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A novel endophytic actinomycete, strain MEP2-6T, was isolated from scab tissues

of potato tubers collected from Mae Fag Mai Sub-district, San Sai District, Chiang

Mai Province, Thailand. Strain MEP2-6T is a gram-positive filamentous bacteria

characterized by meso-diaminopimelic acid in cell wall peptidoglycan and

arabinose, galactose, glucose, and ribose in whole-cell hydrolysates.

Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and

hydroxy-phosphatidylethanolamine were the major phospholipids, of which

MK-9(H6) was the predominant menaquinone, whereas iso-C16:0 and iso-C15:0

were themajor cellular fatty acids. The genome of the strain was 10,277,369 bp in

size with a G + C content of 71.7%. The 16S rRNA gene phylogenetic and core

phylogenomic analyses revealed that strain MEP2-6T was closely related to

Amycolatopsis lexingtonensis NRRL B-24131T (99.4%), A. pretoriensis DSM

44654T (99.3%), and A. eburnea GLM-1T (98.9%). Notably, strain MEP2-6T

displayed 91.7%, 91.8%, and 87% ANIb and 49%, 48.8%, and 35.4% dDDH to A.

lexingtonensis DSM 44653T (=NRRL B-24131T), A. eburnea GLM-1T, and A.

pre tor iens i s DSM 44654T , respect i ve ly . Based on phenotyp ic ,

chemotaxonomic, and genomic data, strain MEP2-6T could be officially
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assigned to a novel species within the genus Amycolatopsis, for which the name

Amycolatopsis solani sp. nov. has been proposed. The type of strain is MEP2-6T

(=JCM 36309T = TBRC 17632T = NBRC 116395T). Amycolatopsis solani MEP2-6T

was strongly proven to be a non-phytopathogen of potato scab disease because

stunting of seedlings and necrotic lesions on potato tuber slices were not

observed, and there were no core biosynthetic genes associated with the

BGCs of phytotoxin-inducing scab lesions. Furthermore, comparative

genomics can provide a better understanding of the genetic mechanisms that

enable A. solani MEP2-6T to adapt to the plant endosphere. Importantly, the

strain smBGCs accommodated 33 smBGCs encoded for several bioactive

compounds, which could be beneficially applied in the fields of agriculture and

medicine. Consequently, strain MEP2-6T is a promising candidate as a novel

biocontrol agent and antibiotic producer.
KEYWORDS

Amycolatopsis, biosynthetic gene cluster, comparative genomics, endophytic
actinomycetes, potato scabby tuber, pathogenicity
Introduction

The genus Amycolatopsis belongs to the phylum Actinomycetota,

c lass Actinomycetia (Oren and Garrity , 2021), order

Pseudonocardiales, and the family Pseudonocardiaceae. This species

was first proposed by Lechevalier et al. (1986) as Amycolatopsis

orientalis. The taxonomic description of this genus was amended

based on the 16S rDNA, chemotaxonomic characteristics, and

genome sequences by Lee (2009); Tang et al. (2010), and Nouioui

et al. (2018). Most species in the genus Amycolatopsis form long

chains of substrate and aerial hyphae, which may differentiate into

chains of squarish to oval fragments as spore-like structures. These

characteristics constitute key morphological characteristics

(Lechevalier et al., 1986). This genus is mycolate-less and contains

meso-diaminopimelic acid in the peptidoglycan wall (Lechevalier and

Lechevalier, 1970; Embley et al., 1988). Arabinose and galactose are

diagnostic sugars found in whole-cell hydrolysates. The predominant

isoprenoid quinone observed in Amycolatopsis is MK-9(H4) with

phosphatidylethanolamine as a diagnostic phospholipid (Lechevalier

et al., 1977). The G + C content in the genome of Amycolatopsis

species is generally within the range of 66 to 75 mol% (Li et al., 2021).

At the time of writing, the genus Amycolatopsis included 87 species

with validly published names (Parte et al., 2020, https://lpsn.dsmz.de/

genus/amycolatopsis).

Numerous species of the genus Amycolatopsis have adapted to

occupy many diverse biological niches, such as soil (Camas et al.,

2013), plants (Mingma et al., 2020), salt mines (Tatar et al., 2013),

lakes (Li et al., 2021), marine environments (Bian et al., 2009),

insects (Beemelmanns et al., 2017), animals (Labeda et al., 2003),

and humans (Huang et al., 2004). The planta Amycolatopsis species

have been discovered inside the tissues of different plant species: A.
02
samaneae recovered from the roots of Samanea saman (Duangmal

et al., 2011), and A. jiangsuensis was isolated from the stems of

Dendranthema indicum (Xing et al., 2013), A. stemonae isolated

from the stems of Stemona sp. (Klykleung et al., 2015), A. anabasis

isolated from the roots of Anabasis elatior (Wang et al., 2020), and

A. dendrobii isolated from the roots of Dendrobium heterocarpum

Lindl (Tedsree et al., 2021). However, their ability to adapt to plants

is not fully understood.

Members of the genus Amycolatopsis are closely connected with

a history of antibiotic drug discovery as invaluable commercial

producers of secondary metabolites with antibacterial, antifungal,

or antiviral activities. They have continued to gain considerable

attention in the search for new drugs (Kisil et al., 2021). Metabolites

are synthesized by several diverse gene clusters in the genome,

called biosynthetic gene clusters (BGCs). Fortunately, the reduced

costs of whole-genome sequencing and public access to genome

databases are now allowing the scientific community to sequence

and share thousands of prokaryotic genomes worldwide. This can

help to comprehensively detect and compare BGCs between

organisms, as well as to identify their chemical structures using

robust bioinformatics tools (Alam et al., 2022), such as antiSMASH

7.0 (Blin et al., 2023), BAGEL4 (van Heel et al., 2018), and PRISM 4

(Skinnider et al., 2020). This knowledge and these tools can guide us

in predicting where to find promising new compounds and help us

determine if the search for new producers should be based on

phylogeny, geography, or specific ecological niches (Adamek

et al., 2018).

In the present study, the novel endophytic Amycolatopsis strain

MEP2-6T was isolated from scab lesions on potato tuber surfaces;

however, there have been no reports of its association with potato

scab disease. Thus, we aimed to comprehensively characterize
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Amycolatopsis strain MEP2-6T based on polyphasic and genome-

based taxonomy and evaluate the pathogenicity of strain MEP2-6T

in plants. In addition, we determine how this strain can adapt to

reside in plants, study the diversity of the secondary metabolite

biosynthetic gene clusters (smBGCs) of the strain MEP2-6T, and

compare the distribution pattern of smBGCs with its closest type

strains. This work represents the first of its kind to report on the

Amycolatopsis species inhabiting potato scab lesions and can

provide a better understanding of the genetic mechanisms of this

species that occupy plants. We also reported the genetic potential of

this species to produce various types of secondary metabolites.

These outcomes can contribute to the identification of specialized

biosynthetic pathways that are of particular interest and serve as a

guide for antibiotic drug discovery.
Materials and methods

Bacterial isolation and preservation

Scabby tubers of potato (Solanum tuberosum L.)

(Supplementary Figure 1) collected from Mae Fag Mai Sub-

district, San Sai District, Chiang Mai Province, northern Thailand

(18○58’56.3’’N, 98○58’45.8’’E), were washed with running tap

water and then surface sterilized according to the method

described by Kuncharoen et al. (2018) with slight modifications.

Briefly, the scab-infected potato tubers were washed with running

tap water to remove soil particles, soaked in 75% (v/v) ethanol for

1 min, drenched in 1% (v/v) NaOCl for 3 min, rinsed three times in

sterile distilled water, and air-dried in a laminar flow. Single lesions

appearing at the border between healthy and scab tissues of the

surface-sterilized tubers were aseptically cut into small pieces,

homogenized using a sterile mortar with 1 ml of 0.85% (w/v)

NaCl, and incubated in a water bath at 60°C for 10 min to

eliminate any competing rhizobacteria (Fyans et al., 2016). The

homogenate was diluted 100-fold. Subsequently, 0.1 ml was spread

onto 2.5% (w/v) water agar (Arai, 1975) supplemented with 25 µg

nalidixic acid ml−1 and 50 µg cycloheximide ml−1 and then

incubated at 30°C in the dark for 14 days. An interesting colony

of strain MEP2-6T was isolated and purified on International

Streptomyces Project medium 2 (ISP 2) agar (Shirling and

Gottlieb, 1966), maintained on ISP 2 agar slant, stored at −20°C

and −80°C in the ISP 2 broth supplemented with 20% (v/v) glycerol,

and lyophilized for long-term preservation.
Genomic DNA extraction

Genomic DNA of strain MEP2-6T was extracted using the

FavorPrepTM Tissue Genomic DNA Extraction Mini Kit

(Favorgen, Taiwan), according to the manufacturer’s instructions.

DNA quality and quantity were determined using 1% (w/v) agarose

gel electrophoresis and NanoDrop spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA). The purified genomic

DNA was stored at −20°C until use.
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Genome sequencing, assembly,
and annotation

The genome sequence of strain MEP2-6T was successfully

constructed by combining Illumina HiSeq 2,500 paired-end

sequencing (Illumina Inc., San Diego, CA, USA) at Novogene

(Biopolis Way, Singapore) and the GridION sequencer (Oxford

Nanopore Technologies—ONT, UK) at Siriraj Long-read Lab

(Siriraj Medical Research Center, Thailand). The genome

assembly consists of four steps: first, raw Illumina reads were

performed the quality control by removing low-quality sequences

and trimming the adapter and primer sequences using fastp v0.20.0

(Chen et al., 2018), and then evaluated their sequence quality with

FastQC v0.12.0 (https://github.com/s-andrews/FastQC) and

MultiQC v1.17 (Ewels et al., 2016); second, ONT raw signals were

base called and demultiplexed using Guppy v3.4.5 (ONT) with the

use of a specific high-accuracy model (-c dna_r9.4.1_450bps_

hac.cfg) to obtain raw ONT reads; third, the raw ONT long reads

were filtered by their quality and sequence length using the Nanofilt

program (De Coster et al., 2018), and then adapters were trimmed

using Porechop v0.2.4 (https://github.com/rrwick/Porechop).

Finally (step 4), the cleaned short and long sequences were

assembled de novo using SPAdes v3.15.4 (Antipov et al., 2016;

Prjibelski et al., 2020) with a minimum contig size of 500 bps.

The assembled genome of strain MEP2-6T and the publicly

available genome assemblies of the closely related Amycolatopsis

species, as well as an outgroup with validly published names

downloaded from the NCBI database (3 June 2022) using the E-

utilities Command (Kans, 2022), were estimated for genome

completeness and contamination using CheckM v1.1.6 (Parks

et al., 2015). Contiguity and the completeness of universal single-

copy orthologs were assessed using QUAST v5.2.0 (Gurevich et al.,

2013) and BUSCO v5.4.7 (Simão et al., 2015; Manni et al., 2021).

The genome of strain MEP2-6T was annotated using Rapid

Annotation with the Subsystem Technology (RAST) server (Aziz

et al., 2008) using the RASTtk algorithm (Brettin et al., 2015) and

re-annotated according to the NCBI Prokaryotic Genome

Annotation Pipeline (PGAP) (Tatusova et al., 2016). The

genomes of the closest Amycolatopsis species were obtained from

NCBI GenBank and annotated using the RAST server. The

accession no. of the genomes are shown in Table 1.
Analysis of 16S rRNA gene sequence

PCR amplification of the 16S rRNA gene was performed as

described by Suriyachadkun et al. (2009). The purified PCR product

of the 16S rRNA gene was sequenced by Macrogen (Seoul, Republic

of Korea) using universal primers, as previously described by Lane

(1991). The sequence was trimmed manually using the BioEdit

software (Hall, 1999) to obtain an almost complete 16S rRNA gene

sequence (1,407 bp). The sequence was aligned with the sequences

of available valid type strains in the genus Amycolatopsis, and any

sequence similarities on the EzBioCloud server (https://

www.ezbiocloud.net/) were determined (Yoon et al., 2017).
frontiersin.org

https://github.com/s-andrews/FastQC
https://github.com/rrwick/Porechop
https://www.ezbiocloud.net/
https://www.ezbiocloud.net/
https://doi.org/10.3389/fpls.2024.1346574
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wannawong et al. 10.3389/fpls.2024.1346574
16S rRNA gene and genome phylogenies

Phylogenetic trees based on the 16S rRNA gene sequence were

generated using the neighbor-joining (Saitou and Nei, 1987),

maximum-likelihood (Felsenstein, 1981), and maximum-parsimony

(Fitch, 1972) tree-making methods using MEGA X (Kumar et al.,

2018). Evolutionary distance matrices were computed based on

Kimura’s two-parameter model (Kimura, 1980). The confidence of

the tree topologies was statistically evaluated using 1,000 bootstrap

resampling replicates (Felsenstein, 1985).

OrthoFinder v2.5.4 (Emms and Kelly, 2017, 2018, 2019) was

used to construct species phylogeny based on 1,104 orthologs found

in genomes of strain MEP2-6T and its 19 closely related

Amycolatopsis species within an outgroup, Streptomyces scabiei

87.22T. The genome phylogeny was then visualized using the

interactive Tree of Life (iTOL) (Letunic and Bork, 2019) and

further modified using Inkscape (https://inkscape.org/).
Phenotypic characterization

Cell morphology of strain MEP2-6T was observed using

scanning electron microscopy (JEOL, JSM-IT500HR, Tokyo,

Japan) after being grown on yeast malt extract agar (ISP 2) at 30°

C for 21 days. The cultural characteristics of strain MEP2-6T and its

closest type strains were determined after 14 days of incubation at

30°C on various agar media: ISP 2 agar, oatmeal agar (ISP 3),

inorganic salt-starch agar (ISP 4), glycerol-asparagine agar (ISP 5),

peptone-yeast extract iron agar (ISP 6), tyrosine agar (ISP 7), and

nutrient agar (NA) (Shirling and Gottlieb, 1966). The color of the

colonies and diffusible pigments were assigned based on the ISCC-

NBS color system (Kelly, 1964). Growth at different temperatures

(15°C, 25°C, 30°C, 37°C, 45°C, and 50°C) and tolerance levels to

NaCl (1%–10%, w/v) were assessed using ISP 2 agar as the basal

medium, and the effect of pH on growth ranging from 4 to 10 (at

intervals of 1 pH unit) was examined in ISP 2 broth at 30°C for 14

days using the following buffer system: acetate buffer (pH 4–5),

phosphate buffer (pH 6–8), and glycine–sodium hydroxide buffer
Frontiers in Plant Science 04
(pH 9–10). Utilization of carbohydrates as the sole carbon source

was observed using ISP 9 as the basal medium supplemented with a

final concentration of 1% (w/v) of the carbon sources (Shirling and

Gottlieb, 1966). Acid production from carbohydrates was

determined using a basal inorganic nitrogen medium, according

to the method described by Gordon et al. (1974). Starch hydrolysis,

nitrate reduction, milk peptonization, milk coagulation, gelatin

liquefaction, and H2S production were assessed on ISP 4 agar, ISP

8 broth (0.5% peptone, 0.3% beef extract, and 0.1% KNO3, pH 7.0),

10% (w/v) skimmed milk agar, 10% (w/v) skimmed milk broth,

glucose-peptone-gelatin medium (2.0% glucose, 0.5% peptone, and

20% gelatin, pH 7.0), and ISP 6 agar, respectively. Enzymatic

activity was assayed using the API ZYM (bioMérieux)

commercial kit, according to the manufacturer’s instructions.
Chemotaxonomic characterization

Freeze-dried whole cells of strain MEP2-6T and its closest type

strains for chemotaxonomic analyses were obtained after growth in

yeast extract dextrose broth (1% yeast extract, 1% dextrose, pH 7.0)

at 30°C (200 rpm) for 7 days. Isomers of cell wall diaminopimelic

acid (A2pm) and reducing sugars of strain MEP2-6T whole-cell

hydrolysates were determined using thin-layer chromatography

(TLC) (Staneck and Roberts, 1974). The N-acyl group of

muramic acid in the cell wall peptidoglycan of strain MEP2-6T

was examined according to the method described by Uchida and

Aida (1984). The cellular phospholipids of strain MEP2-6T were

extracted and identified using 2-dimensional TLC, as previously

described by Minnikin et al. (1984). Mycolic acid was extracted and

monitored by TLC following the method described by Tomiyasu

(1982). Cellular fatty acid methyl esters of all strains were prepared

according to the method described by Sasser (1990) and analyzed

using gas chromatography (MIDI, Sherlock Microbial Identification

System, TSBA6 Sherlock Version 6.2B, USA). Isoprenoid quinones

were extracted using the method previously employed by Collins

et al. (1977) and were detected by LC-DAD-ESI-MS (AB Sciex,

Framingham, MA, USA) equipped with a CAPCELL CORE C18
TABLE 1 Genome features of strain MEP2-6T and its closest type strains.

Feature 1 2 3 4

Accession no. JAWQJT000000000 JADBEG000000000 RSEC00000000 FNUJ00000000

Genome size (bp) 10,277,369 10,737,921 10,230,128 10,299,026

GC content (mol%) 71.7 71.5 71.8 71.2

Assembly level Scaffold Scaffold Scaffold Scaffold

Number of contigs 4 1 74 31

Total genes 9,374 10,241 9,495 9,894

Protein coding genes 9,261 9,827 9,211 9,732

5S/16S/23S rRNA 3/2/2 2/2/5 5/5/16 5/5/1

tRNAs 50 51 53 52

Total pseudogenes 51 414 202 96
Genomes: 1, Strain MEP2-6T; 2, A. lexingtonensis DSM 44653T; 3, A. eburnea GLM-1T; 4, A. pretoriensis DSM 44654T.
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column (3.0 mm i.d. × 100 mm), OSAKA SODA Co., Ltd., using

methanol–isopropanol (7:3, v/v). Finally, UV detection was

performed at 270 nm wavelength.
Comparative genomic analyses

The genome of strain MEP2-6T was used to determine the

taxonomic parameters between its closely related strains. This

process involved average nucleotide identity based on BLAST

(ANIb) and MUMmer (ANIm), and digital DNA–DNA

hybridization (dDDH) values using JSpeciesWS (Richter et al.,

2016) and the Genome-to-Genome Distance Calculator (GGDC)

3.0, with the recommended formula 2 (Meier-Kolthoff et al., 2013,

2022), respectively, to verify its taxonomic status. OrthoVenn3 (Sun

et al., 2023, https://orthovenn3.bioinfotoolkits.net) was used to

analyze shared and strain-specific orthologous clusters. A cluster

of orthologous genes (COGs) in the unique orthologous cluster was

functionally annotated and identified using eggNOG v5.0 (Huerta-

Cepas et al., 2019), a database of orthology relationships, functional

annotations, and gene evolutionary histories, as well as the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa

et al., 2016), a database resource used to gain an in-depth

understanding of the high-level functions and utilities of the

biological system. AntiSMASH 7.0 (Blin et al., 2023) was used to

identify secondary metabolite biosynthetic gene clusters (smBGCs)

with default settings. Gene clusters with a BLAST identity of >80%

were determined to belong to the same smBGCs. The results were

collected in a presence/absence matrix to establish the number of

genes designed for individual smBGCs in each bacterial strain.

Hierarchical cluster analysis using the DICE coefficient with

Unweighted Pair Group Method with Arithmetic (UPGMA)

mean value was implemented with PAST (Hammer et al., 2001).
Plant-pathogenicity test

Strain MEP2-6T was examined for pathogenicity using the plant

seedling method previously described by Flores-Gonzalez et al.

(2008) and Dees et al. (2013), with slight modifications. Cherry

tomato seeds (Solanum lycopersicum var. cerasiforme) were surface-

disinfected with 6% (v/v) NaOCl for 10 min, rinsed three times with

sterile distilled water, placed on sterile tissue paper, and air-dried

under laminar flow. Subsequently, sterilized seeds were aseptically

placed on an 8-day-old culture of strain MEP2-6T grown on ISP 2

agar medium and incubated at room temperature for 8 days.

Streptomyces scabiei WSLK1-9 and ISP 2 agar plates without

bacteria were used as controls. The appearance of seedlings after

bacterial growth was recorded. The strain was considered

phytopathogenic if the seeds displayed stunting or did not

germinate. This experiment was performed in triplicate. A potato

tuber slice technique was also used to determine the pathogenicity

of strain MEP2-6T following the procedure previously described by

Loria et al. (1995) and Henao et al. (2021), with slight modifications.

The potato tubers cv. Spunta were surface-sterilized in 3% (v/v)

NaOCl for 5 min, rinsed three times with sterile distilled water to
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eliminate the disinfectant, and air-dried under laminar flow. The

surface-sterilized tubers were cut into slices (0.5 cm thick) and

placed on moist sterile membrane filter paper in sterile Petri dishes.

Strain MEP2-6T and S. scabiei WSLK1-9 were grown on ISP2 agar

medium for 8 days at 30°C to produce high mycelia and spore

masses. Agar plugs of the sporulated strain MEP2-6T were flipped

and placed at the center (pith tissue) of potato slices. The agar plugs

of Streptomyces scabiei WSLK1-9 and ISP 2 without bacteria were

used as controls. The moist Petri dishes were incubated in the dark

at 30°C for six days. Each isolate was tested in triplicate.
In planta colonization of Solanum
tuberosum L. cv. Spunta and
microscopic observation

The axillary buds of sprouted potato (S. tuberosum L. cv.

Spunta) were excised and surface sterilized by soaking in 10% and

5% (v/v) NaClO solution for 15 min and 10 min, respectively, and

rinsed twice thoroughly with sterile distilled water to eliminate the

sterilizing agent (Barker, 1953). The sterilized buds were dried in a

flow hood, aseptically cut into small pieces, placed on Murashige–

Skoog agar media supplemented with 0.1% (w/v) activated charcoal

(Murashige and Skoog, 1962; Feyissa et al., 2005), and incubated at

25°C under 1,000 lx illumination using 40-watt TL 33 Philips

fluorescent lamps for 14 days (Roca et al., 1978). The prepared 8-

day-old strain MEP2-6T agar plug was directly applied at the

wounding (pin-prick) stem node site of 14-day-old S. tuberosum

L. cv. Spunta cultures and incubated at 25°C under 1,000 lx

illumination for five days. Colonization was monitored five days

post-inoculation using a bright-field microscopic technique

(Thomas and Reddy, 2013). A ZEISS Axiolab 5 optical

microscope, together with the microscope camera Axiocam 208

color and ZEISS Labscope Imaging App v4.2.1 (Carl Zeiss

Microscopy Deutschland GmbH, Oberkochen, Germany) was

used for bright-field microscopy. Thin stem tissues were prepared

using a free-hand-cut sectioning technique with a fine razor blade.

The tissues were examined after mounting with Shear’s mounting

medium (6.0 g potassium acetate, 120 ml glycerol, 180 ml 95% (v/v)

ethanol, and 300 ml distilled water) on acetone-washed and

autoclaved microscope slides under oil immersion (×100). Images

were captured with the ZEISS Labscope Imaging App and processed

using Adobe Photoshop 2021 v22.5.9.1101 (Adobe Systems Inc.,

San Jose, CA, USA) software.
Determination of extracellular
carbohydrate-degrading
enzyme production

Strain MEP2-6T and its closest strains were investigated for

their production of extracellular carbohydrate-degrading enzymes,

including endoglucanase, chitinase, and pectinase, according to the

method described by Kumla et al. (2020). An agar mycelial plug of

each strain was inoculated into the tested agar media.

Endoglucanase, chitinase, and pectinase production were
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investigated on carboxymethyl cellulose (CMC) agar, colloidal

chitin agar, and pectin agar, respectively. The plates were

incubated at 25°C in the dark for 5 days. Colonies of all strains

were immersed in 1% (w/v) Congo red for 30 min and then rinsed

with 1 MNaCl for 15 min for chitinase and endoglucanase tests. For

the pectinase test, colonies of all strains were immersed in 1% (w/v)

hexadecyltrimethylammonium bromide for 15 min and rinsed with

sterile deionized (DI) water. A positive result for the production of

each enzyme was indicated by the presence of a clear transparent

zone around the colony. Four replicates were performed for

each enzyme.
Results

Sequence analysis and 16S rRNA gene and
genome phylogenies

16S rRNA gene sequence analysis revealed that strain MEP2-6T

(1,407 bp, accession no. OR762507) is a member of the genus

Amycolatopsis, the order Pseudonocardiales, and the family

Pseudonocardiaceae. Sequence analysis revealed that strain MEP2-

6T shared a close relationship with Amycolatopsis lexingtonensis

NRRL B-24131T, A. pretoriensis DSM 44654T, A. kentuckyensis

NRRL B-24129T, A. rifamycinica DSM 46095T, A. tolypomycina

DSM 44544T, and A. eburnea GLM-1T, with sequence similarities

of 99.4% (9 nt difference at 1,400), 99.3% (10 nt difference at 1,401),

99.0% (14 nt difference at 1,400), 99.1% (12 nt difference at 1,400),

99.1% (12 nt difference at 1,400), and 98.9% (15 nt difference at

1,400), respectively. A maximum-likelihood phylogenetic tree based

on the 16S rRNA gene sequence (Figure 1) indicated that strain

MEP2-6T formed a tightly independent cluster with the closest

species, A. lexingtonensis NRRL B-24131T and A. pretoriensis DSM

44654T. The clusters that could be recovered in neighbor-joining and

maximum parsimony trees are presented in Supplementary Figures 2,

3, respectively. Genome phylogeny (Figure 2) suggested that strain

MEP2-6T formed a robustly liberated clade with A. lexingtonensis

DSM 44653T (=NRRL B-24131T) and A. eburnea GLM-1T.

Therefore, based on a combination of sequence analysis, 16S rRNA

gene phylogenetic tree, and phylogenomic tree, A. lexingtonensis

NRRL B-24131T (=JCM 12672T =DSM 44653T), A. pretoriensis

DSM 44654T (=JCM 12673T), and A. eburnea GLM-1T (=TBRC

9315T) were used to further clarify the phenotypic characteristics,

chemotaxonomic properties, and genome comparisons.
Phenotypic characteristics

Strain MEP2-6T produced septal substrate and aerial hyphae

(0.4–0.5 µm × 1.1–1.4 µm in size) that fragmented into rod-like

elements (Figure 3). The strain adequately developed moderate

orange-colored substrate mycelia and pale orange yellow aerial

mycelia on ISP 2 agar medium but did not form aerial hyphae on

ISP 5 and nutrient agar media. Soluble pigments were not observed in

any of the media tested. Strain MEP2-6T also grew well on ISP 2, ISP

3, ISP 4, and ISP 7, whereas it grewmoderately and/or poorly grew on
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ISP 5, ISP 6, and nutrient agar media. The cultural characteristics of

strain MEP2-6T and the phylogenetically related type strains on ISP 2

agar medium are shown in Figure 4, and other media are presented in

Supplementary Table 1, Supplementary Figure 4. Growth occurred at

15°C–37°C (optimum, 30°C), pH 5–9 (optimum, 7), and 1%–4% (w/

v) NaCl. Strain MEP2-6T utilized amygdalin, L-arabinose, D-fructose,

D-galactose, D-glucose, D-melezitose, myo-inositol, L-rhamnose, D-

sucrose, and D-xylose as the sole carbon sources. The strain had the

ability to reduce nitrate, coagulate, and peptonize milk, and to liquefy

gelatin, but did not hydrolyze starch and produce H2S. In the API

ZYM test, it was positive for leucine arylamidase, valine arylamidase,

cystine arylamidase, a-chymotrypsin, and Naphthol-AS-BI-

phosphohydrolase, while acid phosphatase, N-acetyl-b-
glucosaminidase, and a–fucosidase were weakly positive. The

phenotypic properties that distinguished strain MEP2-6T from

other closely related strains are listed in Table 2.
Chemotaxonomy

Strain MEP2-6T comprises meso-diaminopimelic acid as the

diagnostic diamino acid in the cell wall peptidoglycan. Arabinose,

galactose, glucose, and ribose were identified as the diagnostic sugars
FIGURE 1

Maximum-likelihood phylogenetic tree based on the 16S rRNA gene
sequences of strain MEP2-6T and its closely related type strains with
validly published names. Streptomyces scabiei 87.22T was used as
the outgroup. Asterisks and sharps (*, #) indicate that the
corresponding nodes were also recovered in the neighbor-joining
and maximum-parsimony trees, respectively. Bootstrap values
of ≥50% (percentages of 1,000 replications) are shown at branch
nodes Bar, 0.01 substitutions per nucleotide position.
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in the whole-cell hydrolysate. The N-acyl group of muramic acid in

peptidoglycan is acetyl, whereas mycolic acids are absent. The

polar lipid profile consisted of diphosphatidylglycerol (DPG),

phosphatidylglycerol (PG), phosphatidylethanolamine (PE),

hydroxy-phosphatidylethanolamine (OH−PE), an unidentified

aminophospholipid (APL), six unidentified phospholipids

(PL1−PL6), an unidentified glycolipid (GL), and five unidentified

lipids (L1−L5) (Supplementary Figure 5). The major menaquinone in

strain MEP2-6T was MK-9(H6) (90.1%), while MK-9(H4) (9.9%) was

a minor component. The iso-C16:0 (37.9%) and iso-C15:0 (13.7%),

which accounted for >10% of the total fatty acids, were the

predominant cellular fatty acids in the strain profile. Differences in
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the types and quantities of cellular fatty acids of strain MEP2-6T and

its closely related species are presented in Table 3.
Genomic feature and comparison

The genome sequence of strain MEP2-6T was 10,277,369 bp in

size with a GC content of 71.74 mol% (accession no.

JAWQJT000000000). The genomic features of the genome and the

closest species of Amycolatopsis are summarized in Table 1. Pairwise

genome-level comparisons between strain MEP2-6T and its

phylogenetically closest relatives, including ANIb, ANIm, and

dDDH values, were calculated to accurately delineate the species

(Table 4). The strains exhibited 91.7%, 91.8%, and 87% ANIb and

93%, 92.9%, and 86% ANIm toA. lexingtonensisDSM 44653T (=JCM

12672T), A. eburnea GLM-1T (=TBRC 9315T), and A. pretoriensis

DSM 44654T (=JCM 12673T), respectively. The dDDH values for the

comparison of strain MEP2-6T to A. lexingtonensis DSM 44653T, A.

eburnea GLM-1T, and A. pretoriensis DSM 44654T were 49%, 48.8%,

and 35.4%, respectively. Both values were significantly lower than the

threshold values of 95%–96% ANI (Richter and Rosselló-Móra, 2009)

and 70% dDDH (Wayne et al., 1987; Goris et al., 2007), which is

recommended for use in species discrimination. Consequently, strain

MEP2-6T can be officially recognized as a novel species within the

genus Amycolatopsis.

To characterize core and strain-specific genes, orthologous

groups were determined using the translated proteomes of strain

MEP2-6T compared to those of the three closest Amycolatopsis

species: A. lexingtonensis DSM 44653T, A. eburnea GLM-1T, and A.

pretoriensis DSM 44654T (Figure 5). In total, 8,824 orthologous

clusters and 39,478 proteins were identified. The core genome

shared by the four strains was depicted by 6,336 orthologous

clusters. In a pairwise comparison, the largest number of

orthologous clusters was found for A. eburnea GLM-1T/A.

lexingtonensis DSM 44653T (308), followed by strain MEP2-6T/A.

lexingtonensis DSM 44653T (266), A. eburnea GLM-1T/A.

pretoriensis DSM 44654T (212), MEP2-6T/A. pretoriensis DSM

44654T (183), and strain MEP2-6T/A. eburnea GLM-1T (158).

These findings agreed well with the taxonomic position of strain

MEP2-6T in the core phylogenomic tree (Figure 2).

As shown in Figure 5, the number of strain-specific clusters for

each strain was 20 for MEP2-6T, 23 for A. eburnea GLM-1T, 54 for

A. lexingtonensis DSM 44653T, and 54 for A. pretoriensis DSM

44654T. Strain MEP2-6T uniquely contained an orthologous cluster

of the mycothiol biosynthesis process that was not found in the

closest relatives. Functional annotation based on the eggNOG and

KEGG databases revealed that the strain completely contained all

genes encoded for the key enzymes in the biosynthetic pathway of

mycothiol: ino1 (myo-inositol-1-phosphate synthase, EC 5.5.1.4),

mshA (D-inositol-3-phosphate glycosyltransferase, EC 2.4.1.250),

mshB (N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-

glucopyranoside deacetylase, EC 3.5.1.103), mshC (L-cysteine:1D-

myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside ligase,

EC 6.3.1.13), and mshD (mycothiol synthase, EC 2.3.1.189). The

protein sequences of the genes encoding mycothiol biosynthetic

enzymes showed sequence identities ranging from 94.0% to 98.9%
FIGURE 3

Scanning electron micrograph of strain MEP2-6T grown on ISP 2
agar medium at 30°C for 14 days showing the morphology of the
substrate and aerial mycelia. Bar, 2 µm.
FIGURE 2

A core phylogenomic tree based on 1,104 orthologous proteins
illustrates the evolutionary relationship between strain MEP2-6T and
its closely related Amycolatopsis species. Streptomyces scabiei
87.22T was used as the outgroup. The distance matrices between
species are shown at the node.
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to the reference protein based on UniProt BLAST (Coudert et al.,

2023). Proteins with over 90% sequence identity typically share the

same biological processes (Joshi and Xu, 2007). The organization of

the gene cluster and biosynthetic pathways is illustrated in Figure 6.
Predictive functional signatures to live
inside plant

Based on RAST annotation and enzyme prediction by KEGG, a

plant-derived strain MEP2-6T illustrated an important enrichment

of genes related to encoding enzymes for plant-synthesized sugar

interconversions, which were absent in A. eburnea GLM-1T isolated

from arbuscular mycorrhizal fungi and A. lexingtonensis DSM

44653T and A. pretoriensis DSM 44654T isolated from equine

placentas. These genes included galA, xynD, cel74a, cbhA, and

bglB-bglX , which encode a-galactosidase (EC 3.2.1.22),

arabinoxylan arabinofuranohydrolase (EC 3.2.1.55), xyloglucan-

specific exo-b-1,4-glucanase (EC 3.2.1.155), cellulose-1,4-beta-

cellobiosidase (exoglucanases, EC 3.2.1.91), and b-D-glucosidases
(EC 3.2.1.21), respectively. The genes malZ, chiA, and one encoded

maltodextrin glucosidase (EC 3.2.1.20), chitinase (E 3.2.1.14), and

endoglucanase (EC 3.2.1.4), respectively, were found in all strains.

Nonetheless, the gene coding for endoglucanase was over-

represented in strain MEP2-6T with seven copies.

Several transporters of oligo- and monosaccharides were

overexpressed in strain MEP2-6T. ABC transporter genes for

various sugars, such as chitobiose (dasA, dasB, and dasC), raffinose/

stachyose/melibiose (msmE, msmF, msmG, msmX, and msmK),

fructose (frcC, frcB, and frcA), trehalose/maltose (thuE, thuF, and

thuG), and multiple sugars (e.g., malK, sugC, and msiK), were found

to be more than or equal to a two-fold copy among the closest non-

plant-associated Amycolatopsis species. The ABC transporter genes

cebE, cebF, and cebG, which encode the cellobiose transport system,

were only present in strain MEP2-6T. Interestingly, strain MEP2-6T

takes up fructose into the cell via the fructose ABC transport system,

but the three closest species, A. lexingtonensis DSM 44653T, A.

eburnea GLM-1T, and A. pretoriensis DSM 44654T, ingest fructose

into the cells through the phosphotransferase system (PTS) encoded

by four genes: fruA, fruB, fruK, and ptsI. These genes located in the

genome of strain MEP2-6T prove that the strain can import and

utilize various sugars as sole carbon sources.
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The amino acids excreted by the host plant can serve as nitrogen

sources for plant-derived actinobacteria. Genes associated with

isoleucine, leucine, and valine were distributed in both plant-

associated and non-plant-associated actinobacteria. However, it is

fascinating that genes encoding branched-chain amino acid

transporters (livF, livG, livH, and livM) were found to be

overexpressed in strain MEP2-6T, with over two copies per

genome. As an insight into the stress response, all strains

employed a similar system, for instance, glutathione peroxidase

(gpx, EC 1.11.1.9) and superoxide dismutase Fe–Mn family (sod2,

EC 1.15.1.1). Interestingly, only strain MEP2-6T (plant-associated)

contained the superoxide dismutase Cu–Zn family (sod1,

EC:1.15.1.1) and rubredoxin, which are utilized for its ability to

respond to oxidative stress.

Protein secretion plays a crucial role in modulating bacteria–

niche interactions, particularly in the symbiotic (parasitic,

mutualistic, or commensal) colonization of bacteria. In Gram-

positive bacteria, secretion proteins are exported out of the

cytoplasm by the conserved Sec translocase system, twin-arginine

translocation (TAT) system, or, alternately, by the type VII system

(Tseng et al., 2009). The genome of strain MEP2-6T encodes 1,050

(11.3%) secreted proteins involved in several protein secretion

systems (Table 5). The strain comprises all genes responsible for

coding the protein-conducting channel SecYEG, the ATP-dependent

motor protein SecA, and the ancillary membrane protein complex

SecDF, which delivers secretory proteins across the plasma

membrane through the translocase (Lycklama et al., 2012). In

addition, strain MEP2-6T contained all genes, tatA, tatB, and tatC,

which encode twin-arginine translocation proteins that transport

folded proteins across the plasma membrane (Palmer and Berks,

2012) and included four genes as part of the type VII secretion

system: eccB, eccC, eccD, and mycP to promote host colonization.
Diversity of secondary metabolite
biosynthetic gene clusters

The genomes of the strain MEP2-6T and its closest

Amycolatopsis species were evaluated for candidate secondary

metabolite biosynthetic gene clusters (BGCs) using antiSMASH

7.0, a pipeline for secondary metabolite identification. The genome

of S. scabiei 87.22T (accession no. FN554889) was also compared to
frontiersin.or
FIGURE 4

Differential colonial appearances of strain MEP2-6T and its closest type strains grown on ISP 2 agar medium at 30°C for 14 days. Strain: 1, MEP2-6T;
2, Amycolatopsis lexingtonensis JCM 12672T; 3, A. pretoriensis JCM 12673T; 4, A. eburnea TBRC 9315T.
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prove that strain MEP2-6T had no BGCs association in causing scab

disease in potatoes. The number of identified BGCs per species,

based on antiSMASH, ranged from 27 to 33. Strain MEP2-6T

comprised 33 BGCs exhibiting different similarities to gene

clusters, with known functions ranging from 4% to 100%. The
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BGCs that exhibited ≥50% homology to known functional gene

clusters are shown in Table 6. Based on the antiSMASH version 7.0

annotation, S. scabiei 87.22T, which is a well-known causative agent

of potato scab disease, contained BGCs encoded for the phytotoxins

associated with the occurrence of scab lesions on potato tubers,
TABLE 2 Differential phenotypic characteristics between strain MEP2-6T and its closely related strains.

Characteristic 1 2 3 4

Color of aerial mycelia on ISP 2 Pale orange yellow Greenish white Yellowish white Yellowish white

Color of substrate mycelia on ISP 2 Moderate orange Dark yellowish brown Moderate orange yellow Light yellow

Color of soluble pigment in ISP 2 − Very dark red − −

Growth on ISP 5 Medium Good Good Good

Temperature range (°C) 15–37 15–45 15–37 15–45

pH range 5–9 6–9 6–9 4–11

NaCl range % (w/v) 1–4 1–5 1–5 1–5

Utilization of:

Amygdalin + + − −

L-Arabinose + + − +

D-Melezitose w + + +

Acid production from:

D-Sucrose + w + −

D-Xylose − − + +

Coagulation of milk + − − +

Peptonization of milk + + + +

API ZYM

Acid phosphatase w + + −

Alkaline phosphatase − + + −

a-Chymotrypsin + + + −

Cystine arylamidase + w + −

Esterase (C4) − − + −

Esterase Lipase (C8) − − + −

a-Fucosidase w − w +

b-Galactosidase − + + −

a-Glucosidase − − + +

b-Glucosidase − − + +

N-Acetyl-b-Glucosaminidase w + + +

Lipase (C14) − − + −

Leucine arylamidase + + + −

a-Mannosidase − + + +

Naphthol-AS-BI-Phosphohydrolase + − + −

Valine arylamidase + − w −
Strain: 1, MEP2-6T; 2, A. lexingtonensis JCM 12672T; 3, A. pretoriensis JCM 12673T; 4, A. eburnea TBRC 9315T. All data are obtained from this study. +, Positive; −, negative; w, weakly positive.
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including thaxtomin, bottromycin, and concanamycin A

(Supplementary Table 2) (Li et al., 2019a). To prove that strain

MEP2-6T is not a potato scab-causing pathogen, the protein

sequences of the gene clusters responsible for synthesizing

thaxtomin, bottromycin, and concanamycin A from S. scabiei

87.22T were subjected to a BLASTP search against all proteins of

strain MEP2-6T. S. scabiei 87.22T comprised 52, 17, and 54 protein-
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coding genes in the BGCs of thaxtomin, bottromycin, and

concanamycin A, respectively. Strain MEP2-6T contained 7, 2,

and 25 protein-coding genes for the thaxtomins, bottromycin,

and concanamycin A BGCs, respectively. Although protein-

coding genes related to the BGCs of thaxtomin, bottromycin, and

concanamycin A were present, the strain could not produce the

compounds because those of the protein-coding genes were not the

core biosynthetic gene clusters. For instance, two genes clustered in

bottromycin BGC and found in strain MEP2-6T were identified as

btmA. This gene encodes the phosphotransferase system (PTS)

transporter subunits EIIC and IIE (Franz et al., 2021), which are

responsible for selecting and transporting sugar molecules across

the bacterial cytoplasmic membrane (McCoy et al., 2015).

According to the seven protein-coding genes of strain MEP2-6T

that are associated with thaxtomin BGC, two significant genes were

identified as txtD and txtH, which encode nitric oxide synthase and

MbtH family non-ribosomal peptide synthase (NRPS) accessory

proteins, respectively. The txtH gene functions as a chaperone by

promoting proper folding and stimulation of the two crucial NRPS

enzymes encoded by txtA and txtB (Li et al., 2019b). However,

strain MEP2-6T was unable to produce thaxtomin because it had no

txtA, txtB, or txtC, which are the core biosynthetic genes responsible

for catalyzing the conversion of L-tryptophan to thaxtomin

(Jiang et al., 2018). Based on the 25 protein-coding genes of strain

MEP2-6T related to the BGC of concanamycin A, four significantly

encoded type I polyketide synthases and two encoded acyl carrier

proteins (ACP). Nonetheless, it could not produce concanamycin A

because it lacks the core synthesis domains of ketosynthase (KS)

and acyltransferase (AT) (Haydock et al., 2005). Consequently,

based on the analysis of the BGCs, it can be concluded that strain

MEP2-6T is not a phytopathogen, even though it inhabits the scab

lesions of potato.

The distribution of secondary metabolite biosynthetic gene

clusters (BGCs) among the strains in this study is presented in

Figure 7 as hierarchical clusters. Among the four Amycolatopsis

species, the three most frequently presented classes of BGCs encode

genes for the production of type I polyketide synthases (T1PKS),

non-ribosomal peptide synthases (NRPS), and terpenes. It can be

determined that the pattern of BGCs is correlated with species

phylogeny. Strain MEP2-6T, isolated from scab lesions on potato

tubers, shared a monophyletic clade with A. eburnea GLM-1T,

isolated from spores of Funneliformis mosseae RYA08, an

arbuscular mycorrhizal fungus that inhabits Aquilaria crassna

Pierre ex Lec (Chaiya et al., 2019) and a polyphyletic clade with

A. lexingtonensis DSM 44653T isolated from lesions on horse

placentas (Labeda et al., 2003). This phylogenetic cluster was
TABLE 3 Different cellular fatty acid profiles (%) of strain MEP2-6T and
its closely related type strains.

Fatty acid 1 2 3 4

Saturated fatty acid

C14:0 0.5 − − 1.0

C16:0 9.3 11.5 7.2 18.0

C17:0 3.3 4.6 3.7 3.1

C18:0 3.4 5.9 1.7 2.4

Unsaturated fatty acid

C17:1w6c – – 3.7 –

C17:1w8c 1.6 1.3 1.6 0.7

C18:1w9c 0.8 0.7 – –

Saturated branched fatty acids

iso-C14:0 2.0 1.5 2.5 3.2

iso-C15:0 13.7 15.5 16.4 13.3

anteiso-C15:0 2.5 1.6 3.0 2.5

iso-C16:0 37.9 26.7 32.4 37.3

iso-C16:0H 0.5 – – –

anteiso-C16:0 0.7 1.4 0.6 –

iso-C17:0 4.8 5.2 5.6 3.2

iso-C17:0 3-OH – 0.6 – –

anteiso-C17:0 9.0 10.9 10.8 5.8

iso-C18:0 – 0.6 – –

10-Methyl fatty acids

10-methyl C17:0 – 1.1 0.7 –

Summed feature 3a 5.2 5.8 4.7 4.1

Summed feature 9b 2.0 2.2 1.8 1.9
Strain: 1, MEP2-6T; 2, A. lexingtonensis JCM 12672T; 3, A. pretoriensis JCM 12673T; 4,
A. eburnea TBRC 9315T. All data are obtained from this study. The amount of fatty acid less
than 0.5% in all strains was omitted. aC17:0w6c or C16:1w6c, b10-methyl C16:0-, absence.
TABLE 4 ANIb, ANIm, and dDDH values between strain MEP2-6T and its closest Amycolatopsis species.

Query genome Reference
genome

%ANIb %ANIm %dDDH
(formula 2)

Model C.I.

1 2 91.7 93.0 49.0 [46.4%–51.6%]

1 3 91.8 92.9 48.8 [46.2%–51.4%]

1 4 87.0 86.5 35.4 [33.0%–37.9%]
Genomes: 1, Strain MEP2-6T; 2, A. lexingtonensis DSM 44653T; 3, A. eburnea GLM-1T; 4, A. pretoriensis DSM 44654T.
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consistent with the genomic similarity and the core phylogenomic

tree. Although the BGCs seemed to be correlated based on species

phylogeny, some BGCs and their products were different among the

four Amycolatopsis strains; for example, ladderane and thioamitide

BGCs were not found in strain MEP2-6T and A. eburnea GLM-1T

but were present in A. lexingtonensis DSM 44653T and A.

pretoriensis DSM 44654T. Compounds encoded by BGCs (≥50%

homology with known functions) were found in all and/or were

unique in the four Amycolatopsis strains, as shown in Table 7.
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Pathogenicity on plant

A tomato seedling test was conducted to confirm the

pathogenicity of strain MEP2-6T, and the findings are shown in

Supplementary Figure 6. Tomato seeds cultured with strain MEP2-

6T germinated as expected, whereas those cultured with S. scabiei

WSLK1-9 did not germinate. Moreover, the potato tuber slice test

revealed that strain MEP2-6T could not necrotize tissues on potato

tuber slices compared to the control S. scabiei WSLK1-9. Thus, it

can be concluded that strain MEP2-6T is non-phytopathogenic and

unrelated to the cause of potato scab disease.
Endophytic colonization of Solanum
tuberosum L. cv. Spunta by strain MEP2-6T

As strain MEP2-6T encompassed genes related to niche

colonization in its genome, we examined where it enters the

endosphere of S. tuberosum L. cv. Spunta to gain insights into the

endophytic biology of the genus Amycolatopsis. Consequently, we

inoculated mycelia with spore masses of Amycolatopsis strain

MEP2-6T into the wounding stem node site of 14-day-old S.

tuberosum L. cv. Spunta cultures (Figures 8A, B). At 5 days post-

inoculation, the potato culture grew regularly (Figure 8C), and

strain MEP2-6T attached to the stem node in dense white mycelia

(Figure 8D) without damage. Colonized S. tuberosum L. cv. Spunta

stems were then excised using a free-hand-cut technique with a fine

razor blade for sectioning and visualization with high-resolution

bright-field microscopy. The findings showed that strain MEP2-6T
FIGURE 5

Proteome comparison of strain MEP2-6T and closely related type
strains of the genus Amycolatopsis based on OrthoVenn3. An UpSet
plot showed unique and shared orthologous clusters among
species. The left horizontal bar chart depicts the number of
orthologous clusters per species, whereas the right vertical bar chart
illustrates the number of orthologous clusters shared among
the species.
B

A

FIGURE 6

Genomic organization of mycothiol biosynthetic gene cluster (A) and biosynthetic pathway of mycothiol (B) in strain MEP2-6T. The structures were
drawn using the ChemDraw program. Glc-6-P, glucose-6-phosphate; 1L-Ins-1-P-Ins-P, 1L-myo-inositol-1-phosphate; GlcNAc-Ins, 1-O-(2-
acetamido-2-deoxy-a-D-glucopyranosyl)-D-myo-inositol; GlcN-Ins, 1-O-(2-amino-2-deoxy-a-D-glucopyranosyl)-D-myo-inositol; Cys-GlcN-Ins,
1-O-[2-[[(2R)-2-amino-3-mercapto-1-oxopropyl]amino]-2-deoxy-a-D-glucopyranosyl]-D-myo-inositol.
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colonized not only the stem surface but also the internal stem tissue

and, notably, the intracellular space (Figures 8E, F). Incredibly, no

plant cellular membrane separates Amycolatopsis from its

intracellular space.
Production of extracellular carbohydrate-
degrading enzymes

The genomes of strain MEP2-6T and its closest type strains

exhibit many genes encoding enzymes potentially involved in

carbohydrate-degrading enzymes, particularly cellulose-binding

related genes. Genes encoding endoglucanases and chitinases

were observed in strain MEP2-6T and its closest relatives, whereas

cbhA and bglB-bglX encoded exoglucanases and b-D-glucosidases,
respectively, were uniquely detected in strain MEP2-6T. These

results clearly indicate that all strains could hydrolyze cellulose.

Nevertheless, the symbiotic actinobacterium Frankia sp. has
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reduced a set of carbohydrate-degrading enzyme genes in its

genome, especially pectinase (Pujic et al., 2012). Strain MEP2-6T

and its closest neighbors were examined for extracellular

production of endoglucanases, pectinases, and chitinases. All

strains produced endoglucanases by observing the clear

transparent zone on carboxymethyl cellulose (CMC) agar

(Figure 9) but did not produce pectinase and chitinase

(Supplementary Table 3).
Discussion

Recently, the integration of polyphasic taxonomy and genome

sequence-based taxonomy has provided precision, reliability, and

reproducibility for bacterial classification (Nouioui et al., 2018). In the

present study, we unambiguously identified a novel endophytic

actinomycete species, strain MEP2-6T, isolated from scab lesions on

potato tubers. Sequence analysis of the 16S rRNA gene revealed that

strain MEP2-6T belonged to the family Pseudonocardiaceae, order

Pseudonocardiales, class Actinomycetia, and phylum Actinomycetota.

Results from chemotaxonomic characteristics, including a type IV

cell wall, a type A whole-cell sugar pattern (Lechevalier et al., 1971),

and a type PII phospholipid type II (Lechevalier et al., 1977), also

indicated that the strain was a member of the genus Amycolatopsis.

Based on a combination of 16S rRNA gene phylogenetic and core

phylogenomic analyses (Figures 1, 2), strain MEP2-6T distinctly

shared the closest relationship with A. lexingtonensis NRRL B-

24131T (=JCM 12672T =DSM 44653T), A. pretoriensis DSM 44654T

(=JCM 12673T), and A. eburnea GLM-1T (=TBRC 9315T). ANIb,

ANIm, and dDDH values were used to confirm the novelty of strain

MEP2-6T. The values of the two types of ANI and dDDHbetween the

strain and its closest strains (Table 4) were significantly below the cut-

off values recommended for species delineation: <95% for ANIb,

<96% for ANIm (Richter and Rosselló-Móra, 2009), and <70% for

dDDH (Wayne et al., 1987; Goris et al., 2007). Thus, it should be

noted that strain MEP2-6T represents a new species within the genus

Amycolatopsis, for which the name Amycolatopsis solani sp. nov.

was proposed.

In this study, no significant correlation was observed between

genome size and environment. The genome sizes of plant-derived

Amycolatopsis strain MEP2-6T and its closest Amycolatopsis species

were very similar (10.2 Mb ± 0.5 Mb). This finding is in contrast to

that of Kitasatospora sp. SUK42, which occupies the stems of

Antidesma neurocarpum Miq, adapted to an endophytic lifestyle

via genome reduction (Zin et al., 2021). On one hand, the genomic

reduction did not occur in all endophytic actinobacterial genera.

Micromonospora and Streptomyces appeared to have developed so

as to adapt to multiple ecological niches, which could be altered to

larger genomes to shelter different lifestyles (Trujillo et al., 2014;

Quach et al., 2022; Zhou et al., 2023).

Identifying orthologous clusters is crucial for comparative

genomic studies because it allows comparison of evolutionary

relationships between genes across different species (Sun et al.,

2023). This study illustrates the novel strain MEP2-6T and its

closest Amycolatopsis species, which shared 6,336 orthologous

clusters associated with biological, molecular, and cellular functions
TABLE 5 Genes responsible for encoding protein secretion systems
present in the genome of strain MEP2-6T.

Secretion
system

Gene Product

Sec translocase secA Preprotein translocase subunit SecA

secD Preprotein translocase subunit SecD

secE Preprotein translocase subunit SecE

secF Preprotein translocase subunit SecF

secY Preprotein translocase subunit SecY

secG Preprotein translocase subunit SecG

yidC YidC/Oxa1 family membrane
protein insertase

yajC Preprotein translocase subunit YajC

ffh Signal recognition particle subunit SRP54

ftsY Fused signal recognition particle receptor

lspA Signal peptidase II

Twin-
arginine translocation

tatA Sec-independent protein translocase
protein TatA

tatB Sec-independent protein translocase
protein TatB

tatC Sec-independent protein translocase
protein TatC

tatD TatD DNase family protein

Type II (T2SS) tadA TadA family conjugal transfer-
associated ATPase

tadB Tight adherence protein B

Type VII (T7SS) eccB Membrane protein EccB

eccC FtsK/SpoIIIE family protein

eccD Integral membrane protein EccD

mycP S8 family serine peptidase (mycosin-1)
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(Figure 5). Although most of the functions relied on orthologous

clusters that were similar among the strains, the function of the

mycothiol biosynthesis process was unique in strain MEP2-6T. It

effectively comprises all the essential genes in the biosynthetic

pathway of mycothiol (Figure 6). Living within plants of microbial

endophytes often induces stress-responsive genes to generate reactive

oxygen species (ROS) scavengers (Bosamic et al., 2020). Mycothiol

plays a vital role in the detoxification of alkylating agents, reactive

oxygen and nitrogen species, and antibiotics and also acts as a thiol

buffer, which is crucial for maintaining a highly reducing

environment within the cell (Newton et al., 2008). Consequently,

strain MEP2-6T was able to live inside the plant tissues.

Living as a plant endophyte, bacteria must have a genetic system

to utilize plant-synthesized carbohydrates as a nutritional source
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(Fabryová et al., 2018; Jiménez-Gómez et al., 2019). Our study

revealed that the plant-associated actinobacteria strain MEP2-6T

was rich in genes related to encoding plant-synthesized

polysaccharide interconversion enzymes: galA, xynD, cel74a, cbhA,

and bglB-bglX, which are depleted in A. eburnea GLM-1T residing in

arbuscular mycorrhizal fungi, A. lexingtonensis DSM 44653T, and A.

pretoriensis DSM 44654T, occupying the equine placenta. The xynD

gene encodes arabinoxylan arabinofuranohydrolase (EC 3.2.1.55),

which plays a crucial role in the conversion of arabinoxylan to L-

arabinose (Lee et al., 2001). Altogether, cel74a plays a vital role in

encoding xyloglucan-specific exo-b-1,4-glucanase (EC 3.2.1.155),

which is responsible for converting polymeric xyloglucan to

heptasaccharides (Wong et al., 2010). The genome of strain MEP2-

6T uniquely contained the cbhA and bglB-bglX genes encoding
TABLE 6 Distribution of identified biosynthetic gene clusters (≥50% homology with known BGCs) encoding for secondary metabolites in strain
MEP2-6T.

Region BGC Type Position (bp) Most Similar Known Cluster Similaritya Chemical
Class

From To

1 Lanthipeptide-class-iii 816,336 838,879 Ery-9/Ery-6/Ery-8/Ery-7/Ery-5/Ery-4/Ery-
3 (Erythreapeptin)

100 RiPP:
Lanthipeptide

2 Ectoine 2,040,835 2,051,227 Ectoine 100 Other

6 T1PKS 3,332,994 3,459,247 Tetrafibricin 100 Polyketide + Other

7 Thiopeptide,
T1PKS, oligosaccharide

3,755,483 3,879,105 Amycolamycin A/Amycolamycin B 51 Polyketide

11 Terpene 4,502,482 4,522,010 Isorenieratene 71 Terpene

17 NRP-metallophore, NRPS 5,148,968 5,212,319 Scabichelin 80 NRP

23 Betalactone, terpene 6,665,558 6,707,896 2-methylisoborneol 100 Terpene

26 T1PKS 7,394,059 7,582,465 Candicidin 52 NRP + Polyketide

30 NRPS, nucleoside 9,087,404 9,139,570 Detoxin P1/Detoxin P2/Detoxin P3 100 NRPS + Polyketide

31 Terpene 9,554,549 9,573,112 Geosmin 100 Terpene

33 NAPPA 10,223,959 10,257,383 ϵ-Poly-L-lysine 100 NRP
aSimilarity is the fraction of homologous genes in the query and the hit clusters. NAPAA, non-alpha poly-amino acids like ϵ-poly-lysine; Nl-siderophore, NRPS-independent, IucA/IucC-like
siderophores; NRPS, non-ribosomal peptide synthetase; NRPS-like, NRPS-like fragment; PKS-like, other types of polyketide synthase; T1PKS, type I polyketide synthase; T2PKS, type II
polyketide synthase; T3PKS, type III polyketide synthase; hglE-KS, heterocyst glycolipid synthase-like PKS; Other, cluster containing a secondary metabolite-related protein that does not fit into
any other category.
FIGURE 7

Distribution of BGCs across the genome of strain MEP2-6T and its closest relatives. The hierarchical heatmap depicts the number of genes assigned
to the individual smBGCs. Rows were clustered using Euclidean distances. LAP, linear azol(in)e-containing peptides; NAPAA, non-alpha poly-amino
acids such as ϵ-poly-lysine; Nl-siderophore, NRPS-independent, IucA/IucC-like siderophores; NRPS, non-ribosomal peptide synthetase; NRPS-like,
NRPS-like fragment; PKS-like, other types of polyketide synthase; T1PKS, type I polyketide synthase; T2PKS, type II polyketide synthase; T3PKS, type
III polyketide synthase; hglE-KS, heterocyst glycolipid synthase-like PKS; Other, cluster containing a secondary metabolite-related protein that does
not fit into any other category.
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exoglucanases and b-D-glucosidases, respectively. These genes are

typically found in endophytic actinomycetes such as Fodinicola

acacia, Frankia sp. (Phạm et al., 2020), and Streptomyces sp. (El-

Gendy et al., 2022). Moreover, the gene encoding endoglucanase (EC

3.2.1.4), which is responsible for randomly cleaving the cellulose

polymer into more petite sugar and oligomeric polysaccharides

(Rahman et al., 2018), was found to be higher in copies of the

strain MEP2-6T than in the closest non-plant-associated

Amycolatopsis species. These findings are in accordance with those

of previous studies, which indicated that Micromonospora lupini

Lupac 08, M. noduli GUI 43, and M. saelicesensis Lupac 09 isolated

from the root nodules of Leguminosae plants as endophytic

actinobacterial models comprised a significant number of

functional genes related to plant polysaccharide-degrading enzymes

(Trujillo et al., 2014; Trujillo et al., 2007; Riesco et al., 2022). Similar

reports have revealed that although plant-derived and non-plant-

derived bacterial genomes differ in the presence and absence of

functional genes associated with carbohydrate degradation, they are

phylogenetically related (Levy et al., 2018; Riesco et al., 2022).

Membrane transport systems are remarkably related to

behavior and are intrinsic for a microbe to survive in a given

environment (Ren and Paulsen, 2007). Numerous oligo- and

monosaccharide transporter systems, including chitobiose,

raffinose/stachyose/melibiose, fructose, trehalose/maltose, and

multiple sugar transporters, were found to be overexpressed in

plant-derived Amycolatopsis MEP2-6T. These results correlate well

with the carbohydrate metabolism of several endophytic bacteria

that requires the introduction of sugars released by plants in the

form of root exudates into cells to serve as carbon sources (Badri

and Vivanco, 2009). Moreover, a recent study showed that several

endophytic and rhizosphere species of the genus Pseudomonas

responded to root exudates by inducing several transport systems

that encode a Major Facilitator Superfamily (MFS) transporter

(Mavrodi et al., 2021). In the present study, the cellobiose

transporter was individually expressed in the plant-derived

Amycolatopsis strain MEP2-6T. This transporter is typically found

in Sinorhizobium and Rhizobium, root nodule endosymbionts (Iyer

et al., 2016). Strain MEP2-6T actively ingested fructose into cells via

the fructose ABC transporter, while the three closest species used

the phosphotransferase system (PTS). This finding is in good

agreement with those of previous studies conducted by Lambert

et al. (2001) and Pinedo and Gage (2009), who reported that the

root nodule, an endosymbiotic Sinorhizobium meliloti, lacked

transport-related PTS proteins necessary for sugar transport and

fructose uptake by the fructose ABC transporter.

Plant-associated and rhizosphere bacteria typically use amino

acids released by plants as carbon and nitrogen sources (Riesco

et al., 2022). In our study, liv genes, encoded as transporters for

branched-chain amino acids were overexpressed in the potato

tuber-associated strain MEP2-6T. Branched-chain amino acids

were identified as key factors in the relationship between bacteria

and Leguminosae plants by serving as nitrogen sources for the

bacteria. Their transporters are necessary to facilitate their

movement across the symbiosomal membrane to make nitrogen

available to the bacteria (Prell et al., 2009). The transporters of

branched-chain amino acids were also abundant in the bacterial
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community of root colonizers in maize and sugarcane, indicating

that the metabolism and transport of amino acids play a critical role

in plant–microbe interactions and are not limited to the symbiosis

between Rhizobium and legumes (de Souza et al., 2019).

As indicated above, in addition to mycothiol, the plant-

associated Amycolatopsis strain MEP2-6T possesses two major

genes, sod1 and sod2, encoded the superoxide dismutase Cu-Zn

family and superoxide dismutase Fe-Mn family, respectively, to

protect itself from reactive oxygen species produced by the plant’s

immune system. This result is in line with that of a previous study,

which revealed that the mutualist endophyte Paraburkholderia

phytofirmans PsJN triggered a weak and temporal defense

reaction with an oxidative eruption, and the bacterium protected

itself by producing superoxide dismutase (Brader et al., 2017). Our

research also revealed that genes encoding rubredoxin were found

only in strain MEP2-6T. This compound is a non-heme iron protein

found in some actinobacterial species of the generaMycobacterium,

Dietzia, and Saccharomonospora, and it plays a critical role in the
Frontiers in Plant Science 15
reduction of superoxide and in the adaptation of plants to changing

environmental conditions (Nie et al., 2014; Sushko et al., 2021).

In Gram-positive bacteria, the cell wall peptidoglycan acts as a

surface structure for transporting and assembling secretory proteins

that interact with the environment, especially the infected host

tissues (Schneewind and Missiakas, 2012). Secretory proteins

associated with host colonization are exported from the

cytoplasmic membrane and interact with the host at the cell wall

via the Sec-dependent pathway, Sec-independent twin-arginine

translocation (TAT) system, or type VII secretion system

(Sutcliffe, 2011). To the best of our knowledge, this is the first

analysis of genes related to host plant colonization of the genus

Amycolatopsis. The Amycolatopsis strain MEP2-6T contains four

pathways to colonize plant tissues: Sec-dependent, Sec-independent

(TAT), T2SS, and T7SS. All genes responsible for encoding

membrane protein channel (secY, secE, and secG), ancillary

proteins (secD, yidC, and yajC), and the ATPase (secA) in the

Sec-dependent pathway were found in the strain MEP2-6T genome
FIGURE 8

Endophytic colonization of Solanum tuberosum L. cv. Spunta by the Amycolatopsis strain MEP2-6T. The potato culture before inoculation of strain
MEP2-6T (A), hyphae with spore masses of strain MEP2-6T inoculated into the stem node wounding site (B), the normal potato culture after
inoculation of strain MEP2-6T for five days (C), attachment of white mycelia of strain MEP2-6T on the stem node (D), sections of S. tuberosum cv.
Spunta stem epidermal cells invaded by Amycolatopsis MEP2-6T (E, F). Scale bar 20 mm. The boxed part of the image is shown as a magnification on
the right side of (E). Red arrows indicate white mycelia in (B, D) and indicate vegetative cells in (E, F).
B C DA

FIGURE 9

Diameter of the clear transparent zone illustrating endoglucanase activity of strain MEP2-6T and its closest type strains. Strain MEP2-6T (A), A. pretoriensis
JCM 12673T (B), A. lexingtonensis JCM 12672T (C), and A. eburnea TBRC 9315T (D). Scale bar 10 mm.
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but lacks secB gene for coding the chaperone that targets proteins to

the Sec translocon for passage via the plasma membrane (Scott and

Barnett, 2006). Although the secB gene was absent in the genome of

the strain, the fused signal recognition particle receptor encoded by

the ftsY gene can guide proteins to the translocon for passage

through the cytoplasmic membrane (Crowther et al., 2012).

Significant genes related to the Sec-independent TAT pathway,

including tatA, tatB, and tatC, were also located in the genome of

Amycolatopsis strain MEP2-6T. Like other actinobacteria (i.e.,

Frankia sp. strain CcI3) and other bacteria (e.g., Vibrio fischeri),

the tatABC operon encodes translocase proteins, which play an

essential role in the excretion of fully folded proteins across the

cytoplasmic membrane via the transmembrane proton gradient as

the main driving force for translocation as well as function for host

symbiotic colonization (Normand et al., 2007; Dunn and Stabb,

2008). Four genes, eccB, eccC, eccD, andmycP, defined as part of the

T7SS, were located in strain MEP2-6T genome (Table 5). These are

organized in the same cluster and involve the crucial proteins for

secreting conserved membrane component proteins EccB, EccC,

EccD, and S8 family serine peptidase (MycP), which were similar to

the T7SS gene cluster of other Gram-positive bacteria:

Mycobacterium, Streptomyces, Micromonospora, Bifidobacterium,

Bacillus, and Streptococcus (Fyans et al., 2013; Houben et al.,

2014; Trujillo et al., 2014; Rivera-Calzada et al., 2021). This

secretion system plays an essential role in promoting the

colonization of niches and host–microbe interactions between

members in Actinobacteria and Firmicutes (Abdallah et al., 2007;

Liu et al., 2023). Two genes, tadA and tadB, in Amycolatopsis strain

MEP2-6T were identified as components of the Type II secretion

system (T2SS), which encodes the TadA family conjugal transfer-

associated ATPase and tight adherence protein B, respectively.

Similar to other members of the phylum Actinobacteria,

Mycobacterium smegmatis, Streptomyces coelicolor, Thermobifida

fusca, and Bifidobacterium breve, these genes are essential for

successful colonization of various environmental niches

(Kachlany et al., 2001; Tomich et al., 2007; O’Connell Motherway

et al., 2011).

The genome sequences of actinomycetes have a much higher

potential for the production of secondary metabolites (Bentley et al.,

2002). Based on our insight into the genome of strain MEP2-6T, we

found fascinating niches of secondary metabolite BGCs, which had

the potential to encode metabolites with five major chemical classes:

PKS, NRPS, hybrid PKS-NRPS, terpene, and saccharide (Table 6).

Moreover, the diversity of compounds encoded by BGCs in each

strain was different (Table 7). Ectoine and scabichelin were

ubiquitously detected in all Amycolatopsis strains in this study.

They play crucial roles in stress protection and iron acquisition

(Jones et al., 2019; Richter et al., 2019). The BGC encoding ϵ-poly-
L-lysine (ϵ-PL) was also present in the genomes of all the strains.

This compound, a homopoly(amino acid) comprised of 25–35 L-

lysine residues with amide linkages formed between the ϵ-amino

and a-carboxy groups, is edible, bacteriostatic and non-toxic to

humans and the environment. Consequently, they have been

extensively used in the food, feed, and pharmaceutical industries

as both food and feed preservatives, dietary agents, and gene/drug/

vaccine carriers (Wang et al., 2021). BGCs coding for tetrafibricin, a
Frontiers in Plant Science 16
fibrinogen receptor antagonist (Kamiyama et al., 1993), and

candicidin, a compound that has the ability to control cucumber

Rhizoctonia rot (Yao et al., 2021) and inhibit some species of

Rhizopus, Mucor, Pythium, Phytophthora, Penicillium, and

Candida (Muller, 1958; Jørgensen et al., 2009), were only found

in strain MEP2-6T. Notably, strain MEP2-6T is a promising

biocontrol agent and candidate with strong potential as a novel

antibiotic producer. Further studies on this strain are recommended

for high-value drug discovery and development.

Secondary metabolite biosynthesis pathways and their

associated gene clusters have been determined based on

predictions drawn from bioinformatic algorithms and can thereby

guide the discovery of interesting compounds (Medema and

Fischbach, 2015). However, little is known about the evolution of

BGCs, as they are correlated with a species source or phylogeny

(Jensen, 2016). According to our work (Figure 6), it can be evidently

observed that the Amycolatopsis strain MEP2-6T and its closest

species exhibited a high similarity in their BGC patterns in the

hierarchical cluster. The distribution patterns of BGCs were

evolutionarily correlated with the species phylogeny. This result is

in line with those of studies conducted by Adamek et al. (2018) and

Chase et al. (2023), who reported that the BGCs distribution

patterns of bacteria were mainly driven by species phylogeny.

Amycolatopsis strain MEP2-6T was isolated from the scab

tissues on the surface of potato tubers, potato tuber slices, and

tomato seedling tests were used to verify its pathogenicity. The

strain did not necrotize potato tissue or inhibit tomato seed

germination (Supplementary Figure 6). This finding is in

accordance with the study conducted by Croce et al. (2021), who

reported that non-pathogenic actinomycetes had no ability to

induce stunting of plant seedlings. At present, evidence suggests

that thaxtomins and other secreted phytotoxins, such as

bottromycin and concanamycin A, play an important role in the

development or severity of potato scab disease rather than other

mechanisms (Li et al., 2019a). The genomes of strains MEP2-6T and

S. scabiei 87.22T were annotated with the antiSMASH 7.0. Protein-

coding sequences of strain MEP2-6T were subjected to a BLASTP

search against the protein sequences of thaxtomin, bottromycin,

and concanamycin A BGCs of S. scabiei 87.22T. Strain MEP2-6T

comprised several protein-coding genes associated with the BGCs

of these compounds, yet they are not the core biosynthetic genes;

therefore, it was unable to produce three significant phytotoxins:

thaxtomin, bottromycin, and concanamycin A (Covington et al.,

2021). Based on a combination of the pathogenicity test on plants

and the analysis of phytotoxin BGCs, strain MEP2-6T can be

regarded as a non-phytopathogenic actinomycete.

Previous studies have revealed colonization of the root surfaces

of Arabidopsis by actinobacteria (Bulgarelli et al., 2012) and

chickpea and sorghum by Amycolatopsis strain BCA-696 (Alekhy

and Gopalakrishnan, 2016). Moreover, it has been reported that

Streptomyces strains LUP30 and LUP47B, isolated from lucerne

plants, can colonize germinating seeds of wheat (Franco et al.,

2017). To the best of our knowledge, the present study is the first to

show the presence of a non-streptomycete, Amycolatopsis, in S.

tuberosum L. cv. Spunta stem epidermis cell. Mycelia appeared

denser on the plant surface than in the endosphere, which may
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reflect different physiological characteristics between life outside

and inside the plant. Amycolatopsis strain MEP2-6T invaded potato

stem epidermis cells through minor wounds and lived in vegetative

mycelial forms without spore formation. Additionally, potato

culture remains asymptomatic. This event agrees with Hallmann

et al. (1997) and Rosenblueth and Martıńez-Romero (2006), who

reported that endophytic bacteria can occupy the plant endosphere

during all or part of their life cycle and do not harm the host plant.

Endophytic bacteria can be classified as obligate or facultative based

on their lifestyle. Obligate endophytes have a complete life cycle in

the host plant, and transmission to other plants occurs either

vertically or by vectors. In contrast, facultative endophytes have a

biphasic life cycle that alternates between plants and soils (Hardoim

et al., 2008). Therefore, based on life strategies, Amycolatopsis strain

MEP2-6T can be assumed to be a facultative endophyte.

Most bacterial endophytes can produce and secrete

carbohydrate-degrading enzymes, especially those that are active

against cellulose and pectin, to locally disrupt the plant cell wall,

facilitate colonization, and spread to other plant parts (Pinski et al.,

2019). Based on these results, the strain MEP2-6T and its closest

relatives can produce endoglucanase. This enzyme randomly cleaves

cellulose polymer into more petite sugars and oligomeric

polysaccharides (Menéndez et al., 2015; Rahman et al., 2018).

However, no pectinolytic activity was observed. Similar to the

findings of the genome analysis, the genes encoding endoglucanase

enzymes were present in all strains, while genes related to pectinase

production were absent. Although endophytic bacteria colonize host

plants via wounds and natural openings such as the stomata and

lenticels, endoglucanase activity helps them to colonize successfully;

for example, the endophytic Azoarcus sp. The BH72 mutant, lacking

endoglucanase activity, had a decreased capability to colonize rice

roots and could not spread to the plant’s aboveground compartments

(Reinhold-Hurek et al., 2006). Endoglucanase activity was also found

in plant-symbiotic actinomycetes, Frankia AcN14a, Frankia Ar112.2

(Igual et al., 2001), and other facultative endophytic actinomycetes,

Micromonospora lupini Lupac 08 (Trujillo et al., 2014), and

Streptomyces endus OsiSh-2 (Xu et al., 2017). Strain MEP2-6T and

its closest neighbors had no chitinase activity, even though their

genomes included the chitinase gene. This phenotype was similar to

that of Bacillus licheniformisN1, DSM13, and ATCC 14580, in which

the chitinase gene in their genomes was silent. This event may be

caused by an inactive promoter of the chitinase gene in organisms

(Lee et al., 2009).

Here, we report that the potato tuber-derived actinomycete strain

MEP2-6T is a novel species of the genus Amycolatopsis, whose name

was proposed to be Amycolatopsis solani sp. nov., and the type of

strain is MEP2-6T. Comparative genomics reliably provides a better

understanding of the underlying genetic mechanisms of the

adaptation of Amycolatopsis solani MEP2-6T to endophytic

lifestyles. Comparative smBGCs exhibited a fascinating genetic

potential to synthesize different chemical classes of bioactive

secondary metabolites and undoubtedly indicated that the

distribution patterns of smBGCs are mainly related to species

phylogeny. Moreover, strain MEP2-6T can produce endoglucanase,

which is an important enzyme in plant-based biofuels and food-feed

industries (Behera et al., 2017), and is also a critical enzyme that
Frontiers in Plant Science 17
inhibits Phytophthora infestans, a causative agent of potato late blight

disease (Zhang et al., 2023). Thus, we suggest that A. solaniMEP2-6T

could be further investigated as a promising candidate for the

discovery of novel bioactive compounds, biotechnological

applications, and potato probiotics.
Description of Amycolatopsis solani
sp. nov.

Amycolatopsis solani (so.la′ni. L. gen. n. solani of Solanum, the

generic name of potato).

A gram-positive, aerobic, mesophilic endophytic actinomycete

produced septal substrate and aerial mycelia that fragmented into

rod-like elements (0.4–0.5 µm × 1.1–1.4 µm in size). Moderate orange-

colored substrate mycelia and pale orange yellow aerial mycelia were

well-developed on ISP 2 agar medium. Diffusible pigments were not

produced in any of the agar media. Good growth on ISP 2, ISP 3, ISP 4,

and ISP 7; moderate growth on ISP 5 and ISP 6; poor growth on

nutrient agar medium. Growth occurred at 15°C–37°C (optimal at

30° C), pH 5–9 (optimal at 7) and was tolerated up to 4% (w/v) NaCl.

Amygdalin, L-arabinose, D-fructose, D-galactose, D-glucose,

D-melezitose, myo-inositol, L-rhamnose, D-sucrose, and D-xylose

were used as sole carbon sources. The acids were produced only

from D-sucrose. Coagulation and peptonization of milk, nitrate

reduction, and gelatin liquefaction were all positive. Starch hydrolysis

and H2S production tests were negative. Importantly, a-chymotrypsin,

cystine arylamidase, leucine arylamidase, naphthol-AS-BI-

phosphohydrolase, and valine arylamidase were positive, whereas

acid phosphatase, a-fucosidase, and N-acetyl-b-glucosaminidase were

weakly positive. Tests for alkaline phosphatase, esterase (C4), esterase

lipase (C8), a-glucosidase, a-mannosidase, trypsin, a-galactosidase,
b-galactosidase, b-glucosidase, b-glucuronidase, and lipase (C14) were

negative. Cell wall peptidoglycan is composed ofmeso-diaminopimelic.

Whole-cell sugars include arabinose, galactose, glucose, and ribose.

The N-acyl group of muramic acid in peptidoglycan is an

acetyl group. No mycolic acid was detected. The polar lipid

profile consists of diphosphatidylglycerol, phosphatidylglycerol,

phosphatidylethanolamine, hydroxyphosphatidylethanolamine, an

unidentified aminophospholipid, six unidentified phospholipids, an

unidentified glycolipid, and five unidentified lipids. MK-9(H6) and

MK-9(H4) are the major and minor menaquinones, respectively. The

predominant fatty acids are iso-C16:0 and iso-C15:0.

The type of strain, MEP2-6T (=JCM 36309T =TBRC

17632T =NBRC 116395T), was isolated from single lesions at the

borders between healthy and scab tissues of surface-sterilized potato

tubers collected from Chiang Mai Province, Thailand. The DNA G

+ C content of the type strain calculated from the genome sequence

was 71.7 mol%.
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Martıńez-Molina, E. (2001). Cellulase isoenzyme profiles in Frankia strains belonging
to different cross-inoculation groups. Plant Soil 229, 35–39. doi: 10.1023/
A:1004835313723

Iyer, B., Rajput, M. S., Jog, R., Joshi, E., Bharwad, K., and Rajkumar, S. (2016).
Organic acid mediated repression of sugar utilization in rhizobia. Microbiol. Res. 192,
211–220. doi: 10.1016/j.micres.2016.07.006

Jensen, P. R. (2016). Natural products and the gene cluster revolution. Trends
Microbiol. 24, 968–977. doi: 10.1016/j.tim.2016.07.006

Jiang, G., Zhang, Y., Powell, M. M., Zhang, P., Zuo, R., Zhang, Y., et al. (2018). High-
yield production of herbicidal thaxtomins and thaxtomin analogs in a nonpathogenic
Streptomyces strain. Appl. Environ. Microbiol. 84, e00164–e00118. doi: 10.1128/
AEM.00164-18
frontiersin.org

https://doi.org/10.1146/annurev-phyto-080516-035641
https://doi.org/10.1146/annurev-phyto-080516-035641
https://doi.org/10.1038/srep08365
https://doi.org/10.1038/nature11336
https://doi.org/10.1099/ijs.0.042770-0
https://doi.org/10.1099/ijsem.0.003669
https://doi.org/10.1099/ijsem.0.003669
https://doi.org/10.1038/s41396-023-01410-3
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1099/00221287-100-2-221
https://doi.org/10.1093/bioinformatics/btac793
https://doi.org/10.1146/annurev-biochem-081420-102432
https://doi.org/10.3389/fmicb.2021.643792
https://doi.org/10.1177/1087057111431606
https://doi.org/10.1093/bioinformatics/bty149
https://doi.org/10.1111/j.1365-3059.2012.02619.x
https://doi.org/10.3389/fmicb.2019.01779
https://doi.org/10.3389/fmicb.2019.01779
https://doi.org/10.1099/ijs.0.022699-0
https://doi.org/10.1099/ijs.0.022699-0
https://doi.org/10.1111/fml.2008.279.issue-2
https://doi.org/10.1007/s10123-021-00204-x
https://doi.org/10.1007/s10123-021-00204-x
https://doi.org/10.1016/S0723-2020(88)80047-X
https://doi.org/10.1093/molbev/msx259
https://doi.org/10.1101/267914
https://doi.org/10.1186/s13059-019-1832-y
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1016/j.scitotenv.2017.11.074
https://doi.org/10.1007/BF01734359
https://doi.org/10.2307/2408678
https://doi.org/10.1007/s11240-004-9157-1
https://doi.org/10.1007/s11240-004-9157-1
https://doi.org/10.1093/sysbio/20.4.406
https://doi.org/10.1111/j.1365-3059.2007.01734.x
https://doi.org/10.1128/genomeA.00556-17
https://doi.org/10.1039/D0NP00097C
https://doi.org/10.1039/D0NP00097C
https://doi.org/10.1111/j.1364-3703.2012.00835.x
https://doi.org/10.1111/j.1364-3703.2012.00835.x
https://doi.org/10.1094/PHYTO-05-15-0125-R
https://doi.org/10.1094/PHYTO-05-15-0125-R
https://doi.org/10.1099/ijs.0.64483-0
https://doi.org/10.1099/ijs.0.64483-0
https://doi.org/10.1099/00207713-24-1-54
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1139/m97-131
https://doi.org/10.1139/m97-131
https://doi.org/10.1016/j.tim.2008.07.008
https://doi.org/10.1099/mic.0.28194-0
https://doi.org/10.1111/ppa.13485
https://doi.org/10.1016/j.bbamcr.2013.11.003
https://doi.org/10.1016/j.bbamcr.2013.11.003
https://doi.org/10.1099/ijs.0.02685-0
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1023/A:1004835313723
https://doi.org/10.1023/A:1004835313723
https://doi.org/10.1016/j.micres.2016.07.006
https://doi.org/10.1016/j.tim.2016.07.006
https://doi.org/10.1128/AEM.00164-18
https://doi.org/10.1128/AEM.00164-18
https://doi.org/10.3389/fpls.2024.1346574
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wannawong et al. 10.3389/fpls.2024.1346574
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Lectin genes in the Frankia alni genome. Arch. Microbiol. 194, 47–56. doi: 10.1007/
s00203-011-0770-1

Quach, N. T., Vu, T. H. N., Bui, T. L., Le, T. T. X., Nguyen, T. T. A., Cuong, C., et al.
(2022). Genomic and physiological traits provide insights into ecological niche
adaptations of mangrove endophytic Streptomyces parvulus VCCM 22513. Ann.
Microbiol. 72, 27. doi: 10.1186/s13213-022-01684-6

Rahman, M. S., Fernando, S., Ross, B., Wu, J., and Qin, W. (2018). Endoglucanase (EG)
activity assays. Methods Mol. Biol. 1796, 169–183. doi: 10.1007/978-1-4939-7877-9_13

Reinhold-Hurek, B., Maes, T., Gemmer, S., Van Montagu, M., and Hurek, T. (2006).
An endoglucanase is involved in infection of rice roots by the not-cellulose-
metabolizing endophyte Azoarcus sp. strain BH72. Mol. Plant Microbe Interact. 19,
181–188. doi: 10.1094/MPMI-19-0181

Ren, Q., and Paulsen, I. T. (2007). Large-scale comparative genomic analyses of
cytoplasmic membrane transport systems in prokaryotes. J. Mol. Microbiol. Biotechnol.
12, 165–179. doi: 10.1159/000099639

Richter, A. A., Mais, C.-N., Czech, L., Geyer, K., Hoeppner, A., Smits, S. H. J., et al.
(2019). Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry
of the transaminase EctB. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.02811
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