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Currently the determination of cyanidin 3-rutinoside content in plant petals

usually requires chemical assays or high performance liquid chromatography

(HPLC), which are time-consuming and laborious. In this study, we aimed to

develop a low-cost, high-throughput method to predict cyanidin 3-rutinoside

content, and developed a cyanidin 3-rutinoside prediction model using near-

infrared (NIR) spectroscopy combined with partial least squares regression

(PLSR). We collected spectral data from Michelia crassipes (Magnoliaceae)

tepals and used five different preprocessing methods and four variable

selection algorithms to calibrate the PLSR model to determine the best

prediction model. The results showed that (1) the PLSR model built by

combining the blockScale (BS) preprocessing method and the Significance

multivariate correlation (sMC) algorithm performed the best; (2) The model has

a reliable prediction ability, with a coefficient of determination (R2) of 0.72, a root

mean square error (RMSE) of 1.04%, and a residual prediction deviation (RPD) of

2.06. The model can be effectively used to predict the cyanidin 3-rutinoside

content of the perianth slices of M. crassipes, providing an efficient method for

the rapid determination of cyanidin 3-rutinoside content.
KEYWORDS

model calibration, NIR spectroscopy, regression algorithm, cyanidin 3-rutinoside,
Michelia crassipes
1 Introduction

Michelia crassipes Y.W. Law is an evergreen shrub or small tree, the only purple-

flowered species in the genus Michelia, sporadically distributed in Guangdong, Hunan,

Guangxi, Jiangxi, Guizhou and other provinces of China, and grows in dense forests on

mountain slopes and in ravines at an altitude of 300-1000 m (Committee FoCE, 1996; Liu

et al., 2002; Yang et al., 2003). The flower color of genus Michelia is mostly white or
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yellowish, while the tepals of M. crassipes are purplish-red or deep

purple, so it is often used as an important parent for the

improvement of the flower color of genus Michelia and is an

excellent resource for flower viewing and flower color breeding

(Liao, 2007; Shao et al., 2015b; Shao et al., 2015a; Shao et al., 2016;

Chai et al., 2018).

Anthocyanins are a class of flavonoid that are widely found in

plants in nature. These anthocyanins are multi-functional and can

play an important role in protecting against ultraviolet radiation,

coping with drought and fighting pathogens (Tohge and Fernie,

2017). As a water-soluble natural pigment, anthocyanins appear

blue in alkaline cellular fluids and red under acidic conditions.

Therefore, many plant organs such as flowers, leaves, and fruits

appear purple, red, or blue, with a positive correlation between the

shade of color and anthocyanin content (Tanaka et al., 2008; Li

et al., 2014). Cyanidin 3-rutinoside (Cy3R), the main component of

anthocyanins in the tepals ofM. crassipes, plays an important role in

the formation of purple color in the tepals ofM. crassipes (Liu et al.,

2020b). Previous studies have found that M. crassipes exhibits

significant genetic diversity, with tepals of different individuals

differing in color, all showing a purple hue (He et al., 2018; Xiao

et al., 2023). The correlation between flower color phenotype and

Cy3R content is expected to provide important basic information

for revealing the mechanism of flower color formation in plants and

related genetic analysis.

There are many traditional methods used to detect

anthocyanins content in plant tissue, such as microwave method,

pH differential method and high performance l iquid

chromatography (Lee et al., 2005; Chen et al., 2007; Rong et al.,

2016). The results of these traditional methods are accurate, but

they are time-consuming and cumbersome as they require a lot of

labor and material resources during the experimental process

(Dzhanfezova et al., 2020). In recent years, High-performance

liquid chromatography (HPLC) has begun to be gradually used

for the determination of anthocyanins content (Kim and Lee, 2020;

Thuy et al., 2021), which is fast and simple to operate, but requires

expensive instrumentation and cannot be quickly detected in the

field (Liu et al., 2022). In addition, all of these methods require

sample destruction, which makes it difficult to achieve non-

destructive detection and has a certain impact on the

environment (Firmani et al., 2019). Therefore, it is of great

significance to develop simpler, rapid, and non-destructive

methods for the determination of anthocyanins content.

Near-Infrared (NIR) spectroscopy is a fast, easy-to-use and

non-destructive detection technique (Wetzel, 1998; Zhang et al.,

2023) which utilizes the spectral information in the near-infrared

wavelength band (800 - 2500 nm) to obtain chemical and structural

information about a specimen (Rinnan and Rinnan, 2007). The

origin of this technique dates back to the late 1850s (Butler, 1983).

With continuous development and maturation, NIR spectroscopy is

now widely used in the fields of food, medicine, agriculture and

industry (Biancolillo et al., 2019; Abu-Khalaf and Hmidat, 2020;

Prananto et al., 2020; Rossi and Lozano, 2020; Li et al., 2023;

Trenfield et al., 2023). In recent years, researchers have begun to
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apply NIR spectroscopy to forestry. For example, Y Zhang, Q Luan,

J Jiang and Y Li (Zhang et al., 2021) utilized near-infrared (NIR)

spectroscopy combined with partial least squares regression (PLSR)

to predict the malondialdehyde (MDA) content of slash pine

needles in a real-time and rapid manner to understand plant

stress. In addition, Zhang et al. (2023) utilized near-infrared

(NIR) spectroscopy to non-destructively detect the sugar content

of peach under various conditions.

NIR spectroscopic data can be obtained from NIR instruments.

These data contain a lot of information about the physical and

chemical properties of the molecules (Czarnecki et al., 2021). These

data provide a valuable resource for analysis, but they are also

accompanied by noise interference (Liu et al., 2020a). To effectively

eliminate noise, preprocessing spectral data becomes a critical step

in constructing chemometric models (Katsumoto et al., 2001). In

addition, choosing appropriate variables (bands) can significantly

improve the model performance (Ma et al., 2018). However, no

studies have been reported on the prediction of anthocyanin

content of M. crassipes tepals.

Therefore, the aim of this study was to (1) establish a model for

predicting the content of cyanidin 3-rutinoside in M. crassipes

tepals with the help of near-infrared spectroscopy combined with

chemometrics; and (2) compare the model performance of different

combinations of spectral preprocessing and variable selection

methods. The established model for predicting the content of

cyanidin 3-rutinoside can not only realize the rapid acquisition of

the flower color phenotype of M. crassipes, but also provide a

reference for the rapid and non-destructive detection of the content

of cyanidin 3-rutinoside in other plant species.
2 Materials and methods

2.1 Plant materials

The plant materials used in this experiment were obtained from

the germplasm resource nursery of the Chinese Academy of Forestry

Research Institute of Subtropical Forestry (30° 3’ N, 119° 57’ E) and

Guizhou Academy of Forestry (26° 30’ N, 106° 44’ E). Based on the

results of the previous flower color survey ofM. crassipes resources in

the two locations, M. crassipes individuals with large differences in

flower color were randomly selected. Samples were collected in the

morning of April-May 2023 when the weather was clear.M. crassipes

flowers at the bud stage (flower buds enlarged, bracts dehiscent,

showing purple tepals) and at blooming stage (both rounds of tepals

unfolded, with a large amount of pollen dispersed, but not browning

and withering) were plucked together with their pedicels, and then

wrapped around the pedicels at the point of fracture with wet paper

towels, and carefully put into air-filled self-sealing bags, to prevent the

petals from falling off by squeezing (Fu and Dai, 2016; Yuan et al.,

2023). A total of 66 samples were brought back to the laboratory for

NIR spectroscopy. The collected samples were stored in a refrigerator

at -80°C for the subsequent determination of cyanidin 3-

rutinoside content.
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2.2 Determination of monomeric
anthocyanin content

Spectrophotometric method, is considered as a valid alternative

to HPLC method due to its simplicity, rapidity and economy (Lee

et al., 2008). This method is similar to HPLC method in terms

of accuracy of results (Lao and Giusti, 2016), therefore,

spectrophotometric method was used in this study for the

determination of anthocyanin content. Pre-prepared 1%

hydrochloric acid-methanol solution for anthocyanin extraction

was obtained as follows: 3 ml of 36% concentrated hydrochloric

acid was aspirated with a pipette gun and fixed to 100 ml with

methanol (Lin et al., 2011). Accurately weighed 0.25 g of the sample

was cut into 10 ml centrifuge tubes, replenished with 1% hydrochloric

acid-methanol solution to 8 ml, and extracted at a low temperature

and protected from light at 4 °C for 48 h, during which time the

centrifuge tubes were shaken 2-3 times. A 96-well plate was prepared

with 1% hydrochloric acid-methanol solution as a blank control, and

200 ml of anthocyanin extract was taken, and the absorbance value

was read at 530 nm with a microplate reader (SpectraMax iD5,

Molecular Devices, USA), and three replicates were set for each

sample. The standard curve was plotted by gradient dilution with

cyanidin 3-rutinoside standard (≥95%) (Shanghai Yuanye

Biotechnology Co., Ltd.). The content of cyanidin 3-rutinoside was

calculated using the following formula:

Cyanidin 3� rutinoside of tissue sample (mg g� 1)

= (C� VT)=(W� V1)

Where: C = content of cyanidin 3-rutinoside (mg ml-1) in the

measuring tube obtained from the standard curve; VT = total

volume of anthocyanin extract (ml) = 8; V1 = volume of

anthocyanin crude extract used in the addition of the sample

(ml); W = fresh weight of the sample (g).
2.3 NIR spectrum measurements

Spectral raw data were determined using a portable near-infrared

spectral analyzer (LF-2500, Spectral evolution, USA). The spectral

range was 1000-2500 nmwith a resolution of 6 nm. The outer petals of

the collected petals were placed on the background board, and the

handheld fiber-optic contact probe was used to directly scan the petals

at different flower colors. In order to minimize noise contamination

and to ensure accuracy, the probe was closely attached to the petal

surface during the measurement, while standard whiteboard

correction was performed in time. A total of 129 spectral data were

measured. From the 129 spectral data, 103 data were randomly

selected as the calibration set and 26 data as the validation set.
2.4 Spectral analysis methods

Spectra typically have a relatively low signal-to-noise ratio in this

region of 2400-2500 nm, and this spectral region was removed in

order to eliminate the effect of noise (Xu et al., 2018; Guo et al., 2021).

Preprocessing of spectral data is necessary to further minimize the
Frontiers in Plant Science 03
effects of instruments, probe offsets, and surroundings on spectral

data and to maximize the spectral differences (Osborne et al., 1993;

Qiu et al., 2022). In this study, six preprocessing methods were

applied, namely Standard normal variate (SNV), Block scale (BS),

Detrended variable (DET), and Block normalization (BN), Removal

of polynomial trends and standard normal transformation (DET-

SNV), Block scale and standard normal transformation (BS-SNV).

Four variable selection methods are also applied: bounded variable

elimination (bve) (Eén and Biere, 2005; Soos et al., 2020), genetic

algorithm (ga) (Molajou et al., 2021), regularized elimination

procedure, and rep) (Mehmood et al., 2011), Significance

multivariate correlation (sMC) (Tran et al., 2014).

As a classical linear multivariate analysis algorithm, PLSR has

been widely used in the field of spectral data modeling (Cheng and

Sun, 2017). When the number of independent variables is large and

multicollinearity exists among these independent variables, the use of

traditional multiple regression methods may lead to a decrease in the

predictive performance of the model (Ma et al., 2023; Yang et al.,

2023). Also, in the face of a limited number of samples, traditional

methods may increase the risk of overfitting. However, PLSR

methods can address these challenges more effectively and provide

a better way to solve the above problems. Therefore, in this study, we

completed the construction of a prediction model for the content of

cyanidin 3-rutinoside based on PLSR in combination with the above

preprocessing methods. The number of latent variables (LVs) was

optimized by Leave-one-out cross-validation (LOOCV). Meanwhile,

we used the coefficient of determination (R2), the root mean square

error (RMSE), residual prediction deviation (RPD) and number of

LVs as metrics to evaluate the model performance (Jin et al., 2020;

Hssaini et al., 2022). Among these metrics, the closer the R2 value is to

1, the better and more stable the model fit is. Whereas, the closer the

RMSE value is to 0, the higher the RPD value is, the superior

predictive performance of the model is indicated, and the number

of LVs is less than 10 as much as possible to avoid overfitting the

model (Guo et al., 2021; Hssaini et al., 2022). Identification of the

spectral regions that have a significant impact on the model was

performed by building the PLSRmodel in eight independent sessions.

In each modeling, the dataset was randomly assigned and divided

into a calibration set and a validation set in an 8:2 ratio.
2.5 Software tools

All data were completed analyzed on R software (v4.3.1). The R

packages “pls” and “enpls” were used to construct the PLSR model;

The “prospectr” package was used to manipulate NIR spectral data

(Wehrens and Mevik, 2007; Stevens and Ramirez-Lopez, 2014; Xiao

et al., 2019). All plotting was performed using the “ggplot2” package

(Wickham, 2011).

3 Results

3.1 Features of spectra

Selected raw spectra of eight representative M. crassipes tepals

are shown in Figure 1A. The spectra after SNV, BS, BN, DET, BS-
frontiersin.org
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SNV and DET-SNV pretreatment are shown in Figures 1B–G,

respectively. By observing the raw spectra, it was found that the

samples exhibited significant absorption characteristic peaks near

the bands of about 1400 nm and 2100 nm, and this observation was

similar to the spectra after applying SNV, BN, DET, and DET-SNV

preprocessing. However, the spectra after applying the BS and BS-

SNV treatments show a greater number of peaks with sharper

morphology, exhibiting more pronounced volatility. Additional

absorption peaks were observed even in the originally relatively

smooth spectral region.
3.2 Statistical values for cyanidin
3-rutinoside

The quantitative analysis conducted in this study on the

concentration of cyanidin 3-rutinoside within the tepals of M.

crassipes is graphically represented in Figure 2, where the

minimum value was 1.89, the maximum value was 10.83, and the

mean value was 5.25 with a standard deviation of 2.11. The

determined values of Cy3R content showed a wide range of

variation, a result that facilitates the calibration of the model.
3.3 Model performance

The effects of six different spectral data preprocessing methods

with four variable selection strategies in PLSR models are

summarized in Table 1, including performance metrics for both

the calibration and validation sets. Among all models, the

calibration set has an average R2 value of 0.68 and an average

RMSE value of 1.18%, with the highest values of 0.68 (R2) and 1.20%

(RMSE), and the lowest values of 0.67 (R2) and 1.16% (RMSE);

while the validation set has an average R2 value of 0.73 and an
Frontiers in Plant Science 04
average RMSE value of 1.03%, with the highest values of 0.75 (R2)

and 1.09% (RMSE), and the lowest values were 0.69 (R2) and 1.01%

(RMSE). In addition, the mean value of RPD values for all models

was 1.65 with the highest value of 2.06 and the lowest value of 1.34;

the number of LVs ranged between 3 and 15, with 13 models

having a number of LVs greater than 10, which may be an

overfitting phenomenon.

The performance of the models with SNV, DET and DET-SNV

preprocessing methods was improved compared to the models

without data preprocessing. Without the variable selection

method, the model built by the DET-SNV preprocessing method

had the highest performance with a calibration set R2 and RMSE of

0.68 and 1.18%, respectively, and an RPD value of 1.68. This was

followed by the SNV, DET, and BN preprocessing methods. The BS

and BS-SNV preprocessing methods had the worst model

performance, with a calibration set R2 and RMSE were 0.67 and

1.19%, respectively.

When combining the four variable selection methods with all

the preprocessing methods, the model performance was essentially

similar. However, when combining the sMC variable selection

methods with the BS preprocessing methods, the PLSR model

performed best, with R2 and RMSE of 0.68 and 1.18% for the

calibration set, and 0.72 and 1.04% for the validation set, with an

RPD value of 2.06, and a number of LVs of 9.
3.4 Establishment of a predictive model for
cyanidin 3-rutinoside content

Based on the results in Table 1, we used the BS preprocessing

method and the sMC variable selection algorithm to construct a

PLSR model for the prediction of Cy3R content. The constructed

Cy3R prediction model was used to estimate the Cy3R content in

the validation set, and the estimated values were compared with the
B C D

E F G

A

FIGURE 1

Spectra of M. crassipes tepals; (A) raw spectra; (B) SNV; (C) BS; (D) BN; (E) DET; (F) BS-SNV; (G) DET-SNV.
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actual chemical assay results. As shown in Figure 3A, we can

observe that the relationship between the estimated values and

the actual measured values is closer to a linear regression line, which

means that the predicted values in the validation set are closer to the

actual values and perform better relative to Figure 3B. Therefore,

compared to the original full-spectrum model, the Cy3R prediction

model utilizes only 9% of the spectral bands to achieve superior

prediction results. Figure 4 illustrates the distribution of residuals

for the two models. most of the residual values for the Cy3R

prediction model fall in the range of -1 to 1, and only a few

residual values are distributed between -2 and 2. Compared to that,

most of the residuals of the original full-spectrum model are

distributed in the range of -2 to 2. This indicates that the

prediction performance of the Cy3R prediction model is more

stable and accurate. Figure 5 shows the eight randomly selected

key variables for the Cy3R prediction model when using the sMC

variable selection method. Among them, the variables in the bands

at 1094.2, 1113, 1383.5, 1874.7, and 2385.7 nm have extremely

important effects on the construction of the prediction model.

These bands play a key role in the modeling process and help to

improve the accuracy and reliability of the predictions.
4 Discussion

M. crassipes, as an excellent ornamental plant, usually needs to

obtain a large amount of trait information during the selection and

breeding process. Flower color is an important trait in ornamental

plants, which is mainly affected by anthocyanin content (Zhang

et al., 2022). Determination of the correlation between flower color

phenotype and pigment composition can also provide an important

basis for the study of flower color formation mechanism (Fu and

Dai, 2016). Although the traditional determination of anthocyanin
Frontiers in Plant Science 05
composition and content has accurate and reliable results, it is time-

consuming and destructive to the plant, and it is not possible to

monitor the long-term dynamics of a physiological index.

Therefore, the aim of this study was to establish a PLSR model

using NIR spectroscopy to estimate and predict the Cy3R content of

M. crassipes tepals, which provides a reference for high-throughput

analysis of plant phenotypes. In selective breeding, it is beneficial to

obtain the required phenotypic trait information quickly and

accelerate the breeding process. One of the most basic and widely

used modeling methods for predicting plant physiological content

in near-infrared spectroscopy is the partial least squares method.

For example, Reuben et al. concluded that the PLSR model could

accurately predict the total anthocyanin content of the peel

(Buenafe et al., 2022). Olaoluwa et al. accurately predicted

avocado ripeness parameters using NIR spectroscopy combined

with the PLSR model, and their predictive model for both dry

matter and moisture content achieved an R2 of 0.92, with RPD

values of 2.19 and 2.06, respectively (Olarewaju et al., 2016).

The findings of this study indicate that the utilization of various

spectral preprocessing techniques does not uniformly enhance the

performance of the models developed. In fact, certain preprocessing

methods may result in a diminution of predictive accuracy, aligning

with the outcomes reported by Vasá̌t et al. (2017). In this study, we

investigated the relationship between NIR spectra and Cy3R

content. We compared the performance of prediction models

constructed by six different spectral preprocessing methods and

four variable selection algorithms in combination with PLSR, and

finally confirmed the combination of the BS preprocessing method

and the sMC variable selection method as the best prediction

model. The R2 and RMSE of this model were 0.72 and 1.04%,

respectively. These values were lower than the results of Liu et al.’s

study (R2 = 0.90, RMSE = 0.30%, RPD = 3.19) for the anthocyanin

content of Prunus cerasifera leaves (Liu et al., 2019). This difference

may stem from the different locations where the spectral data were

collected. The leaves of Prunus cerasifera are relatively large and

more easily spreadable, making spectral data collection relatively

easy. However, in contrast,M. crassipes tepals have a smaller surface

area and are irregularly shaped, making them less likely to spread.

Therefore, when collecting spectral data from tepals, the fiber-optic

probe may not be able to fit completely on their surfaces,

which introduces potentially interfering information and reduces

the accuracy of the Cy3R content prediction model. In addition,

tepals have high moisture content, which may also further reduce

the accuracy of the model (Agelet and Hurburgh, 2014;

Manzoor et al., 2022).

Models with high R2 and low RMSE usually indicate that the

difference between the model’s predicted values and the actual

measured values is small. However, previous studies have shown

that the RPD value is an important indicator for confirming

whether a model is reliable or not (Saeys et al., 2005; Davey et al.,

2009; Magwaza et al., 2012). It is generally accepted that an RPD

value of less than 1.5 implies that the model is unreliable, a model

with an RPD value between 1.5 and 2.0 is suitable for rough

estimation only, a model with an RPD value between 2.0 and 2.5

is suitable for quantitative prediction, a model with an RPD value

between 2.5 and 3.0 is considered good, and a model with an RPD
FIGURE 2

The boxplot of cyanidin 3-rutinoside content for M. crassipes
samples. The boxes represent the interquartile range, the lines inside
the boxes represent the medians, and the whiskers denote the
lowest and highest values within 1.5 times the interquartile range.
Each point indicates a value of cyanidin 3-rutinoside content.
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TABLE 1 Comparison of R2, RMSE and RPD values of calibration and validation sets of PLSR prediction models based on different spectral
preprocessing and variable selection methods.

Pro-processing Variable selection

Calibration Validation RPD LV

R2 RMSE(%) R2 RMSE(%)

Mean SD Mean SD Mean SD Mean SD

OG

raw 0.67 0.04 1.19 0.09 0.75 0.07 1.01 0.19 1.65 9

ga_sel 0.68 0.04 1.18 0.10 0.75 0.07 1.03 0.18 1.64 13

rep_sel 0.67 0.04 1.18 0.10 0.74 0.06 1.05 0.18 1.69 9

bve_sel 0.67 0.04 1.18 0.10 0.74 0.06 1.04 0.18 1.43 7

sMC_sel 0.68 0.04 1.18 0.10 0.74 0.06 1.02 0.18 1.90 3

SNV

raw 0.68 0.04 1.18 0.10 0.74 0.06 1.04 0.18 1.48 9

ga_sel 0.68 0.04 1.19 0.09 0.71 0.10 1.04 0.18 1.70 12

rep_sel 0.67 0.04 1.19 0.10 0.75 0.06 1.03 0.18 1.40 10

bve_sel 0.68 0.04 1.18 0.10 0.74 0.06 1.05 0.18 1.58 4

sMC_sel 0.68 0.04 1.18 0.10 0.71 0.10 1.05 0.19 1.69 14

BS

raw 0.67 0.04 1.19 0.10 0.75 0.07 1.02 0.18 1.76 9

ga_sel 0.68 0.04 1.18 0.10 0.72 0.08 1.05 0.18 1.83 15

rep_sel 0.68 0.04 1.18 0.10 0.71 0.12 1.03 0.18 2.06 13

bve_sel 0.68 0.04 1.17 0.11 0.73 0.07 1.07 0.20 1.88 7

sMC_sel 0.68 0.04 1.18 0.10 0.72 0.09 1.04 0.18 2.06 9

BN

raw 0.67 0.04 1.18 0.10 0.75 0.07 1.02 0.18 1.60 9

ga_sel 0.68 0.04 1.17 0.11 0.74 0.06 1.04 0.18 1.47 14

rep_sel 0.67 0.04 1.19 0.10 0.75 0.06 1.03 0.18 1.73 13

bve_sel 0.67 0.04 1.19 0.10 0.75 0.07 1.02 0.18 1.67 7

sMC_sel 0.67 0.04 1.19 0.10 0.73 0.07 1.04 0.18 1.43 7

DET

raw 0.68 0.04 1.19 0.09 0.71 0.11 1.03 0.18 1.55 9

ga_sel 0.68 0.04 1.19 0.10 0.73 0.07 1.02 0.18 1.73 11

rep_sel 0.68 0.04 1.19 0.09 0.69 0.16 1.03 0.18 1.60 12

bve_sel 0.67 0.04 1.20 0.10 0.73 0.07 1.02 0.18 1.34 12

sMC_sel 0.67 0.04 1.19 0.10 0.75 0.06 1.04 0.18 1.40 11

BS_SNV

raw 0.67 0.04 1.19 0.09 0.75 0.06 1.02 0.18 1.89 9

ga_sel 0.68 0.04 1.18 0.10 0.73 0.07 1.03 0.18 1.69 6

rep_sel 0.68 0.05 1.16 0.12 0.72 0.10 1.08 0.23 1.57 6

bve_sel 0.67 0.04 1.19 0.10 0.75 0.06 1.04 0.18 1.37 7

sMC_sel 0.67 0.04 1.19 0.09 0.73 0.08 1.03 0.18 1.77 6

DET_SNV

raw 0.68 0.04 1.18 0.10 0.73 0.08 1.04 0.18 1.68 9

ga_sel 0.68 0.04 1.19 0.10 0.74 0.06 1.02 0.18 1.80 4

rep_sel 0.68 0.04 1.17 0.11 0.72 0.10 1.09 0.24 1.45 11

bve_sel 0.67 0.04 1.20 0.10 0.75 0.07 1.01 0.19 1.83 5

sMC_sel 0.67 0.04 1.19 0.10 0.73 0.07 1.06 0.19 1.48 11
F
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PLS, partial least squares; R2, coefficient of determination; RMSE, root mean square error; RPD, residual prediction deviation; LV, latent variable; OG, original spectrum; SNV, standard normal
variate; BS, block scale; BN: block normalization; DET, detrended variable; BS-SNV, block scale and standard normal variate; DET-SNV, detrended variable and standard normal variate; ga,
genetic algorithm; rep, regularized elimination procedure; bve, bounded variable elimination; sMC, Significance multivariate correlation.
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value of more than 3.0 is highly satisfactory (Malley et al., 2000;

Saeys et al., 2005; Zimmermann et al., 2007; Magwaza et al., 2012;

Olarewaju et al., 2016). In this study, the predictive model built by

the BS-sMC combination had an RPD value of 2.06 even though the
Frontiers in Plant Science 07
difference in the R2 and RMSE values of the models built by the

combination of other different preprocessing and variable selection

methods was not considered significant. This means that the model

is suitable for quantitative prediction and can be reliably used for
BA

FIGURE 3

Scatterplot of predicted Cy3R content of M. crassipes tepals based on (A) block-scale-significance multivariate correlation (BS-sMC) algorithm
combined with partial least squares regression (PLSR) modeling and (B) original full-length spectral PLSR modeling. The black dashed line indicates
the predicted Cy3R values vs. measured values; the gray solid line is the linear regression line of the model; the error bars for each scatter indicate
the prediction error obtained by eight random calibrations of the model.
B

A

FIGURE 4

Residual plots of predicted M. crassipes Cy3R content based on (A) the BS-sMC algorithm PLSR model and (B) the original full-length spectral PLSR
model. The error bars of the predicted values represent the SDs derived from the eight simulation models.
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prediction of Cy3R content in tepals. This finding proves its

potential value in practical applications.

The collection of spectral data is always unavoidably

contaminated by environmental noise, so it is important to select

effective spectral information (Guo et al., 2020). Appropriate

preprocessing of spectral data and variable selection can effectively

improve the accuracy of the model andmake the modeling task easier

(Mishra et al., 2020). The central goal of the BS preprocessing

approach is to equalize the effects between different blocks, which

may have different scales and number of variables, through block

scaling and block variance scaling. This helps to avoid any one block

having a dominant influence on the modeling results (Mishra et al.,

2021). Analyzing the spectrograms, it is observed that the spectra

preprocessed using the BS method exhibit a heightened number of

absorption peaks in comparison to spectra treated with alternative

preprocessing techniques. This observation might suggest that the BS

preprocessing aids in uncovering subtle spectral variances, previously

obscured by noise, thereby augmenting the detectability of potential

characteristic bands within the spectral data (Vasá̌t et al., 2017).

These additional characteristic bands are potentially valuable because

they can provide additional quantitative information to the PLSR

model. The enrichment of the data has the potential to enhance the

stability of the model, as reflected in the significant improvement in

the model RPD values. In addition, we found that the sMC algorithm

is very effective in variable selection and helps to build a reliable

predictive model. This algorithm has been successfully used in other

studies to predict different chemical compositions, such as

chlorophyll content of Sassafras tzumu leaves and malondialdehyde

content of slash pine needles (Li et al., 2019; Zhang et al., 2021). sMC

algorithm also revealed several important spectral features related to

Cy3R in this study, including wavelengths of 1094.2, 1113.0, 1383.5,

1874.7, and 2385.7 nm. As reported by Kokaly et al. phenolics will

exhibit spectral features in the range of 1000-1500 nm, with the larger

phenolic compounds exhibiting spectral features near 1470 nm,

which is caused by the presence of O-H bonds in their molecular
Frontiers in Plant Science 08
structure (Kokaly and Skidmore, 2015). In addition, we observe that

the residual values of the model are more tightly distributed within

the horizontal bands. This suggests that our predictive model is more

suitable for practical applications, as the narrower distribution bands

imply better fitting accuracy and higher prediction accuracy. These

results further validate the reliability and practicality of our

established model.

The model constructed in this study utilizing near-infrared

spectroscopy demonstrated promising predictive capabilities;

however, there remains scope for further optimization of its

performance. Importantly, the dataset acquired reflects merely a

single temporal snapshot within a specific year, and the influence of

environmental variables (e.g., light and temperature) on the

phytochemical composition may introduce additional uncertainty

into the predictive model. To enhance the model’s accuracy and

reliability, future endeavors will encompass a repeatability

assessment and a planned substantial increase in the sample size.

These steps will facilitate more comprehensive inversion studies

and the subsequent validation of the model’s predictions against

laboratory analytical results.
5 Conclusions

In this study, a model for predicting the content of cyanidin 3-

rutinoside in M. crassipes tepals was successfully constructed using

NIR spectroscopy and PLSR. This model provides a non-destructive

method for the rapid determination of cyanidin 3-rutinoside

content in M. crassipes tepals. It is worth mentioning that the

reliability of the model can be enhanced by using spectral

preprocessing and variable selection methods. We clearly

demonstrated that the PLSR model based on the combination of

the BS preprocessing method and the sMC variable selection

method exhibited the best performance. This study not only

furnishes essential data for elucidating the biochemical
FIGURE 5

Spectral effects of PLS model with 8 random runs.
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mechanisms underlying flower color formation but also pioneers

new pathways for the high-throughput quantitative analysis of

flower color phenotypic traits. Moreover, the development of an

efficacious predictive model for chemical composition markedly

contributes an invaluable reference for the detection and analysis of

cyanidin-3-rutinoside content across a broad spectrum of plant

research domains, particularly in other plant species.
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