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Introduction: The genus Sanicula L. is a taxonomically complicated taxa within

Apiaceae, as its high variability in morphology. Although taxonomists have

performed several taxonomic revisions for this genus, the interspecific

relationships and species boundaries have not been satisfactorily resolved,

especially for those endemic to China. This study mainly focused on S. giraldii

var. ovicalycina, S. tienmuensis var. pauciflora, and S. orthacantha var. stolonifera

and also described two new members of the genus.

Methods: We newly sequenced sixteen plastomes from nine Sanicula species.

Combined with eleven plastomes previously reported by us and one plastome

downloaded, we performed a comprehensively plastid phylogenomics analysis

of 21 Sanicula taxa.

Results and Discussion: The comparative results showed that 21 Sanicula

plastomes in their structure and features were highly conserved and further

justified that two new species were indeed members of Sanicula. Nevertheless,

eleven mutation hotspot regions were still identified. Phylogenetic analyses

based on plastome data and the ITS sequences strongly supported that these

three varieties were clearly distant from three type varieties. The results implied

that these three varieties should be considered as three independent species,

which were further justified by their multiple morphological characters.

Therefore, revising these three varieties into three independent species was

reasonable and convincing. Moreover, we also identified and described two new

Sanicula species (S. hanyuanensis and S. langaoensis) from Sichuan and Shanxi,

China, respectively. Based on their distinct morphological characteristics and

molecular phylogenetic analysis, two new species were included in Sanicula. In
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summary, our study impelled the revisions of Sanicula members and improved

the taxonomic system of the genus.
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1 Introduction
Sanicula L. is a distinctive genus of Apiaceae subfamily

Saniculoideae with high medicinal value (Pryer and Phillippe,

1989). The genus comprises approximately 45 species that are

widely distributed from East Asia to North America, with China

and North America as two diversification centers (Van et al., 2013;

Li et al., 2023). Among them, nineteen species and five varieties are

distributed in China and eleven species and five varieties are

endemic (Sheh and Phillippe, 2005; Pimenov, 2017; Xie et al.,

2019; Li et al., 2023; Song et al., 2024). The most distinctive

characteristic features of the genus are the fruits (mericarps)

covered with scales, bristles, or hooked prickles, a rather

prominent and persistent calyx, and two persistent styles that can

easily distinguish it from other genera of Apiaceae (Pryer and

Phillippe, 1989; Calviño and Downie, 2007). Published studies

illustrated that Sanicula was closely related to the genus Eryngium

L. However, Eryngium has its distinctive morphological features,

such as capitate inflorescences and single bract per flower, which is

easily distinguished from Sanicula (Vargas et al., 1998; Valiejo-

Roman et al., 2002; Calviño and Downie, 2007; Calviño et al., 2008).

Traditionally, plant taxonomists tended to study the genus based on

morphological characteristics and to divide the genus into more

smaller classification units, whereas many members of the genus

always exhibited varied morphological features in rhizomes, foliage,

flowers, and fruits (Shan and Constance, 1951), which have resulted

in massive disagreements over classification system (De Candolle,

1830; Drude, 1898; Wolff, 1913; Shan and Constance, 1951). In

addition, species relationships and species identification in the

genus were also blurred, largely due to phenotypic plasticity or

the lack of taxonomically robust morphological characters at the

species level (Pryer and Phillippe, 1989; Vargas et al., 1999; Calviño

and Downie, 2007; Pimenov, 2017; Li and Song, 2022; Li et al.,

2022). For example, Li et al. (2022) found that S. pengshuiensisM. L.

Sheh & Z. Y. Liu and S. lamelligera Hance were similar in overall

morphology and thus treated the former as a synonymy of the latter.

Furthermore, the misidentification of species and misuse of species

names occurred frequently due to the various morphological

features within species, such as S. chinensis Bunge and S.

orthacantha S. Moore, as well as S. caerulescens Franch. and S.

lamelligera Hance (Chen, 2019), which made it difficult to identify

species accurately. Therefore, the revisions for species of this genus,
02
traditionally recognized by morphological features, are necessary

and urgent.

A robust phylogenetic framework could provide a valuable

information to aid the taxonomic revision of Sanicula. In most

angiosperms, plastids are usually considered to be inherited from

the maternal parent and have low nucleotide substitution rates

(Wicke et al., 2011; Wataru and Tsuneaki, 2023). Thus, the plastid

genomes (plastomes) have been widely and successfully used for

plant phylogenetic analyses (Duminil et al., 2012; Miller et al., 2014;

Razafimandimbison et al., 2014; Zhang et al., 2018; Schneider et al.,

2021; Xu and Hong., 2021; Ji et al., 2022; Scatigna et al., 2022; Xiang

et al., 2022; Baldwin et al., 2023; Fu et al., 2023), especially for those

taxonomically controversial taxa within the family Apiaceae (Gou

et al., 2020; Ren et al., 2020, 2022; Cai et al., 2022; Liu et al., 2022;

Guo et al., 2023; Liu et al., 2023a; Lei et al., 2022; Gui et al., 2023;

Peng et al., 2023; Qin et al., 2023; Song et al., 2023; Tian et al., 2023;

Song et al., 2024). For example, Song et al. (2023) transferred

Peucedanum franchetii C.Y.Wu & F.T.Pu under the genus

Ligusticopsis Leute based on phylogenetic analysis of ten

plastomes. Gui et al. (2023) investigated the divergence and

morphological evolution of alpine Tongoloa H. Wolff using 27

plastomes and nuclear ribosomal DNA (nrDNA). Guo et al.

(2023) reinterpreted the phylogenetic position and taxonomic

revision of the genus Pterocyclus Klotzsch (Apiaceae, Apioideae)

based on 105 complete plastomes, combined with nrITS and

morphological evidence. Therefore, plastomes also provided a

promising window for studying the genus Sanicula. In the

previously published studies (Yang et al., 2022; Li et al., 2023;

Song et al., 2024), researchers have used the plastomes data to

investigate the phylogenetic positions of Sanicula members, which

has significantly improved our understanding of this taxonomically

confused group. However, sampling of this genus was limited and

the interspecific relationships of some members were still unclear,

such as S. giraldiiH.Wolff and S. giraldii var. ovicalycina R. H. Shan

& S. L. Liou, S. tienmuensis R. H. Shan & Constance and S.

tienmuensis var. pauciflora R. H. Shan & F. T. Pu, and S.

orthacantha S. Moore and S. orthacantha var. stolonifera R. H.

Shan & S. L. Liou.

Therefore, this study mainly focused on three Sanicula varieties:

S. giraldii var. ovicalycina, S. tienmuensis var. pauciflora, and S.

orthacantha var. stolonifera. These three varieties are endemic to

China. Shan (1943) described a new species (S. subgiraldii R. H.

Shan) of the genus. Later, Shan and Liou (1979) also described a
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new species in Nanchuan, Chongqing, China, which grows on

shady woods or grassy places on mountain slopes at an altitude

of 1,300 m–1,600 m. They observed that this species was very

similar to S. giraldii, but the fertile flowers of the species were

usually fewer than in S. giraldii (one to three per umbellule vs. three

per umbellule), with characteristics of broadly ovate calyx teeth,

larger size, and oblong fruit, hence they regarded this species as a

variety of S. giraldii (Figure 1A) and named it as S. giraldii var.

ovicalycina (Figure 1B). Pimenov (2017) treated S. subgiraldii as a

synonym of S. giraldii var. ovicalycina based on reviews of the type

specimens and morphological evidence. So far, this variety name

was accepted and all authors agreed with this treatment by Shan and

Liou (1979). The other variety is S. tienmuensis var. pauciflora

described by Shan and Pu (1989). This variety was a narrowly

circumscribed species, only occurring in Luding, Sichuan, China. It

grows on the edge of ditches or under the forest with an altitude of

2,200 m. Sanicula tienmuensis var. pauciflora (Figure 1D) is

considered to be a variety of S. tienmuensis (Figure 1C), mainly

because it has fewer staminate flowers (two or three per umbellule),

whereas S. tienmuensis has more staminate flowers (five or six per

umbellule) (Shan and Pu, 1989). The remaining one variety is S.

orthacantha var. stolonifera (Figure 1F), which was described as a

variety of S. orthacantha S. Moore (Figure 1E) (Shan and Liou,
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1979). This variety grows on mountain top with an altitude of 2,300

m–2,450 m in Emei Shan, Sichuan, China. It can be distinguished

from S. orthacantha by its thin rhizome and elongate stoloniferous

nodes (vs. thick, oblique rootstock bearing elongated, fibrous roots)

and ovate calyx teeth, ca. 1 mm long and 0.5 mm wide (vs. narrowly

lanceolate, acute, ca. 1 mm long, 0.1 mm wide) (Li and Song, 2022).

Sheh and Phillippe (2005) also recognized this variety and stated

that the rhizome with long and distinct nodes was its distinctive

character. However, after critical examination of type specimen and

careful observation in the field, we found that these three varieties

were not similar to their type varieties, especially in fruit

morphology (Figure 1). Therefore, we suggested that the

taxonomic positions of S. giraldii var. ovicalycina, S. tienmuensis

var. pauciflora, and S. orthacantha var. stolonifera need to be

re-evaluated.

In addition, during two field botanical surveys of Apiaceae in July

to September 2022 and March to June 2023, we (I and my colleagues

Chang-Kun Liu, Ting Ren, Yu-Lin Xiao) collected two interesting

Sanicula species: Sanicula sp. SBN2022073001 (Figure 2) and

Sanicula sp. SBN2023041201 (Figure 3) in Hanyuan Country,

Sichuan Province, and Langao County, Shanxi Province,

respectively. Sanicula sp. SBN2022073001 grows under the mixed

forest or roadsides at an altitude of 2,000 m–2,100 m. Sanicula sp.
FIGURE 1

Illustrations of three varieties and three type varieties. (A) S. giraldii; (B) S. giraldii var. ovicalycina; (C) S. tienmuensis; (D) S. tienmuensis var.
pauciflora; (E) S. orthacantha; (F) S. orthacantha var. stolonifera. 1. Plant. 2. Root. 3. Basal leaves. 4–5. Flower. 6. Fruit. 7. Dorsal side views of fruits.
8. Commissural side views of fruits. 9. Transverse section.
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SBN2023041201 grows in stream banks in mixed forests with an

altitude of 1,400–1,500 m. By consulting a large number of specimens

and investigating the morphological and anatomical characters, we

found that both exhibited distinctly different morphological

characters with other species of this genus, including distinct

differences in leaves, inflorescence, peduncle, bracts, bracteoles,

fruit, and calyx teeth. Based on the combination of detailed

morphological features and molecular evidence, we confirmed that
Frontiers in Plant Science 04
these two new species actually represented two hitherto undescribed

species of Sanicula.

In this study, we aim to (1) reveal the plastome features of three

varieties and the two undescribed species of Sanicula; (2) uncover the

phylogenetic positions of these three varieties and the two undescribed

species; and (3) provide a taxonomic revision for these three varieties

and accept two new members of the genus based on comparative

plastome analyses, molecular phylogeny and morphological features.
FIGURE 2

The morphological characters of Sanicula sp. SBN2022073001. (A) Habit. (B) Plant. (C) Root. (D) Stem. (E) Basal leaves. (F) Inflorescence and flower.
(G) Fruit. (H) Cremocarp. (I) Dorsal side views of fruits. (J) Commissural side views of fruits. (K) Transverse section. Scale bars: 0.5 mm (H–K).
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FIGURE 3

The morphological characters of Sanicula sp. SBN2023041201. (A) Habit. (B) Plant. (C) Root. (D) Basal leaves. (E) Inflorescence and flower. (F) Bracts.
(G) Bracteoles. (H) Fruit. (I) Dorsal side views of fruits. (J) Commissural side views of fruits. Scale bars: 0.5 mm (I, J).
Frontiers in Plant Science frontiersin.org05
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2 Materials and methods

2.1 Sample collection, DNA extraction,
sequencing, assembly, and annotation

In this study, we collected sixteen individuals of nine Sanicula

species in the wild and the fresh young basal leaves were

immediately dried and stored with silica gel. All voucher

specimens were deposited in the Sichuan University Herbarium

(SZ) (Chengdu, China) (Supplementary Table 1). Herbarium codes

are based on Index Herbariorum (https://sweetgum.nybg.org/

science/ih/). We used the modified CTAB method (Pahlich and

Gerlitz, 1980) to extract total genomic DNA from silica gel-dried

leaves, which was then used for subsequent sequencing.

Before library preparation, we used agarose gel electrophoresis

to test the quality and quantity of genomic DNA. Then, the DNA

library with an average insert size of 400 bp was constructed using

the TruSeq DNA Sample Preparation Kits (Illumina) referred to the

manufacturer’s protocol (Illumina, San Diego, CA, USA). The DNA

library was sequenced using the Illumina NovaSeq platform at

Shanghai Personal Biotechnology Co., Ltd. (Shanghai, China), with

an average paired-end read length of 150 bp. At least 5 GB of raw

data per species was generated. To obtain high-quality reads, the

software fastP v0.15.0 (-n 10, -q 15) (Chen et al., 2018) was used to

filter raw data. For the yielded high-quality reads, we employed two

methods to assemble the complete plastomes. First, the

GetOrganelle pipeline (Jin et al., 2020) was used to assemble the

sixteen complete plastomes of nine Sanicula taxa, using the

plastome sequence of S. giraldii (OQ612643) as a reference. To

validate the accuracy of plastome assembly, we also assembled the

sixteen plastomes using the NOVOPlasty v2.6.2 program

(Dierckxsens et al., 2017), setting the rbcL sequence extracted

from the plastome of S. giraldii (OQ612643) as the seed. The

complete plastomes were initially annotated by Plastid Genome

Annotator (PGA) (Qu et al., 2019) software, with S. giraldii

(OQ612643) as a reference, and then manually checked and

corrected the start and stop codons and intron positions in

Geneious v9.0.2 (Kearse et al., 2012). Finally, the well-

annotated plastomes were displayed by online program

OrganellarGenomeDRAW (OGDRAW) (Lohse et al., 2007).

In addition, total DNA was also used to amplify the complete

Internal Transcribed Spacers (ITS) region. We employed a 30 mL
amplification system, which included 2 µL extracted total DNA, 10

µL ddH2O, 15 µL Taq MasterMix (CWBio, Beijing, China), 1.5 µL

of 10 pmol µL−1 forward primers (ITS-4: 5′-TCC TCC GCT TAT

TGA TAT GC-3′), and 1.5 µL of 10 pmol µL −1 reverse primers

(ITS-5: 5′-GGA AGT AAA AGT CGT AAC AAG G-3′). The PCR
program of ITS started with an initial denaturation step at 94°C

for 3 min, followed by denaturation step at 94°C for 45 s, 30 cycles

of 45 s at 94°C, annealing at 55°C for 45 s and extension at 72°C

for 45 s, a final extension for 7 min at 72°C, and storage at 4°C

(White et al., 1990). Then, PCR products were sent to Sangon

(Shanghai, China) for sequencing. The software Geneious v9.0.2

(Kearse et al., 2012) was used to assemble and edit the newly

generated ITS sequences and gained consensus sequences. Finally,
Frontiers in Plant Science 06
the sixteen newly sequenced plastome data and 43 newly ITS

sequences were uploaded in NCBI with the GenBank Accession

(OR865876-OR865891) and (OR879918-OR879960), respectively

(Supplementary Table 1).
2.2 Repeat sequence and codon usage

REPuter (Kurtz et al., 2001) was employed to investigate the

repeats that included four types: Palindromic (P), Forward (F),

Reverse (R), and Complementary (C) repeats. We focused on the

repeats with a minimal size of 30 bp, 90% similarity between the two

repeat copies, and hamming distance of 3. Moreover, Perl script

MISA (http://pgrc.ipk-gatersleben.de/misa/) was used to discover

simple sequence repeats (SSRs) in the 21 Sanicula plastomes.

Moreover, the minimum number of repeat units was set to 10, 5,

4, 3, 3, and 3, for mono-, di-, tri-, tetra-, penta-, and

hexanucleotides, respectively.

For codon usage analyses, we extracted the coding sequence

(CDS) from 21 Sanicula plastomes and deleted duplicates. To avoid

sampling bias, we isolated CDSs longer than 300 bp and finally

screened 53 CDSs. Then, these 53 CDSs were concatenated by the

software Geneious v9.0.2 (Kearse et al., 2012) and the codon bias for

each species of Sanicula was analyzed using the CodonW v1.4.2

program (Peden, 1999). Finally, the heatmap of the results were

drawn using R packages “pheatmap” (https://cran.r-project.org/

web/packages/pheatmap/index.html).
2.3 Comparative plastome analyses

We compared the IR length and gene location at the IR/SC

boundaries among the 21 Sanicula plastomes in Geneious v9.0.2

(Kearse et al., 2012). Then, we detected the possible gene

rearrangements using the whole genome alignment tool Mauve

v1.1.3 plugin (Darling et al., 2004) in Geneious v9.0.2 (Kearse et al.,

2012). In addition, we evaluated the degree of variation sequences of

these 21 Sanicula plastomes using the LAGAN model implemented

in the mVISTA (Frazer et al., 2004) tool with default parameters,

setting S. astrantiifolia as the reference. Finally, to further

investigate the hypervariable regions, the protein-coding genes,

the non-coding regions, and the intergenic regions among the 21

Sanicula plastomes were extracted in Geneious v9.0.2 (Kearse et al.,

2012) and aligned with MAFFT v7.221 (Katoh and Standley, 2013).

The alignments with less than 200 bp in length were discarded, and

then we calculated the nucleotide diversity (Pi) employing DnaSP

v5.0 (Librado and Rozas, 2009).
2.4 Phylogenetic analyses

We performed the phylogenetic analyses using two datasets:

dataset 1 was the 60 complete plastomes (16 newly sequenced) and

dataset 2 included 73 ITS sequences (43 newly sequenced and

assembled) (Supplementary Tables 1, 2). Among them, Hedera L.
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species were served as the outgroup referring to a previous study

(Song et al., 2024). Sequences from the two datasets were

respectively aligned using MAFFT v7.221 (Katoh and Standley,

2013) and adjusted manually when necessary. Both identified

matrixes were subjected to Maximum-Likelihood (ML) analyses

and Bayesian Inference (BI). For ML analyses, RAxML v8.2.8

(Stamatakis, 2014) was performed to reconstruct the phylogenetic

trees and estimate the support value (BS) for each node with 1,000

rapid bootstrap replicates and the GTRGAMMAmodel referring to

the RAxML manual. BI analyses were carried out using MrBayes

v3.1.2 (Ronquist and Huelsenbeck, 2012), and the best-fitting

evolutionary model (GTR+I+G) for plastome data and (GTR+G)

for ITS sequences were determined by Modeltest 3.7 (Posada and

Crandall, 1998) based on the Akaike information criterion (AIC).

Two independent Markov chain Monte Carlo (MCMC) runs of 10

million generations were performed with sampling every 1,000

generations. When the average standard deviation of the splitting

frequency fell below 0.01, the MCMC running finished. The initial

25% of trees was discarded as burn-in, and the remaining trees were

used to generate the consensus tree and calculate posterior

probabilities (PP). Finally, the phylogenetic trees were edited and

displayed in FigTree v1.4.2 (Rambaut and Drummond, 2015).
2.5 Morphological observations

The fruit characteristics, as one of the most important

morphological characters in the classification system of the

Apiaceae, have been widely used in taxonomic studies of many

genera of Apiaceae (Xiao et al., 2021; Xu et al., 2021; Cai et al., 2022;

Lei et al., 2022; Qin et al., 2023). In the present study, we collected

mature fruits from eight taxa (three varieties and three type

varieties, and two new species) of Sanicula in the field and fixed

them in formaldehyde–acetic acid–ethanol (FAA) solution. There

were thirty representative fruit samples for each species (ten

individuals from each species, each with three fruits) selected to

observe their morphological characters, and then their overall

structure and anatomy were photographed using a stereo

microscope (SMZ25, Nikon Corp., Tokyo, Japan). The software

MATO (Liu et al., 2023b) was used to measure the thirty

representative fruit samples for each species, and then the average

value was calculated. The terminology followed the reported study

(Kljuykov et al., 2004). Moreover, we also observed other

morphological characters based on extensive documentation,

specimens information, and fieldwork.
3 Results

3.1 Plastome features

In this study, we comprehensively compared the whole

plastomes of 21 Sanicula taxa. The results showed that the size of

21 Sanicula plastomes ranged from 154,500 bp (S. odorata (Raf.)

Pryer & Phillippe) to 155,792 bp (S. giraldii var. ovicalycina)

(Supplementary Table 3). All of them possessed a typical
Frontiers in Plant Science 07
quadripartite structure, including a large single-copy region (LSC:

85,074 bp–86,218 bp), a small single-copy region (SSC: 17,049 bp–

17,118 bp), and a pair of inverted repeat regions (IRs: 26,176 bp–

26,334 bp) (Supplementary Figure 1, Supplementary Table 3). The

total GC content of the 21 Sanicula plastomes was 38.1%–38.2%,

and the GC content in the LSC, SSC, and IR regions was 36.4%–

36.5%, 32 .4%–32.6%, and 42.9%–43.0%, respect ive ly

(Supplementary Table 3). There were 113 unique genes, including

79 protein-coding genes, 30 tRNA genes, and four rRNA genes in

the 21 Sanicula plastomes (Supplementary Table 4).

We investigated the repeat sequences of the 21 Sanicula

plastomes and detected a total of 977 repeats of four types,

containing 482 forward repeats, 478 palindromic repeats, 15

reverse repeats, and two complementary repeats (Supplementary

Figure 2A, Supplementary Table 5). All Sanicula plastomes

possessed forward and palindromic repeats, twelve taxa had the

reverse repeats, and the complementary repeats only occurred in

Sanicula sp. SBN2023041201 and S. odorata (Supplementary

Figure 2A). In addition, six types of SSRs (mono-, di-, tri-, tetra-,

penta-, and hexanucleotide) were identified in the 21 Sanicula

plastomes (Supplementary Figure 2B, Supplementary Table 5).

The total number of SSRs was 1215, of which the most

predominant SSR was mononucleotide (575) and the fewest SSRs

were pentanucleotide (2). The number of SSRs also differed among

the 21 Sanicula plastomes, with S. rugulosa Diels owing the fewest

(54 SSRs) and S. odorata owing the most (64 SSRs) (Supplementary

Figure 2B). It was noteworthy that all Sanicula species detected

mononucleotide-to-tetranucleotide SSRs. Pentanucleotide SSRs

were only found in S. flavovirens Z.H.Chen, D.D. Ma & W. Y.

Xie, and hexanucleotide SSRs were only found in S. hacquetioides

Franch., S. rubriflora F. Schmidt, and S. rugulosa Diels

(Supplementary Figure 2B). Bases A and T occurred more

frequently than bases G and C in all identified SSRs of the 21

Sanicula plastomes (Supplementary Table 5).

The 53 CDSs shared by the 21 Sanicula plastomes were

extracted and connected to analyze the codon usage patterns.

These sequences harbored 21,103–21,205 codons, and the codon

usage bias was similar across all Sanicula plastomes (Supplementary

Table 6). The highest number of codons were used to encode the

Leucine, and the least number of codons were used to encode the

Cysteine. We also found that the relative synonymous codon usage

(RSCU) values of all codons varied from 0.34 to 1.92 in the 21

Sanicula plastomes. Specifically, thirty codons were used frequently

with RSCU greater than 1.00 (Supplementary Figure 3).
3.2 Plastome comparison

The length of the IR region among the 21 Sanicula plastomes

ranged from 26,176 bp (S. odorata) to 26,334 bp (S. rugulosa)

(Supplementary Table 3), and the genes rps19, rpl2, trnH, trnN,

ndhF, and ycf1 were located at the junctions of the IR/SC

boundaries (Supplementary Figure 4). The results showed that 21

Sanicula plastomes were conserved in terms of the gene order and

gene content at the IR/SC borders (Supplementary Figure 4). In

detail, the rps19 gene, crossing the IRa/LSC boundaries, were
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located at the LSC and IRa regions with 221 bp and 58 bp. The IRa/

SSC borders were located between trnN gene and ndhF gene, with

2146 bp–2164 bp and 5 bp–11 bp away from the IRa/LSC borders.

The borders of IRb/SSC were crossed by the ycf1 gene with 3,447

bp–3,479 bp in the SSC region and 1,819 bp–1,837 bp in the IRb

region. In the IRb/LSC borders, all the junctions were within the

genes between rpl2 and trnH with 115 bp–118 bp and 2 bp away

from the IRb/LSC borders (Supplementary Figure 4). Mauve

alignment results demonstrated that the gene order of 21 Sanicula

plastomes were extremely conservative and no rearrangement

occurred in gene organization (Supplementary Figure 5). The

mVISTA program characterized genome divergence, and the

result showed that the whole plastome sequences shared high

similarity among the 21 Sanicula taxa (Supplementary Figure 6).

According to the sequence divergences, eleven mutation

hotspot regions were selected as promising DNA barcodes,

including five coding regions—cemA, rpl22, rbcL, matK, and ycf1
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—which showed the Pi > 0.00458 (Figure 4A, Supplementary

Table 7) and six non-coding regions—ycf4-cemA, trnH-psbA,

trnE-trnT, rbcL-accD, ccsA-ndhD, and trnG-trnR—which showed

the Pi >0.01225 (Figure 4B, Supplementary Table 7). Meanwhile,

the average Pi in the SSC region was higher than that in the IR

region (Figure 4C). We further found that the other genes (OGs)

groups had a higher Pi median value among the functional groups

of all protein-coding genes, whereas genes associated with ATP

synthase (ATP), photosystems I (PSA), and photosystems II (PSB)

had lower Pi median value (Figure 4D).
3.3 Phylogenetic analyses

The length of the alignment matrix for the trimmed plastome

dataset was 161,260 bp, and the length of the ITS sequence matrix

was 593 bp. In our phylogenetic analyses (Figure 5, Supplementary
A

B

DC

FIGURE 4

Comparative analysis of the nucleotide diversity (Pi) values among the 21 Sanicula plastomes. (A) Protein-coding genes. (B) Non-coding and intron
regions. (C) The nucleotide diversity (Pi) in chloroplast regions (IR/SSC/LSC). (D) The nucleotide diversity (Pi) of different functional groups.
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Figure 7), although several conflicts existed between the plastome

phylogenetic tree and the ITS phylogenetic tree, such as Sanicula

sp., SBN2022073001 solely formed a clade in the plastome tree

(Figure 5A), whereas it was sister to S. astrantiifolia in the ITS tree

(Figure 5B), as well as Sanicula sp. SBN2023041201 was resolved as

sister to S. orthacantha + S. lamelligera in the plastome phylogenetic

tree (Figure 5A), whereas it formed a clade with S. elongata, S.

tienmuensis, and S. tienmuensis var. pauciflora in the ITS

phylogenetic trees (Figure 5B); both strongly supported that all

Sanicula species involved in the current study were well clustered

together. The phylogenetic trees also showed that three varieties of

our main focus, S. giraldii var. ovicalycina, S. tienmuensis var.

pauciflora, and S. orthacantha var. stolonifera, were clearly distant

from S. giraldii, S. tienmuensis, and S. orthacantha. In addition, the

accessions of Sanicula sp. SBN2022073001 and Sanicula sp.

SBN2023041201 formed their own clades in both trees (Figure 5,

Supplementary Figure 7).

For plastome trees, the phylogenetic topologies of ML and BI

analyses were highly identical (Figure 5A). The 21 Sanicula

members scattered in two clades: clade I included three species (S.

rubriflora, S. flavovirens, S. chinensis) (PP = 1.00, BS = 100), and the

remainders were placed in clade II (PP = 1.00, BS = 100)

(Figure 5A). In clade II, eighteen Sanicula taxa were divided into

two subclades (PP = 1.00, BS = 100). Among them, S. giraldii was
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located in subclade A and was sister to S. rugulosa + S.

hacquetioides, whereas S. giraldii var. ovicalycina nested in

subclade B and formed a clade with S. pengshuiensis (PP = 1.00,

BS = 100). Sanicula tienmuensis failed to gather with S. tienmuensis

var. pauciflora but formed a separate clade (PP = 1.00, BS = 100).

Instead, S. tienmuensis var. pauciflora was sister to S. oviformis X. T.

Liu & Z. Y. Liu + S. caerulescens Franch. (PP = 0.97, BS = 67).

Sanicula orthacantha was more closely related to the S. lamelligera

(PP = 1.00, BS = 91), whereas S. orthacantha var. stolonifera

clustered with S. orthacantha var. brevispina H. Boissieu and both

formed a separate clade with strong support (PP = 1.00, BS = 100)

and was far from S. orthacantha. As for the two new species,

Sanicula sp. SBN2022073001 formed an individually monophyletic

clade (PP = 1.00, BS = 100) and Sanicula sp. SBN2023041201 made

a sister to S. orthacantha + S. lamelligera (PP = 0.99, BS =

58) (Figure 5A).

The analyses of ML and BI based on ITS sequences also yielded

consistent tree topologies (Figure 5B). Although the phylogenetic

trees have low supports and resolutions, the results also indicated

that S. giraldii var. ovicalycina, S. tienmuensis var. pauciflora, and S.

orthacantha var. stolonifera were also clearly distant from S. giraldii,

S. tienmuensis, and S. orthacantha. In detail, S. giraldii was resolved

as sister to S. rugulosa (PP = 0.91, BS = 55), whereas S. giraldii var.

ovicalycina solely represented a clade with high support (PP = 1.00,
A B

FIGURE 5

Phylogenetic trees constructed by maximum likelihood (ML) and Bayesian inference (BI). The bootstrap values (BS) of ML and posterior probabilities
(PP) of BI are listed at each node. (*) represents the node with PP = 1.00/BS = 100.–means the values < 0.50/50. Light-blue words indicates the
newly sequenced species. (A): Plastome tree; (B): ITS tree.
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BS = 91). Sanicula tienmuensis, S. tienmuensis var. pauciflora,

S. elongata, and Sanicula sp. SBN2023041201 clustered a clade

(PP = 0.73, BS = 82). Sanicula orthacantha still had close affinity to

S. lamelligera (PP = 1.00, BS = 100), whereas S. orthacantha

var. stolonifera formed a separate clade and was distant from

S. orthacantha. For the two new species, Sanicula sp.

SBN2022073001 was sister to S. astrantiifolia (PP = 1.00, BS =

96), and Sanicula sp. SBN2023041201 formed a clade with

S. tienmuensis, S. elongata, and S. tienmuensis var. pauciflora

(PP = 0.73, BS = 82) (Figure 5B).
3.4 Morphological characteristics

Fruits (mericarps) of eight Sanicula taxa were mapped to the

two phylogenetic trees (Figure 5). The detailed information of fruit

anatomical and micromorphological characteristics of the eight

Sanicula species were shown in Table 1. The other morphological

features were also presented in Supplementary Table 8.

The key morphological features of S. giraldii were the fruit

densely covered with developed yellow or purplish red, long and

hard uncinate bristles as well as ovate and small calyx teeth, the tip
Frontiers in Plant Science 10
mucronate (Figures 1A, 5, Table 1); the inflorescence was 2–4-

trichotomously branched. All branches elongate, and the leaf vein

surface was smooth (Figure 1A, Supplementary Table 8). Sanicula

giraldii var. ovicalycina had the unique characteristics of the fruits

rarely covered with purplish red short bristles, proximal end with

tubercles, obscure, distal end with uncinate bristles or straight, calyx

teeth broadly ovate and large (Figures 1B, 5, Table 1), inflorescence

dichotomously cymose-branched, leaf veins distinctly concave in

adaxial surface, distinctly prominent in abaxial surface, gridded

(Figure 1B, Supplementary Table 8).

Sanicula tienmuensis had fruits subglobose, covered with short

and obtuse prickles, slight formed scales and tubercles, calyx teeth

broadly ovate, and vittae obscure (Figures 1C, 5, Table 1). Sanicula

tienmuensis var. pauciflora had fruits long ellipsoid, densely covered

with sharp prickles, calyx teeth long-lanceolate, vittae 2 in

commissural side (Figures 1D, 5, Table 1).

The distinctive features of S. orthacantha were as follows: the

fruit was narrowly ovoid, densely covered with short, straight and

sharp spines, and sometimes the base formed a thin layer, fruit ribs

and furrows spinulose, narrowly lanceolate calyx teeth (Figures 1E,

5, Table 1), the inflorescence was 2-3-branched; umbels 3–8,

sometimes 1 shortened branch between forks or on lateral
TABLE 1 Fruit morphological and anatomical characteristics of nine Sanicula species.

Taxa Shape Fruit surface Calyx teeth Cross section
Endosperm on
commissural

side
Vittae

S. giraldii
Narrowly
ovoid

Densely covered with developed
yellow or purplish red uncinate

bristles, long and hard

Ovate and small,
tip mucronate

Ellipsoid Flat Obscure

S. giraldii
var. ovicalycina

Broadly
ovate

Rarely covered with purplish red
short bristles, proximal end with
tubercles, obscure, distal end with

uncinate bristles or straight

Broadly ovate
and large

Suborbicular Slightly concave Obscure

S. tienmuensis Subglobose
Covered with short and obtuse
prickles, slight formed scales

and tubercles
Broadly ovate Reniform Slightly concave Obscure

S. tienmuensis
var. pauciflora

Long
ellipsoid

Densely covered with sharp prickles Long-lanceolate Suborbicular Flat
Vittae 2 in

commissural side

S. orthacantha
Narrowly
ovoid

Densely covered with short, straight
and sharp spines, and sometimes the
base formed a thin layer, fruit ribs

and furrows spinulose

Narrowly lanceolate Slightly circular Flat Obscure

S. orthacantha
var. stolonifera

Ovoid

Proximal end with degenerated to
disappeared the prickles, nearly

smooth, distal end with prickles and
formed a thin layer

Ovate Reniform Slightly concave Obscure

S. orthacantha
var. brevispina

Oblong
ovoid

to ovoid

Usually with erose-spinulose ribs and
furrows smooth or barely spinulose

Linear to lanceolate / / /

Sanicula
sp.

SBN2022073001

Broadly
ovate

Densely covered with purplish red
uncinate prickles

Lanceolate Elliptical Flat Obscure

Sanicula
sp.

SBN2023041201
Ellipsoid

Proximal end with scalariform
prickles, not acute, distal end with

acute prickles
Narrowly ovate Reniform Slightly concave Obscure
The morphological characteristics of S. orthacantha var. brevispina were based on the study of Li and Song (2022). “/” represented the information was missing.
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branches, its rootstock short, tuberlike, woody, bearing a fascicle of

thinly fibrous roots (Figure 1E, Supplementary Table 8). Sanicula

orthacantha var. stolonifera had the ovoid fruit with proximal

end with degenerated to disappeared the prickles, nearly

smooth, whereas distal end with prickles and formed a thin layer,

ovate calyx teeth, tip sharp (Figures 1F, 5, Table 1), slender,

elongate and lignified nodes stoloniferous rhizomes (Figure 1F,

Supplementary Table 8).

For these two new members, Sanicula sp. SBN2022073001 had

fruits broadly ovate, densely covered with purplish red uncinate

prickles, calyx teeth lanceolate, not covered with prickles, vittae

obscure (Figures 2, 5, Table 1), inflorescence pleiochasium-

branched, 3–6, unequal, bracts small or degraded, bracteoles 2,

opposite, linear–lanceolate (Figure 2, Supplementary Table 8).

Sanicula sp. SBN2023041201 had fruits ellipsoid, proximal end

with scalariform prickles, not acute, distal end with acute prickles,

calyx teeth narrowly ovate (Figures 3, 5, Table 1), inflorescence

dichotomously cymose-branched, extremely shortened peduncle,

staminate flowers 9–10 per umbellule, usually 9 (Figure 3,

Supplementary Table 8).
4 Discussion

4.1 Plastome evolution

The 21 Sanicula plastomes exhibited a typical quadripartite

structure, and they also shared extremely similar genomic size, GC

content, IR borders, the patterns of codon bias and SSR, as well as

identical gene content and order. These findings showed that the 21

Sanicula plastomes were highly conserved. Although the 21

plastomes displayed high similarity, eleven mutation hotspot

regions (cemA, rpl22, rbcL, matK, ycf1, ycf4-cemA, trnH-psbA,

trnE-trnT, rbcL-accD, ccsA-ndhD, and trnG-trnR) were still

identified. Except for three universal DNA barcodes (rbcL, matK,

trnH-psbA) (Richardson et al., 2000; Pridgeon et al., 2001; Muellner

et al., 2003; Nyffeler et al., 2005; Cássio et al., 2009), the remaining

eight fragments could be served as potential DNA barcodes to

discriminate those Sanicula taxa that were difficult to identify by

morphological features, such as S. chinensis and S. orthacantha, as

well as S. caerulescens and S. lamelligera.
4.2 Phylogenetic inference and
taxonomic implication

In the present study, we performed phylogenetic analyses using

complete plastomes and ITS sequences. Unfortunately, the

plastome-based and ITS-based phylogenetic trees yielded

incongruent topologies. The phenomenon of conflict was also

frequently observed in other genera of Apiaceae (Ren et al., 2020;

Cai et al., 2022; Ren et al., 2022; Wen et al., 2021; Gui et al., 2023;

Qin et al., 2023; Song et al., 2023; Tian et al., 2023; Song et al., 2024).

This conflict was likely attributed to the biparental inheritance,

higher mutation rate, and the insufficient sequence length of ITS
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data, whereas plastid DNA was maternal inheritance and has lower

mutation rate (Wolfe et al., 1987; Koch et al., 2001). Moreover, the

hybridization/introgression and incomplete lineage sorting (ILS)

may be responsible for the inconsistent relationships between

plastome-based and ITS-based phylogenies (Wen et al., 2021).

Further study is needed to identify the cause of the nuclear-

plastome conflict in Sanicula. Although the conflicts existed

between the plastome tree and ITS tree, both strongly suggested

that S. giraldii var. ovicalycina, S. tienmuensis var. pauciflora, and S.

orthacantha var. stolonifera were extremely distant from S. giraldii,

S. tienmuensis, and S. orthacantha, respectively, which implied that

these three varieties should be regarded as three independent

species. Moreover, the morphological characteristics of three

varieties also supported the above phylogenetic results.

Furthermore, we also clarified the species relationships with

ambiguous systematic position, such as S. pengshuiensis and S.

lamelligera, and suggested that S. pengshuiensis should be regarded

as an independent species rather than a synonymy of S. lamelligera.

Both phylogenetic analyses (Figure 5) showed that S. giraldii

var. ovicalycina was distant from S. giraldii, which implied that this

variety should not be regarded as a variety but rather as an

independent species. Multiple morphological characteristics also

further supported the above phylogenetic results (Figure 1, Table 1,

Supplementary Table 8). Previously, Shan (1943) described a

species (S. subgiraldii) of the genus based on the nomenclatural

type specimen of S. giraldii var. ovicalycina. Subsequently, Pimenov

(2017) reduced S. subgiraldii to the synonym S. giraldii var.

ovicalycina in his checklist of Chinese Umbelliferae. By

examination of herbarium specimens and observations on living

plants in field, we found that the S. subgiraldii and S. giraldii var.

ovicalycina was identical in morphology, such as the smaller

primary polyphylla, the longer flowering branches and the basally

obsoletely setulous-crenate leaf segments, the fruit was broadly

ovate, vittae obscure. Therefore, according to the International

Code for Nomenclature for plants, we reinstated the independent

specific status of S. subgiraldii and suggested that S. subgiraldii

should be as a legitimately accepted name and treated S. giraldii var.

ovicalycina as a synonym of S. subgiraldii.

Li and Song (2022) found that S. orthacantha var. stolonifera

was identical with S. orthacantha var. brevispina in morphology,

especially in the erose-spinulose ribs and spinulose or smooth

furrows of the fruits and the number of staminate flowers per

umbellule, and thus merged S. orthacantha var. stolonifera into S.

orthacantha var. brevispina. Our plastome evidence and

morphological data also strongly supported this treatment

(Figure 5, Table 1, Supplementary Table 8). Moreover, our

phylogenetic tree showed that S. orthacantha var. brevispina

clustered together with S. orthacantha var. stolonifera and formed

a separate clade, which was distant from S. orthacantha. These

findings indicated that S. orthacantha var. brevispina should also be

considered as an independent species, rather than a variety of S.

orthacantha, which was further verified by morphological evidence

(Figure 1, Table 1, Supplementary Table 8). Therefore, treating S.

orthacantha var. brevispina as an independent species was

reasonable and convincing, and a new independent species of the

genus was presented.
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Phylogenetic analyses based on plastome data and ITS

sequences showed that S. tienmuensis var. pauciflora was clearly

distant from S. tienmuensis (Figure 5), implying that the variety

should not be regarded as a variety, but rather as an independent

species. Moreover, the morphological characteristics also further

supported the above phylogenetic results. For example, the key

morphological features that distinguished S. tienmuensis and S.

tienmuensis var. pauciflora were the calyx teeth and fruit. S.

tienmuensis had broadly ovate calyx teeth; subglobose fruit,

covered with short and obtuse prickles, slight formed scales and

tubercles; endosperm slightly concave on commissural side,

whereas long-lanceolate calyx teeth; long ovate fruit, densely

covered with sharp prickles; flat endosperm on commissural side

were existed in S. tienmuensis var. pauciflora (Figures 1D, E,

Table 1, Supplementary Table 8).

In addition, we also investigated these two undescribed species

(Sanicula sp. SBN2022073001 and Sanicula sp. SBN2023041201).

Both phylogenetic trees firmly supported that the individuals of

Sanicula sp. SBN2022073001 gathered together (Figure 5). In the

plastome tree (Figure 5A), Sanicula sp. SBN2022073001 solely

formed a clade. Although Sanicula sp. SBN2022073001 was sister

to S. astrantiifolia in the ITS tree (Figure 5B), it can be

discriminated from S. astrantiifolia by its unique characters, such

as inflorescence pleiochasium-branched, 3–6, unequal, bracts small

or degraded, bracteoles 2, opposite, linear-lanceolate, umbellules 4–

7-flowered, staminate flowers 3–5 per umbellule, fertile flowers 1–2

per umbellule, pedicels extremely shortened, as long as fertile

flowers (Figure 2, Supplementary Table 8), whereas inflorescence

cymose branched, middle branches shorted, bracts 2, linear-

lanceolate, bracteoles 7–10, midrib distinct, umbellules ca. 10-

flowered, staminate flowers 6–8 per umbellule, pedicels short;

petals greenish white or pinkish, fertile flowers 2 or 3 per

umbellule, sessile were examined in S. astrantiifolia (Shan and

Constance, 1951; Sheh and Phillippe, 2005). Therefore, based on

molecular phylogenetic analyses and morphological characteristics,

we confirmed that Sanicula sp. SBN2022073001 was sufficiently

different from S. astrantiifolia and described it here as a new species,

Sanicula hanyuanensis B.N.Song, C.K.Liu & X.J.He, sp. nov.

The another new species (Sanicula sp. SBN2023041201) was

resolved as sister to S. orthacantha + S. lamelligera in the plastome

phylogenetic tree (Figure 5A), whereas it formed a clade with S.

elongata, S. tienmuensis, and S. tienmuensis var. pauciflora in the

ITS phylogenetic trees (Figure 5B). It noticed that Sanicula sp.

SBN2023041201 can be discriminated from these five Sanicula

species by its clearly different morphological characteristics, such

as inflorescence dichotomously cymose-branched, extremely

shortened peduncle, staminate flowers 9–10 per umbellule,

usually 9, calyx teeth narrowly ovate, fruit long ellipsoid,

proximal end with scalariform prickles, not acute, distal end with

acute prickles (Figure 3, Table 1, Supplementary Table 8). Hence,

there is no doubt that Sanicula sp. SBN2023041201 was also a new

member of Sanicula and we described it here as a new species,

Sanicula langaoensis B.N.Song, T. Ren & X.J.He, sp. nov.
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4.3 Taxonomic treatment

Sanicula subgiraldii R.H.Shan.

≡ Sanicula giraldii H. Wolff var. ovicalycina R.H.Shan &

S.L.Liu, in Shan Renhwa & Sheh Menglan (eds.), Fl. Reipubl.

Popularis Sin. 55(1): 297,1979.

Type: CHINA. “Szechwan, Nanchuan Hsien, 01. 05. 1930,

Chang 277” (holotype NAS!).

Distribution and habitat: This species is endemic to China,

growing in hillside meadows or shaded forests with elevations of

1,300 m−1,935 m.

Additional specimens examined: CHINA. Chongqing, 1,600 m

alt., 4 July 1983, M.L. Shen 83664 (NAS); Sichuan, 1,500 m alt., 19

May 1964, H.F. Zhou & H.Y. Li 108211 (SZ); Chongqing, 26 May

1957, J.H. Xiong & G.F. Li 90990 (SZ); Chongqing, 26 May 1957,

J.H. Xiong 90990 (SZ); Sichuan, 30 June 1964, 90990 (SM); Sichuan,

15 May 1964, M.F. Zhou & S.G. Tang 0055(SM); Chongqing,

1738m a l t . , 7 Ju l y 2022 , B .N . Song and C .K . L iu

SBN2022070702 (SZ).

Sanicula pauciflora (R.H.Shan & F.T.Pu) B.N.Song & X.J.He,

comb. et stat. nov.

≡ Sanicula tienmuensis R.H.Shan & Constance var. pauciflora

R.H.Shan & F.T.Pu, Acta Phytotax. Sin. 27(1): 66,1989.

Type: CHINA. Sichuan: Ludung, alt. 2200 m, under forests or

by streams, 01 May 1984, Li Yongjiang 115 (holotype CDBI!).

Distribution and habitat: This species is endemic to China

(Sichuan, Ludung), occurring in the edge of a ditch or woods in

valleys at an elevation of 2,300 m.

Additional specimens examined: CHINA. Ludung, 1 June 1984,

Y.L.Cao 115 (CDBI); Ludung, 1998 m alt., 22 June 2022, B.N. Song

and Y.L. Xiao SBN2022062201 (SZ).

Sanicula brevispina (H. Boissieu) B.N.Song & X.J.He, comb. et

stat. nov.

≡ Sanicula orthacantha S. Moore var. brevispina H. Boissieu,

Bull. Soc. Bot. France 53: 421, 1906.

Type: CHINA, Sichuan, Emei Shan, E.H. Wilson 7104

(holotype P! – barcode P03226637; isolectotypes BM!, K!).

= Sanicula orthacantha var. stolonifera R.H.Shan & S.L.Liu, in

Fl. Reipubl. Popularis Sin. 55(1): 53, 297,1979.

Type: CHINA, Sichuan, Emei Shan, Jingangzui, 2450 m, 8 May

1957, K.H. Yang 54432 (lectotype NAS00040551, designated by Li

et al., 2022, isolectotype KUN0463177).

Distribution and habitat: This species is endemic to China

(Emei Shan, Sichuan), and it grows on slopes or at forest margins

at altitude of 1,900 m−2,865 m.

Additional specimens examined: CHINA. Sichuan, 27 July 1960,

13155 (SM); Sichuan, 1935, T.H. Tu 231 (PE); Sichuan, 1935, T.H. Tu

55 (PE); Sichuan, 17 July 1930, W.P. Fang 6527 (NAS); Sichuan, 14

July, 1967, 3906 (SM); Sichuan, 20 August 1930, W.P. Fang 8437

(NAS); Sichuan, 29 July 1962, 7558 (SM); Sichuan, 1450 m alt., 4 June

1957, K.H. Yang 55113 (KUN); Sichuan, 22 June 1940, S.L. Sun 2559

(KUN); Sichuan, 12 August, 1935, Y.Y. Ho 5998 (NAS); CHINA.

Sichuan, 9 July 2022, B.N. Song and C.K. Liu SBN2022070901 (SZ).
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Sanicula hanyuanensis B.N.Song, C.K.Liu & X.J.He, sp.

nov. (Figure 2).

Diagnosis: Sanicula hanyuanensis can be identified by the

following morphological features such as inflorescence

pleiochasium-branched, 3–6, unequal, bracts small or degraded,

bracteoles 2, opposite, linear-lanceolate.

Type: CHINA. Sichuan: Hanyuan County, under the mixed forest

or roadsides; 29°22′1.33″N, 102°56′10.4″E; elevation 2092 m, 70 July

2022, SBN2022073001 (holotype: SZ) (Supplementary Figure 8).

Etymology: The species is named after Hanyuan County,

Sichuan Province, China, where it is the type locality.

Description: Perennial herb, plants 40 cm–80 cm high. Taproot

short and stout. Stem 1, erect, branched above, green purplish to

purple. Basal leaves several; petioles 5 cm–16 cm, blade orbicular,

reniform-rounded or broadly cordate, 5–8.5 × 3.5–7 cm, palmately

deeply 3-parted to 5-parted; central segment broadly obovate, 2.5–4

× 1.5–4 cm, distally shallowly 3-lobed, base cuneate, apex obtuse-

rounded; lateral segments rhombic-rounded or broadly obovate,

2.5–3 × 1.5–2 cm, distally shallowly 3-lobed, primary veins 3–5,

prominent on both surfaces. Upper leaves small or degraded.

Inflorescence pleiochasium-branched, 3–6, unequal, 3–16 cm,

bracts small or degraded, bracteoles 2, 0.6–1 × 0.1–0.4 cm,

opposite, linear-lanceolate. Umbellules 4–7-flowered, staminate

flowers 3–5 per umbellule, fertile flowers 1–2 per umbellule,

pedicels extremely shortened, as long as fertile flowers. Calyx

teeth lanceolate, ca. 1 × 0.5 mm; styles ca. 2 mm, recurved. Fruit

broadly ovate, densely covered with purplish red uncinate prickles,

ca. 4–5 × 3–4 mm, densely covered with purple-red uncinate

prickles, vittae obscure. Fl. and fr. Jun–Sep.

Phenology: The flowering and fruiting period is from June

to September.

Distribution and habitat: This species is distributed in Hanyuan

County, Sichuan Province, China, and grows under the mixed forest

or roadsides at an altitude of 2000–2200 m.

Sanicula langaoensis B.N.Song, T. Ren & X.J.He, sp.

nov. (Figure 3).

Diagnosis: Sanicula langaoensis can be identified by the

following morphological features, such as inflorescence

dichotomously cymose-branched, extremely shortened peduncle,

staminate flowers 9–10 per umbellule, usually 9, calyx teeth

narrowly ovate.

Type: CHINA. Shanxi, Langao country, in stream banks in mixed

forests; 32°13′47.88″N, 108°53′45.18″E; elevation 1,496 m, 12 April

2023, SBN2023041201 (holotype: SZ) (Supplementary Figure 9).

Etymology: The species is named after Langao country, Shanxi

Province, China, where it is the type locality.

Description: Perennial herb, plants 15 cm–30 cm high.

Rootstock stout, short, fibrous roots brown and numerous. Stems

2–8, erect or oblique, unbranched. Basal leaves numerous; petioles

8–16 (–25) cm, leaf blade subrounded, round-cordate or

pentagonal, palmately 3–5-parted, margin sharply irregular-

serrate; central segment cuneate-obovate or ovate, 0.8–3.5 × 0.6–

2.5 cm; lateral segments parted nearly to base, 1.5–3 × 1–1.5 cm;

base cuneate, upper leaves undeveloped. Inflorescence extremely

shortened peduncle, ca. 0.5 cm, bracts 2, foliaceous, entire or 2–3-

lobed, ca 2 × 1.5 cm; opposite, umbellules 10–11-flowered,
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staminate flowers 9–10 per umbellule, usually 9, fertile flowers 1

per umbellule. calyx teeth narrowly ovate, ca. 1 × 0.3 mm; styles ca.

2 mm–2.5 mm, recurved. Fruit ellipsoid, ca. 3.5 × 2.5 mm, proximal

end with scalariform prickles, not acute, distal end with acute

prickles. vittae obscure. Fl. and fr. Mar–Jun.

Phenology: The flowering and fruiting period is from March

to June.

Distribution and habitat: This species is distributed in Langao

country, Shanxi Province, China, and grows in stream banks in

mixed forests at an altitude of 1,400 m–1,660 m.
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The RSCU values of 53 protein coding regions for 21 Sanicula plastomes. The

red represents higher RSCU values while the blue indicates lower
RSCU values.
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Comparison of the IR/SC borders across the 21 Sanicula plastomes.

Functional genes and truncated fragments are denoted by colored boxes.
The sizes of gene fragments located at boundaries are indicated by the base

pair lengths.

SUPPLEMENTARY FIGURE 5
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Mauve alignment of 21 Sanicula plastomes. Local collinear blocks within each
alignment are represented by blocks of the same color connected with lines.

SUPPLEMENTARY FIGURE 6

Sequence identity plot comparing the 21 Sanicula plastomes using mVISTA.

The y-axis corresponds to percentage identity (50–100%), while the x-axis
shows the position of each region within the locus. Arrows indicate the

transcription of annotated genes in the reference genome.

SUPPLEMENTARY FIGURE 7

The phylograms constructed by maximum likelihood (ML) and Bayesian
inference (BI). The bootstrap values (BS) of ML and posterior probabilities

(PP) of BI are listed at each node. (*) represents the node with PP=1.00/
BS=100. –means the values < 0.50/50. Light- blue words indicates the newly

sequenced species. (A): Plastome tree; (B): ITS tree.
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Holotype of Sanicula sp. SBN2022073001.
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Holotype of Sanicula sp. SBN2023041201.
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Calviño, C. I., Martıńez, S. G., and Downie, S. R. (2008). Morphology and
biogeography of Apiaceae subfamily Saniculoideae as inferred by phylogenetic
analysis of molecular data. Am. J. Bot. 95, 196–214. doi: 10.3732/ajb.95.2.196
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