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Cadmium stress is amajor threat to plant growth and survival worldwide. The current

study aims to green synthesis, characterization, and application of zinc-oxide

nanoparticles to alleviate cadmium stress in maize (Zea mays L.) plants. In this

experiment, two cadmium levels (0, 0.6 mM) were applied to check the impact on

plant growth attributes, chlorophyll contents, and concentration of various primary

metabolites and antioxidants under exogenous treatment of zinc-oxide

nanoparticles (25 and 50 mg L-1) in maize seedlings. Tissue sampling was made 21

days after the zinc-oxide nanoparticles application. Our results showed that applying

cadmium significantly reduced total chlorophyll and carotenoid contents by 52.87%

and 23.31% compared to non-stress. In comparison, it was increased by 53.23%,

68.49% and 9.73%, 37.53% with zinc-oxide nanoparticles 25, 50 mg L-1 application

compared with cadmium stress conditions, respectively. At the same time, proline,

superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase contents

were enhanced in plants treated with cadmium compared to non-treated plants

with no foliar application, while it was increased by 12.99 and 23.09%, 23.52 and

35.12%, 27.53 and 36.43%, 14.19 and 24.46%, 14.64 and 37.68% by applying 25 and

50 mg L-1 of zinc-oxide nanoparticles dosages, respectively. In addition, cadmium

toxicity also enhanced stress indicators such as malondialdehyde, hydrogen

peroxide, and non-enzymatic antioxidants in plant leaves. Overall, the exogenous

application of zinc-oxide nanoparticles (25 and 50 mg L-1) significantly alleviated

cadmium toxicity in maize. It provides the first evidence that zinc-oxide

nanoparticles 25 ~ 50 mg L-1 can be a candidate agricultural strategy for

mitigating cadmium stress in cadmium-polluted soils for safe agriculture practice.
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1 Introduction

Heavy metals are continuously deposited into the soil through

automobiles, factories, and the disposal of detritus. Metal

contamination degrades soil physical and chemical properties

with decreased physiological and metabolic activities of plants

(Zhou et al., 2019; Basit et al., 2023a). Cadmium (Cd) is a trace

element that mainly affects physiochemical processes like

photosynthesis and plant-water relationships (Paunov et al.,

2018). Similarly, Cd reduced the growth, dry biomass, and

morphological characteristics of Ocimum basilicums (Fattahi

et al., 2019) and significantly reduced Vigna radiata production

(Rehman et al., 2022). Cd stress increases the production of reactive

oxygen species (ROS) and changes plants’ antioxidant potential

(Yizhu et al., 2020; Hussain et al., 2022a). In plant biology, ROS

serves as cell signaling molecules and induces oxidative stress

depending on its concentration (Mittler, 2017). In a stressful

environment, high ROS production damages proteins, DNA,

RNA and causes chlorophyll degradation (Xuebin et al., 2020).

Nanomaterials have significant potential in addressing

environmental contamination and have gained a lot of interest

because of their putative potential to accelerate nutrient availability

in plants (Basit et al., 2022a; Ulhassan et al., 2023). Zinc-oxide

nanoparticles (ZnO-NPs) have a diameter of less than 100

nanometers, high catalytic activity, and large surface area relative

to their size (Shirini et al., 2013). It has different chemical and

physical behaviors depending on various materials or the routes

used for the synthesis. ZnO-NPs are being used in agriculture

sciences at a higher rate than other manufactured nanoparticles

(Basit et al., 2022b). Different amounts of ZnO-NPs were added in

three levels (1, 2.5, 5 mg kg-1), and the results showed that

nanoparticles increased the pH, maintained rice biomass

increased by 13~22%, and 25~43% under the medium and high

Cd dosage (Zhang et al., 2019). These are low-level Zn fertilizer that

improves mung bean and chickpea development and chlorophyll

content (Rizwan et al., 2019b). It also enhanced cotton growth and

decreased plant oxidative stress (Venkatachalam et al., 2017b).

However, phyco-molecule loaded ZnO-NPs improved growth,

photosynthesis, lead (Pb), Cd absorption and reduced abiotic

stress in Leucaena leucocephala seedlings (Venkatachalam et al.,

2017a). The accessibility of hazardous metals such as Cd and Pb

may be influenced by the interaction between ZnO-NPs and metals.

Several plant species subjected to ZnO-NPs have shown increased

chlorophyll and carotenoid contents, including Solanum

lycopersicum, Coriandrum sativum, and Cucumis sativus and Zea

mays (Singh et al., 2016; Pullagurala et al., 2018; Kataria et al., 2019;

Salam et al., 2022). Cd concentrations were reduced by the

application of ZnO-NPs in wheat and peas (Pandey et al., 2010;

Hussain et al., 2018). ZnO-NPs have various detrimental effects on

plants and microbes, which include DNA damage, lysosomal

instability, ROS creation, and the reduction of oxidative stress

caused by the direct penetration and release of Zn2+ ions into

plant and microbial cells (Sheteiwy et al., 2021). Therefore, the

levels of oxygen gas, H2O2, ionic leakage, and lipid peroxidation

were responsible for the beneficial effects on maize plant

development and dry matter accumulation (Alharby et al., 2021).
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It was concluded that heavy metal stressed plants have reduced

nitrate reductase activity, improved antioxidant enzymes, and

enhanced the accumulation of amino acid, proline, and sugar

content which were related to foliar exogenous efficacy of

nanoparticles in maize (Iqbal et al., 2018) and wheat (Hussain

et al., 2018). Modern technical advancements are being transformed

by an innovative area of scientific study (Griffin et al., 2017).

Maize is a multipurpose crop that produces more than a billion

metric tons of grain yearly (Zulfiqar et al., 2022). Cd stress hindered

maize development, damaged chloroplast tissues, and negatively

impacted growth parameters. Hussain et al. (2013) applied various

Cd concentrations 21 days after seedling and concluded that plant

growth was significantly reduced under the higher Cd

concentration (12 mg kg-1 sand). Cd-induced oxidative stress

enhances malondialdehyde (MDA) production in maize (Cui and

Wang, 2006). Researchers have shown that increased MDA is

negatively linked with plant growth and development (Ashraf

et al., 2010). The inability of the plasma membrane to control the

ions across the cell leads to a negatively effect on total chlorophyll,

Chl a, b, leaf area, root and shoot biomass, and carotenoid contents.

Consequently, the current study examined the exogenous efficacy of

zinc oxide nanoparticles on maize under Cd stress by hypothesizing

that a foliar spray of Zn may increase Cd resistance in maize by

increasing the antioxidant activities. The objective of this study was

to (1) assess whether the application of ZnO-Nps can alleviate the

adverse effect of cadmium stress on the growth and physiology; (2)

find out the degree of damage induced by oxidative stress in maize

and establish whether an antioxidant system is the major cellular

component to combat this hazard; (3) elucidate the underlying

mechanisms of cadmium tolerance using the information obtained

from various determinants.
2 Materials and methods

2.1 Experimental site and treatments

Research was conducted to investigate the basic biological and

chemical processes of maize resistance to Cd stress. The study was

performed at the research area of Shandong University

Technology, Shandong. A maize cultivar Deng hai-605

(Shandong Denghai Seeds Co., Ltd.), was used in this trial. Ten

seeds were grown in pots, and the soil was sandy loam. Two

cadmium chloride (CdCl2) levels, including control (0 mM and 0.6

mM), were supplemented with Hoagland’s solution at the seedling

stage. Two solutions were made with 25 and 50 mg L-1 of zinc oxide

nanoparticles. 0.01% Tween-20 was mixed with distilled water to

make two bottles of 500 mL volume, and then two dosages of ZnO-

NPs (25, 50 mg L-1) were mixed separately. These solutions were

poured into two separate hand-pressure spray pumps. Firstly, 25

mg L-1 ZnO-NPs solution was applied on controlled and Cd stress

treatments, and then 50 mg L-1 was applied in the same way. One

No ZnO-NPs treatment was kept as a control treatment in which

no ZnO-NPs were added, but only distilled water was sprayed as an

equal amount of water used in ZnO-NPs treatments. The

experimental design was (CRD) with four replications. Tissue
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sampling was made 21 days after treatments to determine the

various attributes at the seedling stage.
2.2 Preparation of ZnO-Nps

The co-precipitation technique by Devi and Velu (2016) for

forming pure ZnO-NPs was employed due to its ability to trace the

heavy metal ions and is relatively economical. 0.1 M Zinc nitrate

solution was mixed into 100 mL of deionized water while vigorously

stirring for 20 minutes to ensure homogeneity. Then, 6 g of sodium

hydroxide (NaOH) was added dropwise to the deionized water

solution and stirred at 60°C for 3 hours. The final product pH was

maintained at the level of pH=10-11. At pH=11, ZnO-NPs were

visualized as precipitation on the bottom of the beaker and then

washed with deionized water and ethanol in multiple steps to make

it free from impurities. At 1792 g, the solution combination was

centrifuged and dried over by maintaining the temperature of 60°C

for 6 hours. With proper grinding, the desired morphology of ZnO-

NPs was formed and characterized by X-ray powder diffraction

examination of the materials using Cu, K1 radiation on a Rigaku

diffractometer (l = 1.5406 Å). Additionally, ZnO-NP size was

determined using SEM (JSM5910, JEOL).
2.3 Growth analysis

Plant materials were collected and properly cleaned. After

separating plant parts, root and shoot fresh weight (FW) was

taken immediately after uprooting and oven-dried for seven days

at 70°C to measure dry weight (DW). The leaf length and width

were measured to estimate the leaf area (cm) by the following

formula;

L: A = (Length�Width� 0:68)

Where 0.68 is the correction factor.
2.4 Chlorophyll and carotenoid contents

Fresh plant material was homogenized in 80% methanol and

stirred for 15 minutes at 16128 g using the Arnon (1949) technique.

Photosynthetic pigments were investigated using the supernatant

ultraviolet-visible spectrometer (Hitachi U1800; Tokyo, Japan). The

readings were taken at 480, 663, and 645 nm for chlorophyll a, b,

and carotenoids.
2.5 Determination of metabolites

2.5.1 Malondialdehyde content
For the MDA determination, 0.5 g leaf samples were grounded

in 6% trichloroacetic acid (TCA) and centrifuged for 15 minutes.

The readings were noted at 532 and 600nm (Dhindsa et al., 1981).
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2.5.2 Hydrogen peroxide content
The H2O2 concentration was calculated using the Velikova et al.

(2000) technique. For analysis, 0.5 g of plant material was grounded

with (2 mM) TCA in a mortar placed on an ice bath, stirred at

16128 g, and then 10 Mm of potassium iodide (KI) buffer was mixed

with 0.5 mL of the extract. Readings were determined at 390 nm.

2.5.3 Ascorbic acid content
Ascorbic acid was governed by Mukherjee and Choudhuri

(1983). Firstly, 0.5 g leaf specimens were grounded with 10%

TCA in the ice bath and stirred at 16128 g. However, optical

density was determined at 530 nm in a spectrophotometer.

2.5.4 Total phenolic content
Total phenolic content was estimated by Wolfe et al. (2003)

method. A 0.25 g extract was grounded in 5 mL of methanol (80%)

and stirred for 15 minutes at 16128 g. After that, 0.5 mL of Folin

Ciocalteus substance was added to 1.0 mL supernatant extract. Later

on, 2.5 mL of Na2CO3 was added, and 10% volume was formulated

using distilled water and cooled for thirty minutes. The readings

were noted at 750 nm by using a scale.

2.5.5 Total flavonoid content
Flavonoid content was estimated through the colorimetric test

(Ordonez et al., 2006). Firstly, 0.25 grams of leaf sample were

grounded in 5 mL methanol and centrifuged at 16128 g. 1 mL

extract was assorted with 0.3 mL of Al2Cl3 and NaNO3 by adding

0.2 mL of NaOH. The mixture was mixed up, and the readings were

noted at 510 nm with the help of a spectrophotometer using water

as a blank.

2.5.6 Anthocyanin contents
Hodges and Nozzolillo (1996) method was used to determine

the anthocyanins. In this process, 0.1 g of leaf material was ground

in 2 mL of methanol and heated the mixture for 1 hour. After

centrifugation, the wavelength was checked at 600 nm by using

a spectrophotometer.

2.5.7 Proline contents
For proline determination, Bates et al. (1973) procedure was

used. 0.5 g of plant tissue was ground in 10 mL of sulphosalicylic

acid and centrifuged. Ninhydrin (1 mL) and glacial acetic acid (2

mL) were inserted and heated. Then, 2 mL of toluene was added for

proline extraction. The absorption of the extract was estimated at

520 nm from the spectrophotometer.

2.5.8 Total free amino acid contents
Total free amino acid contents were estimated by Hamilton

et al. (1943) technique. Leaf extract of l mL was transferred into test

tubes by adding 2% pyridine and 10% ninhydrin solution. Then,

water bath the solution at 100°C for thirty minutes. After that, add

distilled water to maintain the volume 25 mL in test tubes. Readings

were noticed at 550 nm wavelength.
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2.5.9 Total soluble proteins
Bradford (1976) technique was used for total soluble protein

determination. Firstly, 0.25 g leaf material was grounded in 5 mL

phosphate buffer, then centrifuged at 16128 g by adding 2 mL of

Bradford reagent and left for thirty minutes at normal temperature.

Then, readings were taken at 595 nm spectrophotometrically

(Hitachi U-2910, Tokyo, Japan).

2.5.10 Total soluble sugar
Riazi et al. (1985) technique was used to determine total soluble

sugar. For this, 0.1 mL of extract was assorted with 2 mL of

anthrone substance, and then the subsequent solution was left for

thirty minutes. Readings were recorded at 620 nm.

2.5.11 Reducing sugar contents
Plant extract (0.25 g) was ground in 5 mL methanol and

centrifuged at 16128 g. A mixture of 0.5 mL plant sample, 1 mL

of distilled water, and dinitrosalicylic acid (DNSA) was used to

prepare the solution. The readings were checked at 540 nm from the

spectrophotometer after a water bath for 15 minutes.

2.5.12 Antioxidants enzymes
Fresh Leaf extract (500 mg) was homogenized in phosphate

buffer (10 mL) with a maintained pH of 7.8 and then vortexed the

mixture at 16128 g for fifteen minutes at 4°C temperature. After

that, it was cooled to determine enzymatic activities (APX, SOD,

CAT, and POD). The SOD was estimated by following

Giannopolitis and Ries (1977) method. A solution was prepared

by mixing 50 μL of enzyme extract, 500 μL of PCR binding solution

(SPB), 100 μL of methionine, 500 μL of distilled water, and 50 μL of

nitroblue tetrazolium chloride (NBT). It was left inside the cuvette

under a lamp for twenty minutes, and readings were taken at 560

nm. CAT and POD activities were calculated by following Chance

and Maehly (1955). The CAT reaction mixture contained about 3

mL of potassium phosphate buffer, 0.1 mL of extract, and H2O2 in

the cuvette. The readings were calculated at 240 nm every 20 s using

a spectrophotometer. For POD activity plant extract, 0.1 mL was

inserted into 1.5 mL of 5 Mm guaiacol and 1.5 mL of H2O2. The

absorbance was taken at 470 nm. A 0.01-unit min-1 change in

absorbance was considered one unit of CAT and POD activity. The

enzyme’s specific activity was measured in enzyme units per mg of

protein. Ascorbate peroxidase (APX) was determined using the

Krivosheeva et al. (1996) technique. The solution mixture

comprised 700 μL lead (Pb), 0.5 Mm ascorbate, 1.5 μL H2O2, and

enzyme extract. Then, the absorbance was measured at 290 nm in

decline order at 120 times scan for every 20s.
2.6 Statistical analysis

SPSS.10 (SPSS, Chicago, IL, USA) was used for the statistical

analysis to determine the mean comparison, difference and

interaction between all the treatments at a probability level< 0.05,

followed by three-way ANOVA. Origin 2021 software (OriginLab

Co., Northampton, MA, USA) was used for fitting all the equations.
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3 Results

3.1 Nanoparticle characterization

3.1.1 X-Ray diffraction analysis
Scanning electron microscope (SEM) and (XRD) pattern images of

the ZnO-NPs are shown in Figures 1A, B. The X-ray diffraction pattern

of ZnO-NPs demonstrated that prepared ZnO-NPs were crystalline.

The peaks at 2q = 31.54°, 34.16°, 36.14°, 47.29°, and 56.41° were

assigned [100], [002], [101], [102], and [110] reflection lines of ZnO-

NPs material, respectively (Table 1). By comparing with XRD spectra

of ZnO JCPDS 36-1451, newly synthesized ZnO-NPS depicted the

hexagon structure of the clear phase of ZnO crystal. Themorphology of

the grown ZnO-NPs was determined by SEM image. The structure of

the ZnO-NPs with diameters ranging from 70 to 100 nmwas shown by

the SEM image of ZnO-NPs. Close inspection indicates that these

atoms are aggregates of much smaller nanoparticles.
3.2 Growth attributes

Shoot and root length was significantly changed by ZnO-NPs

application under the control and Cd stress compared with no

application of ZnO-NPs, while an insignificant difference was

observed between control and Cd stress for root and shoot length

when no ZnO-NPs were applied. Shoot length and root length were

found to be higher under the Cd stress with 25 mg L-1 and 50 mg L-1 of

ZnO-NPS, respectively (Figures 2A, B). The interaction between two

factors for shoot length was significant, while for root length it was non-

significant. For shoot and root fresh weight, no significant difference was

observed between the Cd and control with or without ZnO-NPs various

dosages. While the ZnO-NPs dosages significantly increased the shoot

and root fresh weight under Cd and controlled conations compared to

the no application conditions, while the increase in shoot fresh weight

by applying 25 mg L-1 was negligible as compared to no ZnO-NPs

application (Figures 2C, D).Moreover, the interaction betweenCd stress

and nanoparticle application for shoot and root fresh weight was not

significant (Table 2). Shoot and root dry weight was significantly

decreased by Cd stress compared to control. ZnO-NPs of 50 mg L-1

increased the shoot and root dry weight under the Cd and controlled

conditions compared with no application. Shoot dry was higher under

the higher dosage of nanoparticles under Cd stress, while the increased

root was noted under the controlled condition compared to Cd stress

with or without spraying nanoparticles (Figures 2E, F). Leaf area was not

affected by Cd stress, while ZnO-NPs significantly increased leaf area.

Higher leaf area was noted in controlled conditions compared to Cd

stress under both dosages of nanoparticles (Figure 2G). Leaf area was

highest in controlled conditions when 50 mg L-1 of ZnO-NPs were

applied, while the interaction between Cd and nanoparticles for leaf area

was not significant (Table 2).
3.3 Photosynthetic pigments

Data analysis for Chl a and total chlorophyll exhibited a non-

significant difference between control and Cd stress with no
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application of nanoparticle. Zinc-oxide nanoparticle dosages

significantly increased total Chl and Chl a in controlled

conditions as well as under Cd conditions. The highest Chl a and

total Chl was observed when 50 mg L-1 of ZnO-NPs was applied

(Figures 3A, C). Cd stress significantly decreased Chl b and

carotenoid contents compared to control when no nanoparticles

were applied. Application of ZnO-NPs in both dosages significantly

increased Chl b under the controlled and Cd stress conditions. In
Frontiers in Plant Science 05
contrast, carotenoid contents were significantly increased with 50

mg L-1 of ZnO-NPs application under the controlled and Cd stress

conditions compared to no ZnO-NPs. 25 mg L-1 of nanoparticles

also increased carotenoid contents under controlled and Cd stress,

but this increase in carotenoid contents under the Cd stress was not

statistically different with no nanoparticle’s application (Figures 3B,

D). A significant interaction was observed between the two factors

in Chl a, Chl b, total chlorophyll, and carotenoid contents (Table 2).
B

A

FIGURE 1

(A) The XRD patterns of ZnO-NPs synthesized by the co-precipitation technique. (B) SEM images of pure ZnO-NPs at different magnification ranges.
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TABLE 1 Effect of foliar ZnO-NPs XRD data of pure ZnO-NPs.

Synthesis
parameter

Phases 2(q) Obs Hkl FWHM D-
spacing (nm)

R-Intensity C.S (nm) Strain (ϵ) d × −3

(nm)-2

X=0 ZnO 31.54 [100] 0.315 2.837 64.81 24.27 0.0757 1.69

34.16 [002] 0.236 2.625 56.55 32.14 0.0564 0.97

36.14 [101] 0.629 2.486 100 11.98 0.1496 6.96

47.29 [102] 0.551 1.922 21.25 13.20 0.1261 5.74

56.41 [110] 0.960 1.629 37.08 7.29 0.2115 18.82
F
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B

C D

E F

G

A

FIGURE 2

ZnO-NPs influence on morphological attributes of maize plant at vegetative stage under cadmium stress and controlled conditions (A–G). Three-way
ANOVA was performed to evaluate the results. Bars with lowercase letters are statistically different at p< 0.05 by the LSD test.
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3.4 Metabolite accumulation

Data analysis for malondialdehyde (MDA) showed a highly

significant difference in Cd stress and ZnO-NPs. Cd stress

significantly increased MDA contents with or without spraying

ZnO-NPs. Zinc oxide nanoparticles in both dosages significantly

decreased MDA contents compared to no ZnO-NPs. The lowest

MDA contents were noticed with a higher dosage of nanoparticles,

while these contents were higher when the nanoparticles dosage was

decreased. Although MDA contents were decreased by applying

ZnO-NPs compared with no application of nanoparticles, these

were still higher compared to the control condition (Figure 4A).

Similarly, H2O2 was also significantly increased in Cd-fed plants

with or without nanoparticle application. Application of ZnO-NPs
Frontiers in Plant Science 07
decreased H2O2 in control plants as compared to Cd-stressed

plants, but its application had no significant effect on Cd-stressed

plants (Figure 4B). A highly significant difference was detected in

the effect of Cd stress on the proline contents of maize plants.

Proline was significantly increased in Cd-fed plants with or without

ZnO-NPs application. Although proline contents were increased in

Cd-fed and controlled plants, that increase in proline contents was

not statistically different. This means that the application of ZnO-

NPs had a non-significant effect on proline contents (Figure 4G).

Cd stress had a reducing effect on other metabolites such as

phenolics, total flavonoids, anthocyanin, ascorbic acid, total

soluble proteins, soluble sugar, reducing sugar contents as

compared to controlled plants with no ZnO-NPs application, but

that reduction in metabolic contents was not different statistically
TABLE 2 Analysis of variance (ANOVA) of data showing the differences in values of shoot and root length, shoot and root fresh weight, shoot and
root dry weight, root dry weight, leaf area, chlorophyll a, b, total chlorophyll, and carotenoid contents of maize seedling by application of ZnO-NPs
and Cd stress conditions.

Treatments
Shoot
length
(cm)

Root
length
(cm)

Shoot
fresh

weight (g)

Root
fresh

weight (g)

Shoot
dry

weight (g)

Root
dry

weight (g)

Leaf
area
(cm2)

Chl a
(mg/
g FW)

Chl b
(mg/
g FW)

Total Chl
(mg/
g FW)

Carotenoid
(mg/g FW)

ANOVA

Cd-
Stress (A)

** * NS NS ** *** NS * ** ** *

ZnO-
NPs (B)

*** ** ** *** ** * *** ** ** *** *

A×B * NS NS NS * NS NS ** * * *
*, **, and *** show significant differences at probability levels of 0.05, 0.01, and 0.001, respectively. NS, not significant.
B

C D

A

FIGURE 3

ZnO-NPs influence on (A) Chl a; (B) Chl b; (C) total chlorophyll; (D) total carotenoids (mg/g FW) at vegetative stage under cadmium stress and
controlled condition. Three-way ANOVA was performed to evaluate the results. Bars with lowercase letters are statistically different at p< 0.05 by the
LSD test.
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(Table 3). Application of ZnO-NPs in both dosages significantly

increased above mentioned contents compared with no application

of nanoparticles, but the difference between the effect of two

different dosages of nanoparticles on most metabolites was non-

significant. Such as total flavonoid, ascorbic acid and total free

amino acids were increased by applying nanoparticles, but the

difference between the two dosages was not significant (Figure 4).
3.5 Enzymatic antioxidants

The SOD, POD, CAT, and APX data analysis expressed a non-

significant difference between control and Cd-fed plants under no

ZnO-NPs application. However, an increase in antioxidant activity was
Frontiers in Plant Science 08
noticed in Cd-fed plants. ZnO-NPs dosages of 25 and 50 mg L-1

significantly increased SOD under controlled and Cd stress conditions

compared to the plants without treatment of ZnO-NPs. There was no

significant effect was noticed between 25 mg L-1 of ZnO-NPs and no

nanoparticle treatment on POD, CAT and APX. A dosage of 50 mg L-1

increased these metabolites under Cd and controlled conditions.

Overall, these antioxidants were noticed in higher concentrations

under the Cd-fed plants compared to the control (Figure 5).
4 Discussion

In the present research, foliar application of ZnO-NPs in

various concentrations alleviated the Cd stress and enhanced
B C

D E F

G
H I

J K

A

FIGURE 4

ZnO-NPs influence on endogenous contents of maize at vegetative stage under cadmium stress (A–K). Three-way ANOVA was performed to evaluate
the results. Bars with lowercase letters are statistically different at p< 0.05 by the LSD test.
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plant growth. We believed that NPs induced morpho-physiological

changes in plant growth, root and shoot length, dry mass, primary

metabolites, and antioxidant system depending on size, reactivity,

chemical composition, surface contact, and dosage (Basit et al.,

2023b). Moreover, Zn plays a vital role in maintaining and

protecting cell membrane structure and is also used for abiotic

stress tolerance, cell elongation, protein synthesis, and membrane

functions (Ajouri et al., 2004). Raliya et al. (2015) revealed that

treatment of ZnO-NPs with Solanum lycopersicum seeds resulted in

increased root length, shoot length, and other growth attributes.

Vigna radiata and Cicer arietinum roots, shoots and biomass were

promoted by applying ZnO-NPs on the seedling stage. Researchers

are trying hard to improve crop efficiency by modifying the

physiological and biochemical traits (Mahajan et al., 2011). The

outcomes presented that exogenously applied ZnO-NPs accelerated

maize biomass and growth. Plant height and biomass are the two

basic indications of abiotic stress (Rizwan et al., 2019b). Higher Cd

levels in maize are related to the control plants’ reduced biomass.

The resemblance between the non-essential element Cd and the

necessary nutrient Zn increased the zinc relevance in the soil-plant

relationship (Rizwan et al., 2019a). Due to the incompatible actions

of these metals on each other, a sufficient amount of Zn in the soil

may interact with Cd and limit plant buildup (Huang et al., 2019;

Hussain et al., 2022b; Hussain et al., 2022c).

The photosynthetic machinery is regarded as the chief indicator

of heavy metal-induced poisonousness in plants (Faseela et al.,

2020). Similarly, heavy metal stress altered the photochemistry of

chlorophyll (Chl a, Chl b) and carotenoid contents for light

harvesting and, as a result, the primary component of the

photosynthetic process (Ulhassan et al., 2019; Ulhassan et al.,

2022b). Similar findings revealed in our study, chl b and

carotenoid contents lessened (35% and 19%) under Cd stress

compared to control plants. Foliar application of ZnO-NPs (25

and 50 mg L-1) improved the Chl a, b, total chlorophyll in

controlled conditions. Total Chl and carotenoids were increased

by ZnO-NPs (50 mg L-1) in cadmium-fed plants (Figure 3). Heavy

metal stress like Cd in several plants produces excessive ROS,

damaging cells. (Burman et al., 2013) observed that ZnO-NPs

accelerated chickpea root and shoot growth. Some chickpea

genotypes have also been observed to exhibit a change in the

root: shoot ratio due to zinc supplementation. However, in rice

cultivars, plant heights, RL, SL, FW, DW, and leaf area were

massively reduced through Cd stress (Faizan et al., 2021).

Likewise, in our recent study, ZnO-NPs reduced the heavy metal

stress (Cd) in maize crops and improved the morphological

parameters. Cadmium toxicity produces oxidative stress and

reactive oxygen species, which alters enzymatic activity due to the

blocking of proteins, histidyl, carboxy, and thiol. In radish

(Raphanus sativus L.), metal toxicity often arises in excessive

ROS, which oxidizes proteins, lipids, DNA, and other biological

components (Noman et al., 2018). Compared to the corresponding

control, the elevated levels of MDA and H2O2 in the leaves and

roots were reduced at 100 mg L-1 of ZnO-NPs (Rizwan et al.,

2019a). Previous research found that adding ZnO-NPs into the Cd-

stressed tomato plants significantly enhanced proline buildup.

ZnO-NPs may increase proline by mediating proline biosynthesis
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gene expression (Faizan et al., 2021). Similar findings were seen in

our research, including elevated levels of MDA, H2O2, and proline

also altered the antioxidant enzyme activity (Figure 4). Under Cd

stress, there was an increase in MDA (45%), H2O2 (18.6%) and

proline (114%) levels, ZnO-NPs (25 and 50 mg L-1) foliar spray

increased proline (15% and 30.03%) but lessened MDA and H2O2

(21% and 59%, 13% and 21%).

In a recent study, the total soluble protein was decreased

because of the heavy metal administered to Solanum lycopersicum

through the soil. This might be caused by a decrease in the

production of protein macromolecules under this stress and an

increase in the rate of protein denaturation caused by protease

activity. Furthermore, stressed and non-stressed plants have higher

protein contents after receiving treatment with ZnO-NPs as an

exogenous spray and epibrassinolide as a root dipping solution

(Faizan et al., 2021). Zinc, as a micronutrient, has a vital role in

plant development and its deficiency causes incompetence in the

enzymatic system and physiological stress and also crucial for the

production of tryptophan. Correspondingly, our study showed that

total soluble protein content decreased (14%) under Cd stress in

maize while increased (51% and 77%) by the exogenous spray of

growth regulator ZnO-NPs (25 and 50 mg L-1). In our current

findings, ascorbic acid content decreased (2.25%) with Cd stress but

increased (24.40% and 31.02%) with foliar application of ZnO-NPs

(25 and 50 mg L-1) (Figure 4F). These outcomes correspond with

earlier studies on tomato plants. The concentration of ascorbic acid

increased in both tomato cultivars, which was more significant
Frontiers in Plant Science 10
under higher concentrations of heavy metal under stress conditions

(Hussain et al., 2017). High Cd concentrations substantially

elevated metabolites such as anthocyanin content in maize

(Qutab et al., 2017).

Similarly, according to (Thiruvengadam and Chung, 2015),

turnips possess higher anthocyanin levels under Cd stress. Likewise,

Cd stress increased phenolic’ levels while reducing the flavonoid

content (Thiruvengadam and Chung, 2015). In our findings, Cd

stress dropped the total phenolic, flavonoids, and anthocyanin

contents, while ZnO-NPs (25 and 50 mg L-1) improved (49.26%

and 71%), (72.02% and 86.47%), (41% and 78.41%) these secondary

metabolites by reducing the Cd stress effect, respectively (Figures 4D,

E). The impact of various Cd concentrations on two Pisum sativum

genotypes (AG-10 and AP-3) was assessed by Sager et al. (2020). Cd

stress lessened the amount of sugar in both genotypes. Our

experiment revealed the same results (Figures 4J, K).

Additionally, the effects of Zn applied topically to two maize

cultivars under metal stress cause a decreased stress and a rise in

total free amino acid. Our present study revealed similar findings. The

total protein content and total free amino acid concentration decreased

under Cd stress and increased (59.42%, 90.18% and 16.30%, 27%) with

the efficacy of ZnO-NPs (25 and 50 mg L-1) (Figures 4J, H). Earlier

research has shown that ZnO-NPs strengthened the antioxidant system

and increased SOD, POD, CAT, and APX activities (Garcıá-López

et al., 2019; Ulhassan et al., 2022a). Adrees et al. (2021) revealed that

when ZnO-NPs were applied, Cd stress was reduced by 26% and 81%

in normal moisture, respectively. ZnO-NPs, when applied topically to
B

C D

A

FIGURE 5

ZnO-NPs influence on antioxidants (A) Superoxide dismutase (SOD); (B) peroxidase (POD); (C) catalase (CAT); (D) ascorbate peroxidase (APX) (unit/
mg protein) at vegetative stage under cadmium stress. Three-way ANOVA was performed to evaluate the results. Bars with lowercase letters are
statistically different at p< 0.05 by the LSD test.
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leaves, improved plant growth by boosting antioxidant defenses and

decreasing oxidative stress while also increasing SOD, POD activities.

Likewise, our findings indicated that the overall uptake of Cd by

various plant parts wasmore significant under the given treatment than

in controlled plants. A foliar spray of ZnO-NPs improved the

antioxidant enzymes (POD, SOD, APX, and CAT) concentrations.

SOD and POD were increased by spraying ZnO-NPs (25 and 50 mg L-

1) under Cd stress (Figures 5A, B). The activity of CAT and APX was

enhanced in cadmium-fed plants and increased by spraying ZnO-NPs

(25 and 50 L-1) in the control and stressed plant (Figures 5C, D).

However, themechanism and the reasons for the enhanced antioxidant

system and maintained metabolite accumulation in the plants exposed

to NPs have not been fully studied. There is a need to further

investigate the mechanisms of NPs mediated changes for sustainable

agriculture practices.
5 Conclusion

In the current study, two Cd levels (0, 0.6 mM) and zinc oxide

nanoparticles (25 and 50 mg L-1) were applied to the maize seedling to

investigate the changes in plant growth attributes, total chlorophyll,

carotenoid, primary metabolites, and antioxidant system.

In conclusion, Cd stress decreased shoot and root dry weight

compared to controlled conditions with no zinc oxide application,

while ZnO-NPs enhanced and improved the morphological and

physio-chemical attributes. Cd toxicity reduced Chl b, carotenoid

contents and metabolic activity compared to control with no foliar

application of ZnO-NPs. Zinc-oxide nanoparticle application

enhanced plant growth by maintaining primary and secondary

metabolites and antioxidant systems. Foliar application of ZnO-

NPs in different dosages (25 and 50 mg L-1) increased antioxidants

(SOD, POD, CAT, APX), photosynthetic pigments, metabolites

including total flavonoid, total phenolic, total anthocyanin, ascorbic

acid, proline contents, total free amino acid, total soluble proteins,

and soluble sugar compared with no foliar application conditions

under the controlled and Cd stress. At the same time, it caused a

reduction in MDA, H2O2, and reducing sugar in the cadmium-fed

plants. Current research proved that Cd stress reduces the progress

of growth and development in plants. It is recommended to apply

ZnO-NPs to improve the capacity of tolerance in maize plants

under Cd stress. The hazardous effects of Cd stress can be lessened

with the efficacy of ZnO-NPs. Maize showed better growth when

ZnO-NPs (50 mg L-1) were applied exogenously under Cd stress.

Overall, the foliar efficacy of ZnO-NPs enhanced the tolerance

capacity of the maize plant.
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