
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Gregorio Egea,
University of Seville, Spain

REVIEWED BY

Lingxian Zhang,
China Agricultural University, China
Stefan Gerth,
Fraunhofer-Institut für Integrierte
Schaltungen (IIS), Germany
Aibin Chen,
Central South University Forestry and
Technology, China
Jinrong He,
Yan’an University, China

*CORRESPONDENCE

Jinyu Zhu

zhujinyu@caas.cn

Yuntao Ma

yuntao.ma@cau.edu.cn

RECEIVED 29 November 2023

ACCEPTED 31 May 2024
PUBLISHED 17 June 2024

CITATION

Xu X, Zhou L, Yu H, Sun G, Fei S, Zhu J and
Ma Y (2024) Winter wheat ear counting based
on improved YOLOv7x and Kalman filter
tracking algorithm with video streaming.
Front. Plant Sci. 15:1346182.
doi: 10.3389/fpls.2024.1346182

COPYRIGHT

© 2024 Xu, Zhou, Yu, Sun, Fei, Zhu and Ma.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 17 June 2024

DOI 10.3389/fpls.2024.1346182
Winter wheat ear counting based
on improved YOLOv7x and
Kalman filter tracking algorithm
with video streaming
Xingmei Xu1, Lei Zhou1, Helong Yu1, Guangyao Sun2,3,
Shuaipeng Fei2,3, Jinyu Zhu2* and Yuntao Ma3*
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Accurate and real-time field wheat ear counting is of great significance for wheat

yield prediction, genetic breeding and optimized planting management. In order

to realize wheat ear detection and counting under the large-resolution

Unmanned Aerial Vehicle (UAV) video, Space to depth (SPD) module was

added to the deep learning model YOLOv7x. The Normalized Gaussian

Wasserstein Distance (NWD) Loss function is designed to create a new

detection model YOLOv7xSPD. The precision, recall, F1 score and AP of the

model on the test set are 95.85%, 94.71%, 95.28%, and 94.99%, respectively. The

AP value is 1.67% higher than that of YOLOv7x, and 10.41%, 39.32%, 2.96%, and

0.22% higher than that of Faster RCNN, SSD, YOLOv5s, and YOLOv7.

YOLOv7xSPD is combined with the Kalman filter tracking and the Hungarian

matching algorithm to establish a wheat ear counting model with the video flow,

called YOLOv7xSPD Counter, which can realize real-time counting of wheat ears

in the field. In the video with a resolution of 3840×2160, the detection frame rate

of YOLOv7xSPD Counter is about 5.5FPS. The counting results are highly

correlated with the ground truth number (R2 = 0.99), and can provide model

basis for wheat yield prediction, genetic breeding and optimized

planting management.
KEYWORDS

wheat ear counting, real-time detection, YOLOv7x, Kalman filter, UAV
1 Introduction

Wheat is one of the most important food crops in the world with a global production of

785 million tons in 2023 (FAO, 2023). Wheat production has a direct impact on world food

security. The number of wheat ears per unit area is one of the main determinants of wheat

yield (Li L. et al., 2022). Wheat ear counting is a labor-intensive work. Timely, accurate, and
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high-throughput acquisition of wheat ear information is crucial to

improve wheat productivity (Jin et al., 2022; Zhao et al., 2022; Zhu

et al., 2022).

Computer vision and machine learning algorithms that

combine color, texture and morphological features of wheat ears

have been able to count wheat ears (Li et al., 2017; Fernandez-

Gallego et al., 2018; Tan et al., 2020), but the generalization

performance of this method is weak. When used in different

scenarios, the algorithm needs to be changed accordingly, which

does not meet the real-time detection of wheat ears in the field with

complex environment. With the improvement of computer

performance, image recognition algorithms have been widely used

based on deep learning. Detection and counting of wheat ears can

be achieved by image segmentation (Misra et al., 2020; Sanaeifar

et al., 2023) and object detection (Hasan et al., 2019; Sadeghi-

Tehran et al., 2019; Xiong et al., 2019), thus wheat yield can be

estimate accordingly.

Object detection algorithms can be divided into two categories:

single-stage and two-stage. Single-stage object detection algorithms,

such as Single Shot Detector (SSD) (Liu et al., 2016) and You Only

Look Once (YOLO) series (Li C. et al., 2022; Wang et al., 2022a),

can directly obtain the location and category information of the

object from the image, and do not need to generate region proposal

information. Two-stage object detection algorithms usually consist

of generating and classifying candidate boxes. Representative

algorithms include Fast RCNN (Girshick, 2015) and Faster

RCNN (Ren et al., 2017). Liu et al (Liu et al., 2022) proposed a

dynamic color transformation network to reduce false negatives and

to improve the wheat ear detection by modifying the color channel

of the input image. Zhao et al (Zhao et al., 2022) added angle

information to the detection results, and introduced the orientation

information of wheat ears into the YOLOv5 model to effectively

enhance the detection performance of wheat ears under occlusion

conditions. A micro-scale object detection layer is added to the

YOLOv5 model to improve the wheat ear detection ability based on

UAV images. Zang et al (Zang et al., 2022) introduced a channel

and a global attention module into YOLOv5s to extract target

features more effectively, to suppress useless information, and to

achieve better detection results. Faster RCNN is the commonly used

detection algorithm in wheat ear counting with two-stage object

detection algorithm (Madec et al., 2019; Li L. et al., 2022). However,

the performance of Faster RCNN is weak in the detection of small

objects (Eggert et al., 2017). The image segmentation algorithm

based on deep learning can accurately find the position and edge of

the target to realize the recognition and counting of wheat ears (Ma

et al., 2020).

Multi-object tracking algorithms based on object detection

include Kalman filter (Kalman, 1960), kernelized correlation filter

(KCF) (Henriques et al., 2015), multiple hypothesis tracking (MHT)

(Reid et al., 1978; Kim et al., 2015), etc. Kalman filter is a linear filter

to realize the state transition prediction problem, which can predict

the trajectory of moving objects in image sequences. The Sort

(Bewley et al., 2016) and DeepSort (Wojke et al., 2017)

algorithms are designed by combining Kalman filter and

Hungarian matching algorithm (Kuhn, 1955), which can track

each object in the video stream in real time. Yang et al (Yang
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et al., 2022) used CenterNet to establish a target detection model

and DeepSort to track targets to realize automatic counting of

cotton seedlings, and the counting result R2 reached 0.967. In order

to quickly estimate tea production, Li et al (Li et al., 2023) modified

the YOLOv5 model to improve the detection accuracy of tea buds,

and combined the Kalman filter algorithm with the Hungarian

matching algorithm to achieve accurate and reliable counting of tea

buds. Zhou et al (Zhou et al., 2023) used YOLOv5, ResNet50 and

DeepSort models to locate and track the growth and development of

individual rice panicles, to determine the heading date, and to

analyze the fine phenotypic changes of rice panicle flowering time

under different nitrogen fertilizer treatments. For multi-target

tracking and counting, the Kalman filter tracking algorithm is

more accurate and efficient and is suitable for real-time tracking

and counting of multiple targets (Villacrés et al., 2023). Therefore,

the object detection algorithm combined with the Kalman filter is

an accurate, efficient and reliable method for counting in the

video stream.

The UAV image has high resolution with a large number of

wheat ears in each frame. The wheat ears account for a small

number of pixels in the image. Wheat ear images are obtained from

different angles with UAV video stream. Fast tracking of the

detected wheat ears is the key to wheat counting under the video

stream for real time detection. Therefore, the aims of the current

study are: (1) YOLOv7xSPD is constructed based on YOLOv7x

model to improve the accuracy of wheat ear detection. (2)

YOLOv7xSPD is combined with Kalman filter tracking algorithm

and Hungarian matching algorithm to establish a real-time wheat

counting under video flow, called YOLOv7xSPD Counter. (3) The

wheat detection accuracies are evaluated for six different target

detection algorithms.
2 Materials and methods

2.1 UAV-based wheat image collection

The experiment was conducted at a research site of Chinese

Academy of Agricultural Sciences (113° 45′ 40′′ E, 35° 8′ 11′′ N) in
Xinxiang, Henan province, China (Figure 1). The images were

collected on April 28, 2023, when winter wheat was at the

beginning of grain filling stage. A DJI Mavic3T (DJI, Shenzhen,

China) and an integrated 20-megapixel camera was used to capture

the video stream with a resolution of 3840×2160 and a frame rate of

30FPS. In order to obtain the detailed video of the wheat canopy,

the camera uses 7x zoom and maintains a 90° angle of view to

perform the flight mission from 11:00 to 13:00 on a clear day. The

flight route is at a constant speed of 0.5 m/s 4 m above the canopy.
2.2 Dataset creation

In order to reduce the overlap rate of each image, one frame is

extracted every 45 frames. The obtained frame is used as the

training image, and the resolution of each image is 3840×2160.

To facilitate training, each image was cropped from the middle,
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resulting in 233 images with a resolution of 1920×2160. LabelMe

was used to annotate the original images. In field experiments,

objects are subject to variations induced by factors such as lighting

conditions, weather changes, and wind speed. In order to improve

the generalization performance of the model, six schemes including

horizontal flip, vertical flip, horizontal-vertical flip, Gaussian blur,

increase and decrease contrast are used to perform data

enhancement on the image. Among them, image flipping can

help the model train objects from different angles and directions,

while Gaussian blur and adjusting contrast can simulate the effects

of weather changes. 1631 image data are then obtained. The original

image and enhanced effect of the image are shown in Figure 2.

The script written in Python language was used to annotate and

convert the enhanced image to obtain its corresponding annotation
Frontiers in Plant Science 03
file. Figure 3 shows a schematic diagram of the annotated file. 1470

images were selected for model training and 161 images were used

for model testing. The data used for model training was divided into

training set and validation set according to the ratio of 9:1. In the

image dataset, the average number of objects in each image is about

139.1, and the total number of objects is 226,916. A total of 20

videos are used for testing, with a resolution of 3840×2160. Since the

videos captured by the UAV will pass through the open land

without wheat cultivation, the number of wheat ears in each

video is distributed between 300 and 700. The number of wheat

ears in the video was counted by three persons, and the counting

error for each video was between 1 and 3. The average number of

these three persons was taken as the ground true number of

wheat ears.
B C D

E F G

A

FIGURE 2

Comparison of original and enhanced images, (A) original image, (B) horizontal flip, (C) vertical flip, (D) horizontal and vertical flip, (E) gaussian blur,
(F) increase contrast, (G) decrease contrast.
FIGURE 1

Geographical location of wheat planting area and UAV used for video capture.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1346182
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2024.1346182
2.3 Construction of the wheat ear
detection model

2.3.1 YOLOv7xSPD
YOLOv7xSPD was constructed using YOLOv7x as the basic

model. YOLOv7x is obtained from YOLOv7 by scaling the depth
Frontiers in Plant Science 04
and width of the entire model. YOLOv7x consists of two parts:

Backbone and Head. The size of wheat ears under large-resolution

images is very small, and adding Space to depth Conv (SPDConv)

(Sajjadi et al., 2018) module at the end of the Head part of YOLOv7x

can enhance the accuracy of the model for small-size target detection.

Figure 4 shows the network structure diagram of YOLOv7xSPDmodel.
FIGURE 4

Structure diagram of YOLOv7xSPD network. The red dashed box is the SPDConv module.
BA

FIGURE 3

Comparison between the original image and the annotated image, (A) the original image and (B) the annotated image.
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The backbone consists of four convolutional layers, four ELAN

modules, and three MP modules. Each convolutional layer consists

of Convolution, Batch normalization, and SiLU activation function.

Features of the input image are extracted, and three feature maps of

different sizes are output. The ELAN module enables the deep

network to achieve effective learning and convergence by

controlling the shortest and longest gradient paths (Wang et al.,

2022b). Figure 5A shows the structure diagram of ELAN module. A

deeper ELAN module in YOLOv7x is obtained by model scaling

based on ELAN, as shown in Figure 5B.

MP module is divided into two branches and the module

function is to carry out downsampling. The structure diagram of

MP module is shown in Figure 6. The first branch goes through a

Max pooling layer for downsampling calculation, and then goes

through a Conv layer to change the number of channels. The second

branch is downsampled by two Conv layers with different kernel

sizes and different synchronization lengths. The final

downsampling result is obtained by concatenating the results of

the two branches.

The Head part is mainly composed of SPPCSPC module, Conv,

Upsampling, MP module, and ELAN module. The Head part

extracts features from the three feature maps output by the

backbone, and then outputs three feature maps of different sizes.

Finally, the anchor is used to predict the location, size, and category

of the object in the input image. The prior box is refined by non-

maximum suppression to improve the accuracy of model detection.

SPPCSPC is used to enhance the expressive power of

convolutional neural networks. It is composed of Spatial Pyramid

Pooling (SPP) module (He et al., 2015) and Cross-stage Local

Network (CSP) module (Wang et al., 2020). SPP uses Max

pooling to obtain different receptive fields to adapt to images with

different resolutions. Figure 7 shows the module structure diagram

of SPPCSPC, in which the red box part is a block of SPP. In the first

branch of the figure, four pooling operations with different kernel

sizes are carried out to obtain four different receptive fields to

distinguish targets of different sizes. CSP module can improve the

representation ability of features and enhance the perception ability
Frontiers in Plant Science 05
of the model to different scales and semantic information. CSP

divides the feature map into two parts, one of which is processed

conventionally, and the other is processed by SPP. The two parts are

merged to improve the speed and accuracy.

2.3.2 SPDConv
SPDConv consists of an SPD layer and a 1×1 convolutional

layer. The SPD component generalizes a raw image transformation

technique (Sajjadi et al., 2018) to downsample the feature maps

within and across the CNN. For the feature map X, when scale is

equal to 2, the four sub-maps f0,0, f0,1, f1,0, f1,1 obtained by SPD

feature mapping. Each sub-map has the shape ( S
2 ,

S
2 , C1 ), as shown

in Figures 8A–C. Then, the four submaps are connected along the

channel dimension to obtain the feature map X1 (Figure 8D). The

whole process reduces the spatial dimension of X by a scale factor

and increases the channel dimension by a scale2 factor. A

1×1convolutional layer is added after the SPD layer, so that the

output can retain more feature information (Figure 8E).

2.3.3 NWD Loss
When the target is small, no overlap occurred between the

prediction box P and the Ground-truth box G, or P completely

contains G. Intersection over Union (IoU)-Loss cannot provide

gradients for network optimization, and vice versa. The problem

that the IoU-based loss function sensitive to the position deviation

of small targets can be solved and gradients for network

optimization can be provided by using Normalized Gaussian

Wasserstein Distance (NWD) to design the Loss function NWD

Loss (Wang et al., 2021). NWD first models the bounding box as a

two-dimensional Gaussian distribution, and then uses Wasserstein

distance to measure the similarity between these two distributions

instead of IoU. The advantage is that even if no/little overlap

between two boxes, the similarity can be measured. Furthermore,

NWD is not sensitive to the scale of the target and is more stable for

small targets.

The bounding box is modeled by Gaussian. In the horizontal

bounding box R = (cx, cy, w, h), (cx, cy), w and h represent the
BA

FIGURE 5

(A) ELAN module structure diagram, (B) ELAN module structure diagram obtained after scaling and expanding based on ELAN.
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center coordinate, width, and height of the detection box,

respectively. The bounding box can be modeled as a 2D Gaussian

distribution N (m, S) using Equation 1, where m and S denote the

mean vector and the covariance matrix of the Gaussian distribution.

m =
cx

cy

" #
,  S =

w2

4 0

0 h2

4

2
4

3
5 (1)

The distribution distance is calculated by the Wasserstein distance

in the optimal transportation theory, and then is normalized by the

exponential form to obtain the Wasserstein distance of the normalized

Gaussian distribution. For two two-dimensional Gaussian distributions

m1 = N(m1,  S1) and m2 = N(m2,  S2), the Wasserstein distance

between m1 and m2 is calculated by Equation 2.

W2
2 (m1,  m2) = m1 −m2k k22+Tr S1 + S2 − 2(S1=2

2 S1S
1=2
2 )1=2

� �
(2)

The normalized Wasserstein distance obtained by exponential

normalization of W2
2(m1,  m2) is expressed as Equation 3, where C is

a constant closely related to the data set.

NWD(Na,   Nb) = exp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

2(Na,Nb)
p

C

� �
(3)

NWD is designed as a loss function as shown in Equation 4,

where Np is the Gaussian distribution model of the predicted box

and Ng is the Gaussian distribution model of the true box.

LNWD = 1 −NWD(Np, Ng) (4)
2.4 Model training

The required hardware environment for training is Intel(R)

Xeon(R) Gold 6246R CPU @3.40GHz, NVIDIA Quadro RTX8000

(48GB video memory), and 128GB running memory. The software

environment is Windows 10 operating system, and the deep

learning model is constructed based on Pytorch1.10 and

cuda11.3. During training, the input image size is 640×640, the

batch size is 16. The epochs are 150, and the learning rate is 0.01.

The optimizer is SGD, and the weight decay coefficient is 0.05.

Adding the SPDConv module to the end of YOLOv7x does not

change the network structure, so the pre-trained model

YOLOv7X.pt provided by official YOLOv7 can be directly used.
2.5 Model construction of real-time wheat
ear counting

2.5.1 Position prediction
The construction of wheat real-time counting model includes

three steps: position prediction, matching tracking, and counting.

The Kalman filter is a linear filter for the state transition prediction

problem. The state of the object can be represented by a matrix.

Two steps are used with state prediction and state update. The state

of the wheat in the current frame was used to predict the state of the

wheat in the next frame, called state prediction. The state in the
FIGURE 6

MP module structure diagram, where the MP part is the Max
pooling layer.
FIGURE 7

SPPCSPC module structure diagram. The red box in the figure is the
SPP structure.
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current frame is used to update the state of the wheat in the next

frame. The whole process is repeated with the change of the frame

number, and called state update.

In state prediction, the state of an object is represented by a

matrix x. The state matrix is a two-dimensional column vector

represented by position P and velocity V, denoted by xt = ½ Pt
Vt

�, and t
is the time. The state of the object at a certain time has a linear

relationship with the state at the current time, and is expressed as

Equation 5. F represents the state transition matrix. B is the control

matrix, and is used to represent the way that the control quantity U

acts on the current state. When predicting the state of the object,

there are uncertain factors called noise. The covariance matrix

(Equation 6) is used to represent the existing noise, where P is

the covariance matrix representing the noise. Because the prediction

model also has noise, the covariance matrix Q is used to represent

the noise in the model. The matrix z is used to represent the

observed state of the object. The measured state of the object has a

linear relationship with the observed state, expressed as Equation 7,

where H represents the relationship between the observed and the

measured state, and V is the observation noise.

x̂−
t = Ftx̂ t−1 + But−1 (5)

P−t = FPt−1F
t + Q (6)

ẑ t = Hxt + V (7)

The state update is represented in Equation 8, where K is the

Kalman coefficient. The calculation method of K is in Equation 9. R

is the covariance matrix of the observation noise, which needs to be

updated after the state update, expressed in Equation 10.

x̂ t = x̂ −
t + Kt(zt −Hx̂ −

t ) (8)

Kt = P−
t H

T(HP−t H
T + R)−1 (9)
Frontiers in Plant Science 07
Pt = (I − KtH)P−
t (10)
2.5.2 Matching and tracking
The Hungarian matching algorithm is used to solve the

matching problem between the predicted value of the Kalman

filter and the detected value in the next frame. The Intersection

over Union (IoU) ratio was calculated between the predicted value

of the Kalman filter and the detection result of YOLOv7xSPD to

determine whether the prediction box and the detection box were

the same ear. The IoU threshold was set to 0.7. When the IoU was

greater than the threshold, the detection box and the prediction box

were classified as the same ear, means that the tracking was

successful. Figure 9 shows the rules whether the wheat ear

belongs to the same ear between two frames. The red box is the

detection box of YOLOv7xSPD. The yellow box is the prediction

box of Kalman filter. The black shadow part is the IoU between the

detection box and the prediction box. The tracking is successful

when the IoU is greater than 0.7.

2.5.3 YOLOv7xSPD Counter
The counting process of YOLOv7xSPD Counter is shown in

Figure 10 with four steps: detection, matching, counting, and

updating. Firstly, YOLOv7xSPD is used to detect wheat ear video

frame by frame, obtaining the wheat ear detection boxes. The

Kalman filter tracking algorithm is then used to predict these

detection boxes and obtain the prediction boxes. Secondly, the

Hungarian matching algorithm is used to perform IoUmatching on

the detection boxes and prediction boxes. When the first frame is

detected, there are only detection boxes and no prediction boxes,

and the matching results only have newly appeared detection boxes.

Then, they are assigned IDs and the Kalman filter tracking

algorithm is used to predict these wheat ear detection boxes.

Starting from the second frame, the Hungarian matching

algorithm is used to match the detection boxes and prediction
B C D EA

FIGURE 8

The structure of SPD module. (A, B) are the input feature map X. The size of X is S×S, and the number of channels is C1. (C) is the four submaps of
size S/2×S/2 obtained after feature mapping. (D) is the output result obtained by splicing the four submaps along the channel. Finally, the output
feature map (E) is obtained after a 1×1 convolution layer.
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boxes, obtaining successfully tracked wheat ear detection boxes,

newly appeared wheat ear detection boxes, and disappeared wheat

ear detection boxes. Thirdly, count the successfully tracked wheat

ear detection boxes when they pass through the baseline.

Meanwhile, assign IDs to the newly appearing wheat ear

detection boxes and delete the missing wheat ear detection boxes.

Finally, repeat the above steps until the detection is complete.

When the wheat ears appear at the edge of the image, the size of

the detection box will change with the appearance of the ears, and

the accuracy will be affected with the tracker. Therefore, a baseline is

set at the bottom of the image with red color in Figure 11. When the

wheat ears in the video pass through the baseline, the wheat ears will

be counted to avoid the incomplete shape of the wheat ears in the

video and the repeated counting.
2.6 Model evaluation

Precision (P), Recall (R), F1 Score, and Average Precision (AP)

are used to evaluate the model and defined as Equations 11–14:

P = TP
TP+FP (11)

R = TP
TP+FN (12)

F1 = 2(P�R)
P+R (13)

AP =
Z 1

0
P(R)dR (14)
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True Positives (TP) means that the prediction is positive and

correct. True Negatives (TN) means that the prediction is negative

and correct. False Positives (FP) means that the prediction was

positive and wrong. False Negatives (FN) are that the prediction is

negative and wrong. AP is the area of the region enclosed by the

curve and the coordinate axis in the PR curve.

The correlation between the model counting and the ground

truth number is evaluated by the determination coefficient R2 in

Equation 15, where yi represents the ground truth number observed

manually. ŷ i represents the model counting result. �yi represents the

average number.

R2 = 1 − oi
(ŷ i−yi)

2

oi
(�yi−yi)

2 (15)

Root mean square error (RMSE) is used to evaluate the model

counting and the degree of difference between ground truth number

and defined as Equation 16. n is the number of images, yi is ground

truth number, ŷ i represents model counting results.
FIGURE 10

Flowchart of the real-time wheat ear counting. The video image is
first input in YOLOv7xSPD to get the detection boxes. Kalman filter
is used to follow the tracking boxes and new boxes. The image in
the lower left corner shows the effect of counting.
FIGURE 9

Illustration of the matching rules. The red box is the detection box.
The yellow box is the prediction box, and the black shaded part is
the IoU of the detection box and the prediction box.
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RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i
(ŷ i−yi)

2

n

q
(16)
3 Result

3.1 Wheat ear detection

3.1.1 Model comparison
In all detection models, the IoU threshold and confidence

threshold of NMS of each model are set to 0.7 and 0.5 to obtain

better detection effects. Tables 1 and 2 shows the various evaluation

results of the six models. The AP and FPS of YOLOv7 and YOLOv7x

were similar (94.77% vs. 93.32%, Table 1, 6.3FPS vs. 6.7FPS, Table 2).

However, YOLOv7 consumed 19.5GB more GPU memory compared

to YOLOv7x (39.2GB vs. 19.7GB) during model training. Considering

hardware costs, YOLOv7x was chosen for improvement to obtain

YOLOv7xSPD with higher AP and lower training costs.
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YOLOv7xSPD performed well in various indicators. Recall, F1

Score and AP were 94.71%, 95.28% and 94.99%, respectively,

increased by1.24%, 0.46% and 1.67% compared with YOLOv7x.

The various indicators of YOLOv5s were slightly lower than

YOLOv7x. Faster RCNN and SSD have a large number of missed

detections with low Recall. The detection accuracy of YOLOv7xSPD

and YOLOv7 were similar (95.85% vs. 95.23%, Table 1), but the two

models occupied a significant difference in memory usage during

training (15.0GB vs. 39.2GB, Table 2). The parameters and FLOPs

of YOLOv7xSPD were 72.5M and 184.8G, respectively. Compared

to YOLOv7x, its parameters increased by 1.7M and FLOPs

decreases by 3.2G. It indicated that the model maintains a

reasonable computational scale while achieving superior

performance. Figure 12 shows the PR curve of the six models.

The AP of YOLOv7xSPD is the highest, and YOLOv7 is close

to YOLOv7xSPD.

Two images were selected from the results to show the detection

effect between YOLOv7xSPD and YOLOv7x (Figure 13). YOLOv7x
TABLE 1 Descriptions of precision, Recall, F1 Score, and AP of Faster
RCNN, SSD, YOLOv5s, YOLOv7, YOLOv7x, and YOLOv7xSPD.

Model P (%) R (%) F1 (%) AP (%)

Faster RCNN 95.54 83.97 89.56 84.58

SSD 92.53 41.69 57.48 55.67

YOLOv5s 95.61 90.49 92.98 92.03

YOLOv7 95.23 94.90 95.06 94.77

YOLOv7x 96.21 93.47 94.82 93.32

YOLOv7xSPD 95.85 94.71 95.28 94.99
The bolded values represent the best values for each metric.
TABLE 2 Descriptions of the parameters, FLOPs, FPS, and Training
memory occupation of Faster RCNN, SSD, YOLOv5s, YOLOv7, YOLOv7x,
and YOLOv7xSPD.

Model Param FLOPs FPS

Training
memory

occupation
(GB)

Faster RCNN 41.4M 12.1G 1.5 23.8

SSD 13.0M 1.5G 5.5 5.8

YOLOv5s 07.1M 16.3G 4.8 6.49

YOLOv7 36.5M 103.2G 6.3 39.2

YOLOv7x 70.8M 188.0G 6.7 19.7

YOLOv7xSPD 72.5M 184.8G 6.5 15.0
FIGURE 11

Wheat ear counting with video stream. The detection boxes with different colors represent the detected wheat ears with different IDs. The point in
each box is the center point of the detection box. The lower red line is the baseline for counting. When the center point of the detection box passes
through the baseline, the number of detection frames and the counting results are shown in the lower left corner.
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FIGURE 12

(A) PR curves of Faster RCNN, SSD, YOLOv5s, YOLOv7, YOLOv7x and YOLOv7xSPD. (B) The local enlarged image represented by box with the
dotted line for the difference between the PR curves of YOLOv7 and YOLOv7xSPD.
B CA

FIGURE 13

Comparison of the detection result of the wheat ear between YOLOv7xSPD and YOLOv7x. (A) original image, (B) wheat ear detection with YOLOv7x, (C)
wheat ear detection with YOLOv7xSPD. Red boxes in B represent the wheat ears not detected by YOLOv7x, which can be accurately detected in C.
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has missed detection of small-sized wheat ears, while YOLOv7xSPD

can detect small-sized wheat ears compared with that of YOLOv7x,

indicating that YOLOv7xSPD can reduce the missed detection rate

of small wheat ears and ensure the detection accuracy under large-

resolution images.

YOLOv7xSPD achieved the highest F1 Score and AP, indicating

that it has the most superior wheat ear detection boxes among all.

The recall increased by 1.24% compared to YOLOv7x, indicating

that YOLOv7xSPD has a lower miss detection rate. This

improvement is reflected in Figure 13. In summary, for wheat ear

counting tasks, the YOLOv7xSPD model is more suitable.

3.1.2 Cross-validation evaluation
To further verify the robustness of YOLOv7xSPD, 5-fold cross

validation was used for training and testing, as shown in Table 3.

The highest AP is 94.99%, and the lowest is 94.52%. The average of

Precision, Recall, F1 Score, and AP are 95.14%, 94.49%, 94.81%, and

94.74%, respectively, and all results are close to the average. The

standard deviations (SD) are 1.01%, 0.40%, 0.60%, and 0.20%,

respectively, all of which are very small.
3.2 Wheat ear counting

Six detection models were used to perform regression analysis

and RMSE calculation on the counting results of the test set

(Figure 14). Faster RCNN and SSD have a large number of

missed detection. The counting results are R2 = 0.72,

RMSE=22.08, poorly correlated with the ground truth number as

the recall rate of SSD evaluation results is 41.69%, resulting in a

large number of missed detection in the model with R2=-2.53,

RMSE=78.07. The counting results of YOLOv5s performed well, R2

only differed from YOLOv7xSPD by 0.01 (R2 = 0.98 vs. R2 = 0.99),

and RMSE differed from YOLOv7xSPD by 3.15 (RMSE=6.54 vs.

RMSE=3.39). Average precision and detection speed of YOLOv5s

are slightly lower than those of YOLOv7xSPD (92.03% vs. 94.99%,

4.8FPS vs. 6.5FPS, Table 2). The counting results of YOLOv7 and

YOLOv7xSPD are highly correlated with the ground truth number

(R2 = 0.99), RMSE were 3.48 and 3.39, respectively, but with high

memory occupation during training for the former compared with
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that for the latter (39.2GB vs. 15.0GB, Table 2). YOLOv7x performs

well in counting results. According to Figures 13, 14, YOLOv7xSPD

has better counting results than YOLOv7x (R2 = 0.99 vs. R2 = 0.98,

RMSE=3.39 vs. RMSE=6.45). Therefore, YOLOv7xSPD can

compensate for the missed detection problem for the smaller

targets caused by YOLOv7x detection.

Figure 15 shows histogram (Figure 15A) and density

(Figure 15B) of the number of gaps between the counting results

of YOLOv5s, YOLOv7, YOLOv7x and YOLOv7xSPD and the real

results. The X-axis represents the gap between the counting results

of the model and the ground truth number, and the Y-axis

represents the number of images this gap occurred in the test

image. Most of the absolute missed detection of YOLOv7 and

YOLOv7xSPD is less than 4 with 132, 135 images found

respectively. Close to half of the images occurred absolute missed

detection within number 0~4 by YOLOv5s and YOLOv7x with 74

and 77 images found respectively. When the absolute missed

detection is greater than 8, one and six images were found with

YOLOv7xSPD and YOLOv7, but 36 and 34 images for YOLOv5s

and YOLOv7. The corresponding density curves were shown in

Figure 15B YOLOv7xSPD and YOLOv7 are more inclined towards

overcounting, while YOLOv5s and YOLOv7x are prone to

undercounting. The overcounting of YOLOv7xSPD produced

small errors, mainly concentrated between 0 and 4, and the

comprehensive counting results are closer to the ground

truth number.

YOLOv7xSPD Counter were used to perform regression

analysis and RMSE calculation on the counting results of 20

video test set (Figure 16). High correlations are found with

R2 = 0.99, RMSE=10.05 and the frame rate of counting is

about 5.5FPS.
4 Discussion

4.1 wheat ear detection

Wheat ear number at the early stage of wheat grain filling is

closely related to yield and is often regarded as the ideal period for

yield estimation (Hernandez et al., 2015; Hassan et al., 2019). The

number of pixels of the wheat ear in the large-resolution images

collected with UAV are only between 30×80 and 60×100, which

increases the difficulty of the wheat ear detection task (Ma et al.,

2022). A large number of missed detections occurred by SSD and

Faster RCNN model for large wheat ear images with resolution

1920×2160. The detection results of YOLOv5s and YOLOv7x

missed detection occurred for the small-sized wheat ear. This is

similar to the study of Wu et al. in (Wu et al., 2023). The AP of

YOLOv7 is close to YOLOv7xSPD (94.77% vs. 94.99%), and the

video memory occupancy of YOLOv7 during training was much

higher than that of YOLOv7xSPD (39.2GB vs. 15.0GB).

Considering model hardware cost, our newly developed

YOLOv7xSPD obtained better wheat ear detection for high-

resolution UAV video streams.

The Recall of Faster RCNN and SSD is 83.97% and 41.69%, as

Faster RCNN has a weak ability to identify local textures with small-
TABLE 3 Describes the precision, recall, F1 Score, and average precision
of the 5-fold cross validation test results for YOLOv7xSPD, as well as the
average and standard deviation (SD) of these indicators.

P (%) R (%) F1(%) AP (%)

1st fold 95.85 94.71 95.28 94.99

2nd fold 94.35 94.06 94.20 94.91

3rd fold 96.56 94.71 95.62 94.71

4th fold 94.27 94.94 94.60 94.61

5th fold 94.71 94.07 94.39 94.52

Average 95.14 94.49 94.81 94.74

SD 1.01 0.40 0.60 0.20
The bolded values represent the best values for each metric.
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FIGURE 15

Histogram (A) and density (B) of the number of gaps between the counting results of YOLOv5s, YOLOv7, YOLOv7x and YOLOv7xSPD and the
ground truth number.
FIGURE 14

Six detection models were used to perform regression analysis, RMSE and R2 calculation on the counting results of the test set.
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sized object, resulting in missed detection (Cao et al., 2019) The

shallow network of SSD has no deep semantic information, thus the

detection effect on small targets is poor with lower Recall (Liu et al.,

2021). All YOLO series models have AP values more than 90%, as

the YOLO series models adjust the size and aspect ratio of the

prediction box to accommodate targets of different sizes and shapes

(Mahendrakar et al., 2022).

SPDConv module is used to strengthen the feature extraction

ability of small wheat ears. NWD Loss function can prevent the loss

of small targets by changing the calculation method of loss function.

The increase of Recall and AP is consistent with the fact that

YOLOv7xSPD can reduce the missing rate of small-sized wheat

ears. The CIoU loss function adopted by YOLOv7x needs to

calculate the IoU between the two boxes and their center

distance. These results were then adjusted for distance and area

(Zheng et al., 2021). NWD Loss function adopted by YOLOv7xSPD

is to calculate the Wasserstein distance to determine the similarity

between the detection boxes and the label boxes. From the

perspective of the two loss function theories, the CIoU loss

function is more complex, thus YOLOv7x consumes more video

memory compared with YOLOv7xSPD during training

(19.7GB vs.15.0GB).
4.2 wheat ear counting

The ear counting based on the video stream captured by UAV

can acquire ear number with a larger unit area, compared to that

collected with singe image, and the counting of the wheat ear is not

limited by the size of the image (Li et al., 2023). In this study, a real-

time wheat ear counting model was constructed based on wheat

video streams captured by UAV. A YOLOv7xSPD Counter model

was built combined with Kalman filter tracking algorithm (Kalman,

1960) to predict the position of wheat ear in YOLOv7xSPD

detection results. The counting effect of using Kalman filter
Frontiers in Plant Science
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tracking algorithm is consistent with previous research (Yang et al.,

2022; Li et al., 2023; Villacrés et al., 2023). The Hungarian matching

algorithm (Kuhn, 2010) was used for matching and tracking. In

videos with a resolution of 3840×2160, the YOLOv7xSPD Counter

detects a frame rate of approximately 5.5FPS. The counting results

are highly correlated with manual counting (R2 = 0.99), and the

RMSE of counting reached 10.05, with nearly real-time counting

based on video streams. The counting speed of YOLOv7xSPD

Counter is closely related to the resolution of the video and the

number of ears, In the calculation experiment, the video resolution

is large and the number of wheat ears is between 300 and 700. the

higher the resolution and the number of ears, the slower the

counting speed.

The detection results of wheat ears directly affect the counting

results, as the undetected wheat ears will not be tracked by the

Kalman filter tracking algorithm. Due to the influence of turbulence

and wind speed, wheat ears sway significantly in UAV videos which

causes tracking failure and counting errors (Shi et al., 2021).

Therefore, improving the stability of wheat ear tracking by

optimizing target tracking algorithms while ensuring the accuracy

of the wheat ear detection model will be the main direction of the

future research.

In addition, the natural conditions of the field environment (light

and wind speed) and the flight status of UAV (speed, altitude, and

inclination) can also have an impact on wheat ear detection and

counting (Yao et al., 2022). Therefore, increasing training data and

optimizing model structure are undertaken to gradually improve the

performance and reliability of the model in practical applications.
5 Conclusion

The SPDConv module is added to YOLOv7x and the NWD Loss

function is used to build a wheat ear detection model YOLOv7xSPD to

enhance the detection ability of the model, reduce the occupation of

video memory during training. YOLOv7xSPD is then combined with

the Kalman filter tracking algorithm to create YOLOv7xSPD Counter

to realize real-time wheat counting based on UAV video stream. The

conclusions are as follows:

The detection performance of the model (AP=94.99%) is

improved with the adoption of SPDConv module and NWD Loss

function, and the AP value is 1.67% higher than that of the original

YOLOv7x model (94.99% vs. 93.32%). The detection results show

that the constructed YOLOv7xSPD model has more advantages to

detect smaller wheat ears under large-resolution UAV images. The

Kalman filter tracking algorithm is used to track the detection

results of YOLOv7xSPD, and the Hungarian matching algorithm is

combined to build the YOLOv7xSPD Counter to count the

successfully tracked wheat ears. The counting results of 20 videos

with YOLOv7xSPD Counter were highly correlated with the ground

truth number results (R2 = 0.99). The results can provide data

support for wheat yield prediction, genetic breeding and optimized

planting management research.
FIGURE 16

YOLOv7xSPD Counter were used to perform regression analysis,
RMSE and R2 calculation on the counting results of 20 video
test set.
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