the network deepens.

Features such as “cardinality,” “sensitivity,” and “density” also

find their place in the ResNeXt architecture. In the ResNeXt

network, the “cardinality” parameter is introduced to indicate the

number of groups. Based on this, the convolutional layers are evenly

divided into structures with identical convolutional kernels and

input/output channel dimensions. A commonly used structure is

the 32 × 4d format, which we have also chosen for our approach.

The architecture of the ResNeXt block begins by employing 256 1 ×

1 convolution operations to compress the input feature

information. The compressed feature map is divided into 32

groups according to the channel dimension, where each group

contains four channels. Group convolution then facilitates feature

extraction, employing four 3 × 3 convolution operations for every

group. The process concludes with each group being expanded
A B C

FIGURE 5

ResNet and ResNeXt block structure diagrams: (A) ResNet block structure diagram, (B) ResNeXt block structure diagram, and (C) ResNeXt block
structure equivalent structure diagram.
FIGURE 4

U-net semantic segmentation network structure diagram.
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using a 1 × 1 convolution. Group convolution has distinct

advantages: Each convolution kernel performs only on the input

features of its specific group, which reduces the number of

convolution operations. Simultaneously, the method of grouping

input features ensures that convolution kernels process only the

current segment of the feature map at any given time. As a result,

the ResNeXt block structure can better extract feature information

from each part, promoting diversified feature extraction. This

approach not only increases the model’s robustness but also

improves its segmentation accuracy. The ResNeXt block structure

is illustrated in Figures 5B, C).

The ResNeXt model calculation formula is represented by

Equation 1:

Y = X +o
C

i=1

Ti(X) (1)

where X represents the input feature and Ti(X) represents any

function; in this context, X represents the stacking of three

convolution layers. C represents the number of groups.

The architecture of the ResNeXt-50 network consists of one

convolutional layer, four ResNeXt block structures, two pooling

layers, and one fully connected layer. The four ResNeXt block

structures were reused 3, 4, 6, and 3 times. A depiction of the

ResNeXt-50 network is presented in Figure 6. The network accepts

an input image size of 224 × 224 pixels, which is processed for

feature extraction by the ResNeXt-50 network. The specific

parameters of the network are enumerated in Table 1. The

operations in the 2nd, 3rd, 4th, and 5th stages correspond to the

operations of the ResNeXt block structure. The postconvolution

parameters indicate the convolution kernel size and the number of

input channels.
2.3.3 Decoder stage
In a semantic segmentation network, the decoder functions

opposite to the encoder. It decodes the highly abstracted features in

a layered manner to produce a segmentation result. The decoder

usually consists of upsampling and convolutional layers. The

upsampling layer can also be a transposed or inverse

convolutional layer. Its main role is to expand the extracted

feature map and decode the extracted abstract features using a

convolutional layer. Instead of using traditional convolution, our

approach integrates deformable convolution (Dai et al., 2017) with
Frontiers in Plant Science 07
learnable offsets in the decoder stage. This method increases the

sensory field, improves the correlation among pixels targeted for

segmentation, and enhances the model’s robustness. Additionally,

after each decoder layer, we embed the scSE hybrid attention

mechanism (Roy et al., 2018). This mechanism effectively learns

features from both channel and spatial dimensions, thus

eliminating redundant features and improving semantic

segmentation accuracy.

Traditional convolutional neural networks employ a fixed

convolutional structure for extracting target features, limiting

their adaptability and control over various target feature forms.

This leads to poor target recognition and generalization. Typically,

the convolution kernels in these networks have fixed dimensions

(e.g., 3 × 3, 5 × 5), restricting their adaptability to changes in target

shapes. To overcome this difficulty, Dai et al. (2017) proposed a

deformable convolutional network as a replacement for standard

convolution. Their approach increases trainable offsets through the

deformable convolutional network, accommodating changes in the

target’s shape, thereby improving target detection robustness.

Considering that a 1 × 1 deformable convolution does not impact

the sensory field and that a 5 × 5 variable convolution demands

extensive computation, we chose the 3 × 3 deformable convolution

as a replacement for traditional convolution. A comparison of

standard and deformable convolution sampling points can be

found in Figure 7.

In traditional two-dimensional convolution, the output feature

map y at local sampling position P0 is represented by Equation 2:

y(P0) = o
Pn∈R

w(Pn) · x(P0 + Pn) (2)

where w(Pn) represents the convolution kernel weight at the

sampling location, x(P0 + Pn) represents the sampling location of

the input feature map, Pn represents all the sampling locations

within the receptive field, and R represents the receptive

field region.

In a deformable convolution, the output feature map y at local

sampling position P0 is represented by Equation 3:

y(P0) = o
Pn∈R

w(Pn) · x(P0 + Pn + DPn) (3)

where DPn ∣ n = 1,Nf g,N = Rj j indicates the learnable offset at
each sampled position from the standard convolution, usually

expressed in decimals. Therefore, the pixel values x(P0 + Pn +
FIGURE 6

ResNeXt-50 network structure; numbers within yellow squares represent the repetition count of each corresponding module.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1344958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cui et al. 10.3389/fpls.2024.1344958
DPn) at postoffset sampling locations are derived by utilizing

bilinear interpolation methods. From the input image, a feature

map is extracted using a conventional convolution kernel. Another

convolutional layer is then applied to this feature map to obtain the

offset for deformable convolution. This results in an output offset of

H ×W × 2 N, where 2 N means that offsets are obtained in both the

x and y directions. During training, the convolution kernels for

generating the output feature map and the offsets are learned

simultaneously. The offsets are refined through backpropagation

using an interpolation algorithm.

The scSE module (Roy et al., 2018) is a combination of channel

squeezing and spatial excitation (ssE) and spatial squeezing and

channel excitation (csE). The adaptive recalibration of feature maps

to enhance useful features while suppressing irrelevant features

reduces the computational load of the algorithm and enhances

feature extraction. This module assesses the channel–space

relationship to extract the importance of input feature maps in

both dimensions for the final feature maps. It employs global

average pooling for pooling and utilizes sigmoid and ReLU as

activation functions.

In this context, 1, 1 × 1 denotes the 1 × 1 convolution for a

single channel. The csE module initiates with a global pooling

operation on the feature maps, reduces the number of channels to

half via a fully connected layer and ReLU activation, recovers the

original number of channels using another fully connected layer

paired with a sigmoid activation function, and finally multiplies the

result with the original feature maps. The csE module recalibrates

feature information in the channel dimension. In contrast, the ssE

module obtains spatial attention using a 1 × 1 convolution for a

single channel followed by a sigmoid activation function and

multiplies the result with the original feature map. The output

combines the channel-recalibrated ssE with the spatial-recalibrated
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csE, represented by Equation 4:

XscSE = XcsE + XssE (4)

The output feature diagram highlights important channel and

spatial features, refining the neural network’s recognition
TABLE 1 ResNeXt-50 network parameters.

Layer name Output shape Layer type(32×4d) Repeat

Layer 1 112×112 Conv 7×7 stride=2 —

Maxpool 3×3 stride=2

Layer 2 56×56

Conv 1×1 128

C=32 3Conv 3×3 128

Conv 1×1 256

Layer 3 28×28

Conv 1×1256

C=32 4Conv 3×3 256

Conv 1×1 512

Layer 4 14×14

Conv 1×1 512

C=32 6Conv 3×3 512

Conv 1×1 1024

Layer 5 7×7

Conv 1×1 1024

C=32 3Conv 3×3 1024

Conv 1×1 2048

— 1×1 GAP —
A B

DC

FIGURE 7

Comparison between standard and deformable convolution
sampling points: (A) standard convolution, (B) deformable
convolution, (C) deformable convolution special case I, and
(D) deformable convolution special case II.
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capabilities by enhancing useful features and inhibiting irrelevant

features. This structure is depicted in Figure 8.

2.3.4 Overall structure of modified U-net
semantic segmentation network

Our improved U-net semantic segmentation network contains

two main parts: an encoder and a decoder. In the encoder stage, we

used the ResNeXt-50 network as a replacement for the original

backbone feature extraction network. This decision, based on the

ResNeXt-50 network’s superior feature extraction capabilities, is

particularly evident when analyzing maize field seedlings and grassy

images during the seedling stage. Its progress is especially noticeable

when overlapping seedlings and grass or when addressing miniscule

seedlings and grass targets are present. For the decoder stage, we

integrated the scSE attention mechanism module directly after the

common 3 × 3 convolution during the 2nd, 3rd, and 4th upsampling

layers. This scSE module facilitates the automation excitation or

suppression of valid and invalid features across both channels and

spatial dimensions.We also replaced the ordinary 3 × 3 convolution in

the first layer of the decoder with a 3 × 3 deformable convolution. This

inclusion, with its learnable offsets, increases the deep feature receptive

field, improving the correlation among the features slated for

segmentation. This ensures that the features encapsulate a certain

degree of global characterization. In addition, to avoid any potential

loss of seedling image information after upsampling, we implemented

a jump layer to fuse the upsampled feature maps with the

corresponding encoder feature maps of matching resolution. The

final predictive segmentation was executed based on these obtained

feature maps. We named this improved U-net semantic segmentation

network ResNeXt Dconv scSE_U-Net (RDS_Unet). The structure of

the RDS_Unet semantic segmentation network is depicted in Figure 9.
2.3.5 RDS_Unet semantic segmentation
network training

The encoder and decoder architectures of the RDS_Unet

semantic segmentation network were trained via random

initialization. The number of iterations was set at 100, with a

batch size of 4. The weight parameter commenced with a learning

rate of 0.001, the momentum was set at 0.9, and the decay rate was

marked at 1e-4. Adam served as the optimizer, and Dice loss was

utilized as the loss function.
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2.4 Evaluating indicators

To evaluate the performance and effectiveness of our proposed

semantic segmentation network, we exposed the experimental

results to both subjective and objective evaluations. The subjective

evaluation involved visually comparing the seedling grass

recognition in maize fields during the seedling stage using the

segmentation image results. For objective evaluation, we adopted

widely recognized metrics in the field of semantic segmentation: the

mean intersection over union ratio (MIoU), recall rate (recall), and

precision rate (precision). These metrics serve as benchmarks for

assessing segmentation performance. These equations are

calculated via Equations 5-7:

MIoU =
1

k + 1o
k

i=0

TP
FN + FP + TP

(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

where TP stands for true positives, where a positive class is

correctly predicted as positive. FN signifies false negatives, where a

positive class is incorrectly predicted as negative. FPs represent false

positives, where a negative class is mistakenly predicted as positive.

Finally, TN denotes true negatives, where a negative class is

correctly predicted as negative.

Furthermore, we introduced frames per second (FPS) as an

index to measure the processing speed of the semantic

segmentation network.
3 Results and analysis

3.1 Comparison experiments

To verify the effectiveness of our proposed RDS_Unet semantic

segmentation network in recognizing seedling grass during the corn

seedling stage in field environments, we chose to compare it against

classical semantic segmentation networks such as U-net, PspNet
FIGURE 8

scSE structure.
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(Zhao et al., 2017), and DeeplabV3 (Chen et al., 2017). We used the

CGSSD dataset, which was specifically curated for seedling grass

semantic segmentation during the maize seedling stage in the field.

We compared the networks based on the MIoU, precision, recall,

and FPS metrics. All the networks were trained for 100 iterations

without leveraging the pretraining weights of migration learning.

The average experimental results obtained from 10 repeated

experiments are shown in Table 2.

Table 2 clearly shows that our RDS_Unet semantic

segmentation network outperforms classical models such as U-

net, PspNet, and DeeplabV3 on the self-constructed CGSSD

dataset, which focuses on the semantic segmentation of corn

seedling stage field seedlings. In particular, compared to U-net,

our model improved the MIoU by 5.91%, the precision by 3.50%,

and the recall by 5.49%. The unsatisfactory performance of other

classical networks can be attributed to the challenging nature of the

images in our self-constructed CGSSD dataset. In terms of the

semantic segmentation network testing speed, measured in FPS,

RDS_Unet matched the U-net’s speed even with the integration of

the more complex ResNeXt as its feature extraction backbone. This

makes it optimal for placement on various embedded devices, such

as Jetson NX, IMX8PLUS, and Raspberry Pi. In summary, the

improvements in the RDS_Unet semantic segmentation network

prove effective, emphasizing its suitability for recognizing seedlings

and grasses during the seedling stage in complex natural
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environments, balancing both segmentation accuracy and

testing speed.

Figure 10 shows the training and testing loss curves of our

proposed RDS_Unet semantic segmentation network compared

with those of the classical semantic segmentation networks U-net,

PspNet, and DeeplabV3. The figure demonstrates that none of the

semantic segmentation networks displayed an overfitting

phenomenon. Additionally, our RDS_Unet had smaller training

and testing losses, faster convergence speed, and better model

robustness than did the classical semantic segmentation networks.

After 100 iterations, the training and testing losses of the classical

semantic segmentation networks stabilized. However, the losses for

our RDS_Unet did not stabilize, indicating that the model has

significant room for improvement.

Figure 11 presents a comparison between our proposed RDS_Unet

semantic segmentation network and the classical models in the context

of seedling grass semantic segmentation during the maize seedling

stage. The figure indicates that the DeeplabV3 network exhibits

pronounced misclassification when segmenting corn seedlings and

field companion weeds. In contrast, the U-net and PspNet networks

sometimes present unclear boundaries in the segmentation of smaller

target weeds within the same context. Therefore, our RDS_Unet

demonstrates a significant advantage in addressing both the

segmentation-type errors and the unclear boundaries observed when

segmenting corn seedlings and companion weeds.
TABLE 2 Experimental results on the CGSSD test set.

Segmentation method MIoU% Precision % Recall% FPS

U-net 76.45% 87.86% 83.96% 13.8

Pspnet 71.64% 83.17% 79.70% 19.2

DeeplabV3 76.50% 75.61% 70.25% 24.7

RDS_Unet 82.36% 91.36% 89.45% 12.6
The bolded font represents the best performance.
FIGURE 9

Structure diagram of RDS_Unet.
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3.2 Ablation experiment

To further evaluate the effect of our proposed improvement

scheme on the U-net segmentation network’s performance, we

conducted an ablation experiment using our self-constructed

dataset, CGSSD. In this ablation experiment, the U-net network

served as the foundation. Specifically, we evaluated the impacts of

(i) replacing the original U-net backbone feature extraction network

with ResNeXt in the encoder, (ii) replacing the traditional

convolution for a deformable convolution with learnable offsets in

the decoder, and (iii) introducing the scSE hybrid attention

mechanism after the upsampling layer in the decoder. The impact

on the segmentation performance of the U-net semantic

segmentation network. The average results of the ablation

experiments obtained from 10 repeated experiments are presented

in Table 3.

Table 3 shows that when the U-net+① semantic segmentation

network is compared with the U-net semantic segmentation

network, the adoption of the ResNeXt-50 network as the

backbone feature extraction network in the encoder stage

significantly improves the network’s ability to extract features

from overlapping occlusion targets and small-target seedlings and

grasses. This approach results in an enhancement in the network’s

semantic segmentation performance by 2.24% in MIoU, 0.76% in

precision, and 1.18% in recall. When comparing the semantic

segmentation network of U-net+①+② with that of U-net+①, the

adoption of deformable convolution with learnable offsets instead of

the traditional convolution in Layer 1 of the decoder stage makes

the U-net+①+② network more effective than U-net+①. The

traditional convolution scheme in Layer 1 of the decoder stage

increases the sensitivity of the semantic segmentation network to
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changes in the shape of the field seedling target. This leads to an

improvement in the network’s semantic segmentation performance

by 0.78% in MIoU, 1.13% in precision, and 1.1% in recall.

Furthermore, the U-net+①+②+③ semantic segmentation network

displays greater sensitivity to shape changes in field-generated

seedlings and grasses than does the U-net+①+② network. This is

attributed to the introduction of the scSE hybrid attention

mechanism after the conventional convolution in the 2nd, 3rd, and

4th upsampling layers of the decoder stage. With this mechanism,

the feature extraction capability is further improved. As a result, the

network’s semantic segmentation performance improved the MIoU

by 2.89%, the precision by 1.61%, and the recall by 2.86%.

Figure 12 displays the visualization of the semantic

segmentation effects achieved by the semantic segmentation

network for each improvement scheme in the ablation

experiment. Visualization of the segmentation effects of the U-net

semantic segmentation network clearly reveals that this network has

limitations in accurately classifying miniscule seedling grass targets

and maintaining clear segmentation boundaries. Observing the U-

net+① semantic segmentation network, it becomes clear that these

network issues, when compared to those of the basic U-net

regarding classification accuracy and segmentation boundary

clarity, remain largely unresolved. When examining the U-net+1

semantic segmentation network, similar challenges in terms of

classification accuracy and boundary definition persist, especially

when classifying tiny seedling grass targets. Misclassifications and

ambiguous segmentation of boundaries still exist. This shows that

replacing only the backbone feature extraction network, despite its

capacity to enhance semantic segmentation performance test

results, does not result in significant advancements, making

subsequent ② and ③ improvements necessary. A review of the U-
A B

DC

FIGURE 10

Loss variations on the CGSSD training and testing sets for (A) U-net, (B) PspNet, (C) DeeplabV3, and (D) RDS_Unet Note: Green and red indicate
corn and weeds, respectively.
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net+①+② segmentation images reveals that although a discernible

enhancement is observed in the clarity of the seedling grass

segmentation boundaries, the phenomenon of tiny seedling grass

target misclassification still occurs. The improvement in the fuzzy

boundary of seedling segmentation verifies the effectiveness of using

deformable convolution with learnable offset in place of traditional

convolution. Deformable convolution expands the sensing field,

increasing the correlation among the pixels to be segmented and

leading to sharper segmentation boundaries. After evaluating the U-

net+①+②+③ segmentation, the results are markedly superior to

those of previous studies, demonstrating its effectiveness. The

visualization diagram shows that this model achieved significant
Frontiers in Plant Science 1
improvements in terms of classification accuracy and segmentation

boundary sensitivity for tiny seedling targets, especially for

overlapping and occluded regions. The significant improvement

in the semantic segmentation performance verifies the effectiveness

of the introduction of the scSE hybrid attention mechanism. The

strength of the scSE mechanism lies not only in its ability to learn

features from both channel and spatial dimensions but also in its

ability to inhibit redundant features by reducing the weights of

invalid features. This suppression of invalid and redundant features

is crucial for substantially elevating the quality of semantic

segmentation. These results underscore the conclusion that

simply improving the feature extraction capability leads to limited

improvement in semantic segmentation, as initially proposed in the

① improvement scheme.
4 Discussion

4.1 Purpose of intelligent seedling
recognition research

The importance of weed identification during the seedling stage

in agriculture is self-evident. For healthy growth of crop plants, it is
TABLE 3 Results of disruption experiments on the CGSSD test set.

Segmentation
method

MIoU% Precision % Recall%

U-net 76.45% 87.86% 83.96%

U-net+① 78.69% 88.62% 85.14%

U-net+①+② 79.47% 89.75% 86.24%

U-net+①+②+③ 82.36% 91.36% 89.10%
①ResNeXt-50, ②Deformable Convolution, ③ scSE, bold for best performance.
FIGURE 11

Visual comparative analysis of semantic segmentation performance on the CGSSD test dataset Note: Green and red indicate corn and
weeds, respectively.
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imperative to detect and remove weeds promptly and accurately.

However, the complexity of the field environment, characterized by

overlapping seedlings, grass, and shadows, coupled with the striking

resemblance between certain grassy weeds and maize seedlings

during the seedling phase, complicates the accurate identification

of maize and associated weeds. This makes their precise

identification quite challenging. In response to this practical

challenge, we propose the RDS_Unet semantic segmentation

network, which is tailored for precise seedling weed recognition

in the field during the maize seedling stage and yields better

segmentation results. This network offers technological support

for the automated recognition of seedling weeds via intelligent

mechanical weeding equipment. Such advancements can hinder

weed proliferation, reduce reliance on agro-chemical herbicides,

reduce the detrimental impacts of weeds on crop yields, and realize

sustainable agricultural production.
4.2 Necessity of semantic segmentation
network model improvement

The effectiveness of semantic segmentation networks,

particularly the U-net model, in field seedling recognition has

been well proven, making them a prime choice for further

research advancements (Amin et al., 2022; Yu et al., 2022; Ma

et al., 2023). The U-net semantic segmentation network is
Frontiers in Plant Science 13
distinguished by its nearly symmetrical U-shaped structure

comprising an encoder and a decoder. The encoder’s backbone

feature network needs to possess strong image feature abstraction

capabilities, while the decoder’s upsampling layers need to excel in

parsing these abstracted image features. Given that our self-

constructed dataset for the corn seedling stage, CGSSD, is used

with complex images showcasing overlapping seedlings, occlusions,

and tiny seedling targets that pose segmentation challenges, the

requirement for an adept backbone feature extraction network is

higher. While both semantic segmentation and image classification

are different computer vision tasks, their demands for feature

extraction capabilities remain consistent. In this study, we chose

the ResNeXt-50 network, which is renowned for its outstanding

performance in image classification, as the backbone feature

extraction network for our improved U-net semantic

segmentation. The residual structure in ResNeXt, coupled with its

inception structure, effectively avoids gradient vanishing while

achieving diverse feature extraction at a low computational cost.

This approach is beneficial for accessing difficult-to-segment images

in our self-constructed dataset. In addition, semantic segmentation

tasks aim to classify input images on a pixel-by-pixel basis. The

correlations among these pixels, especially in challenging

segmentation scenarios, are important and should not be ignored.

As a result, instead of conventional convolution, we deployed

deformable convolution with a learnable offset in the decoder’s

first layer. This approach enables the discovery of correlations
FIGURE 12

Visual comparison of the semantic segmentation effects in disintegration experiments on the CGSSD test set: ① ResNeXt, ② Deformable Conv, and
③ scSE.
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between pixels over a larger field, aligning well with the

requirements of our self-constructed dataset. Deformable

convolution is able to explore the correlation between the pixels

to be segmented with a larger sensory field, which is also useful for

hard-to-segment sample images in our self-constructed dataset. The

strength of a semantic segmentation system depends not only on

strong image feature abstraction but also, importantly, on its ability

to analyze these abstract features during the decoding stage. Deeper

backbone feature extraction networks, while capturing essential

features, also inevitably introduce some invalid, redundant feature

information. Such invalid information can often be the main cause

of misclassification and unclear segmentation boundaries.

Therefore, we adopted the scSE hybrid attention mechanism after

ordinary convolution in the 2nd, 3rd, and 4th layers of the decoder

stage. This attention mechanism dynamically emphasizes effective

features while suppressing ineffective features across both channel

and spatial dimensions. Combined with our study, the encoder,

utilizing the ResNeXt-50 network, harbors a large amount of

abstract feature information from the images. Thus, the data sent

to the decoder via the jump layer inevitably comprise invalid and

redundant information. By employing the scSE hybrid attention

mechanism, we suppress these inefficiencies, improving the

segmentation performance of our proposed RDS_Unet network.

Notably, CNNs inherently function as “black boxes.” The absence of

a standard blueprint when selecting network structures often

prevents the combination of an encoder and decoder structure

from resulting in a good CNN. Nevertheless, our research obtained

a semantic segmentation network model that demonstrated good

performance. Compared to the original Unet model, our proposed

improved semantic segmentation network model, RDS_Unet,

introduces a ResNeXt-50 backbone feature extraction network,

deformable convolutions, and the scSE attention mechanism.

While these enhancements lead to improved model recognition

accuracy (a 3.50% increase), they also come with additional energy

requirements and time consumption. However, unlike those of

other intelligent plant protection systems, the performance of

intelligent mechanical weeding systems relies more on the

model’s recognition accuracy. When other intelligent plant

protection systems have deficiencies in terms of recognition

accuracy, they may only result in suboptimal effects, such as

overspraying or underspraying chemical pesticides. In contrast,

an intelligent mechanical weeding system with low recognition

accuracy poses a risk of causing damage to crops, leading to crop

yield losses. Therefore, considering various factors, it is beneficial to

judiciously increase energy requirements and time consumption to

achieve higher recognition accuracy in the context of intelligent

mechanical weeding systems.
4.3 Comparative analysis of similar studies

Guo et al. (2023) proposed a weed recognition model based on

the UNet network model and the Vision Transformer (ViT)

classification algorithm. Their study focused on corn, wheat
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seedlings, and field weeds. Initially, they used the UNet model for

image segmentation, followed by extracting features of segmented

green plant leaves using the PIL algorithm from the Python Imaging

Library. Finally, the image features were input into the Vision

Transformer model to recognize and classify field corn, wheat

seedlings, and weeds. Although their combined recognition model

achieved an accuracy of 99.3% on a self-built dataset, compared to

our proposed RDS_Unet model, their combined model’s output

included only image classification results. It is known that image

classification results do not contain positional information about

the targets to be identified in the image, which is a limitation.

Moreover, the ViT classification algorithm model has a large

volume and many parameters, leading to a significant

consumption of computational resources and a relatively slow

recognition speed. Yu et al. (2022) introduced a semantic

segmentation method that combines an improved UNet structure

and an embedded channel attention mechanism (SE) module. Their

research focused on soybeans, grassy weeds, and broadleaf weeds in

complex field environments. They used ResNet34 with an

embedded channel attention mechanism (SE) module as the

backbone feature extraction network in the encoder stage. The

features obtained from the first 34 downsampling tasks were

restored to the same original image by combining the feature

maps through deconvolution layers as an upsampling method,

along with low-dimensional feature maps across connections.

Although their combined recognition model achieved an accuracy

of 96.11% on a self-built dataset, compared to our proposed

RDS_Unet model, even though both models used the ResNet

network structure as the backbone feature extraction network in

the encoder, the ResNeXt with the “Inception” structure in our

model has stronger feature extraction capabilities. Additionally, we

employed deformable convolutions to enhance the correlation

between each pixel to be segmented, improving the robustness of

our model. Finally, when attention modules are used, only channel

attention is focused on, while spatial attention is also an

indispensable factor in semantic segmentation tasks.
4.4 Limitations of this study

Constrained by the limitations of the current technological

platform for autonomous agricultural driving based on computer

vision technology (Xie et al., 2023), the proposed RDS_Unet

semantic segmentation network focuses only on segmenting corn

seedlings and accompanying weeds in a corn field without

incorporating land information. Therefore, this network is

applicable to manned mechanical weeding equipment and is not

equipped for route planning.
5 Conclusion

We collected seedling and weed images using ball camera

equipment during the maize seedling stage and created the maize
frontiersin.org

https://doi.org/10.3389/fpls.2024.1344958
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cui et al. 10.3389/fpls.2024.1344958
seedling and weed semantic segmentation dataset CGSSD. These

data were further augmented by simulating complex weather

conditions in the field. Building on this, we introduce an

improved RDS_Unet semantic segmentation network tailored for

seedling grass image segmentation during the maize seedling stage.

This network accurately segments maize seedlings and

accompanying weeds in maize fields. When trained on the

CGSSD dataset for only 100 rounds, the network achieved a test

precision of 91.36% and a test speed FPS of 12.6. While the

RDS_Unet network’s speed may be slightly subpar, its precision

surpasses that of other classical semantic segmentation networks.

This advancement provides valuable technical support for smart

mechanical weeding equipment designed for automatic seedling

grass recognition.

In the future, we will focus on building a practical mechanical

weeding system. This system will encompass components such as

the seedling vision recognition system, communication protocols

and modules, map construction and path planning software, remote

monitoring and management systems, data storage and analysis,

safety and fault recovery systems, and software components for

software updates and maintenance tools. The seedling vision

recognition system is a core functional module in this system. We

aim to optimize the recognition accuracy and speed of the

RDS_Unet semantic segmentation network through techniques

such as transfer learning and lightweight approaches (model

pruning, and weight quantization). This optimization will

facilitate better compatibility with the operational requirements of

various types of embedded devices.
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