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Bi-directional hyperspectral
reconstruction of cherry
tomato: diagnosis of internal
tissues maturation stage
and composition
Renan Tosin1,2, Mario Cunha1,2*, Filipe Monteiro-Silva2,
Filipe Santos2, Teresa Barroso2 and Rui Martins2

1Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of the University
of Porto, Porto, Portugal, 2INESC TEC - Institute for Systems and Computer Engineering, Technology
and Science, Universidade do Porto, Porto, Portugal
Introduction: Precision monitoring maturity in climacteric fruits like tomato is

crucial for minimising losses within the food supply chain and enhancing pre-

and post-harvest production and utilisation.

Objectives: This paper introduces an approach to analyse the precision

maturation of tomato using hyperspectral tomography-like.

Methods: A novel bi-directional spectral reconstruction method is presented,

leveraging visible to near-infrared (Vis-NIR) information gathered from tomato

spectra and their internal tissues (skin, pulp, and seeds). The study, encompassing

118 tomatoes at various maturation stages, employs a multi-block hierarchical

principal component analysis combined with partial least squares for bi-

directional reconstruction. The approach involves predicting internal tissue

spectra by decomposing the overall tomato spectral information, creating a

superset with eight latent variables for each tissue. The reverse process also

utilises eight latent variables for reconstructing skin, pulp, and seed spectral data.

Results: The reconstruction of the tomato spectra presents a mean absolute

percentage error of 30.44 % and 5.37 %, 5.25 % and 6.42 % and Pearson’s

correlation coefficient of 0.85, 0.98, 0.99 and 0.99 for the skin, pulp and seed,

respectively. Quality parameters, including soluble solid content (%), chlorophyll

(a.u.), lycopene (a.u.), and puncture force (N), were assessed and modelled with

PLS with the original and reconstructed datasets, presenting a range of R2 higher

than 0.84 in the reconstructed dataset. An empirical demonstration of the

tomato maturation in the internal tissues revealed the dynamic of the

chlorophyll and lycopene in the different tissues during the maturation process.
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Conclusion: The proposed approach for inner tomato tissue spectral inference is

highly reliable, provides early indications and is easy to operate. This study

highlights the potential of Vis-NIR devices in precision fruit maturation

assessment, surpassing conventional labour-intensive techniques in cost-

effectiveness and efficiency. The implications of this advancement extend to

various agronomic and food chain applications, promising substantial

improvements in monitoring and enhancing fruit quality.
KEYWORDS

fruitmaturation, latent structures, precision agriculture, spectral reconstruction, spectroscopy
GRAPHICAL ABSTRACT
1 Introduction

Tomato is a climacteric fresh fruit composed of multiple tissues

with diverse physical and biochemical compositions relevant to

defining its quality through the food chain. The constitution of

these tissues undergoes significant dynamic changes throughout the

maturation process and in the post-harvest phase until the

consumer such as the levels of antioxidants, lycopene, ascorbic

acid, phenols and free radicals (Chandra and Ramalingam, 2011)

and bioactive compound [e.g. flavonoids (Tamasi et al., 2019)].

The tomato fruit maturation process is marked by tissue

specialisation, which promotes biochemical and physical changes

in all tissues (Moco et al., 2007). During the ripening process, the

tomato changes colour from green to red, resulting in

morphological and biochemical modifications. The cultivar,

environmental conditions (e.g., soil, light, temperature) and
02
agronomic practices (e.g., irrigation, fertilisation) are essential

factors that contribute to the tomato maturation process. For

instance, in diverse regions, variations in antioxidants and

phenols have been observed (Chandra et al., 2012). Under salinity

conditions, morphological aspects such as size, water content, and

colour undergo changes, impacting sugar content and acidity

(Pascale et al., 2015). Additionally, genetic factors exhibit

divergence even under identical conditions (Toor and

Savage, 2005).

Several non-destructive techniques are available in the literature

for characterising fruit maturation. However, none of these

techniques can provide detailed information about the internal

tissues of the fruit while also predicting its biophysical and

biochemical characteristics efficiently. Although similar works

approached the reconstruction of fruits using other techniques,

such as electrical impedance to detect the tomato level of
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maturation (Verma et al., 2021), computed tomography in detect

bitter pit in apples (Si and Sankaran, 2016) and X-ray in predicting

the sugar content in kiwi fruit (Kanno and Kuroyama, 2020) and

phenotyping charcteristics of seed in predicting the seed length,

width, thickness, and radius of soybean and wheat with an accuracy

ranging 80-96% (Liu et al., 2020), some of these techniques are

expensive and not expedite for in situ measurements. Additionally,

these methods are mainly used to identify physical damage, and

none of them analysed each tissue individually or presented a

qualitative approach (Donis-González et al., 2014). In biomedical

science, non-destructive tissue characterisation (human and

animal) has been developed through Vis-NIR spectroscopy,

particularly for detecting tissue anomalies (Malone et al., 2014;

Dahlstrand et al., 2019) and guiding the right incision during

surgery (Vo-Dinh et al., 2010; Stelzle et al., 2012), which indicate

that similar techniques can be applied to vegetation tissues.

Monitoring tomato precision maturation throughout the food

chain is crucial for minimising losses within the food supply chain

and improving pre- and post-harvest production and utilisation

(Garcia and Barrett, 2006). From the high-tech horticulture point

of view, monitoring maturation is essential to improve cultural

practices, such as irrigation, fertilisation and canopy management,

which are directly related to the pigments, organic acids and sugars in

the tomato fruit (Bertin and Génard, 2018). In addition, to ensure that

the seeds are fully developed for tomato seed production (Shrestha

et al., 2016). They can guarantee that all tissues are well developed and

that the gustative parameters favour the final consumer.

Traditional methods like chemical assays and chromatography

used to characterise tomato biochemical parameters (e.g., lycopene)

in different tissues are, in most cases, destructive, very expensive,

non-adapted for small amount of tissues and time-consuming,

which hinders the assessment of tomato quality parameters based

on the composition of each tissue. Therefore, despite the high cost

and time consumption of traditional analysis, alternative non-

destructive techniques have been developed to assess tomato

maturation and quality parameters, including colourimetric

(Gómez et al., 2001), fluorescence (Wu and Wang, 2014;

Konagaya et al., 2020), and Vis-NIR techniques (Torres et al.,

2015; Zhu et al., 2015).

Vis-NIR devices have demonstrated outstanding potential for

estimating fruit’s biochemical and biophysical parameters like

lycopene and b-carotene (Tilahun et al., 2018), water potential

(Tosin et al., 2021) and sugars and acids (Martins et al., 2022).

Numerous studies on tomatoes have utilised Vis-NIR techniques to

estimate various biochemical and biophysical parameters. These

include soluble solid content (SSC) with reported R2 of 0.87

(Ecarnot et al., 2013), 0.60-0.77 (Torres et al., 2015), and 0.88-

0.98 (Ding et al., 2016). The pH levels were determined with a R2 of

0.80 (Huang et al., 2018a), while colour attributes showed R2 values

ranging from 0.91-0.99 (Ecarnot et al., 2013). Vitamin C content

was estimated with a R2 of 0.67 (Azadshahraki et al., 2018), total

acidity with R2 of 0.66-0.94 (Ding et al., 2016) and R2 of 0.91-0.98

(Najjar and Abu-Khalaf, 2021), and firmness exhibited R2 of 0.70-

0.72 (Najjar and Abu-Khalaf, 2021). The analysis of b-carotene
revealed R2 values of 0.77-0.88 (Tilahun et al., 2018), phenols

showed R2 values of 0.76-0.98 (Ding et al., 2016), malic acid with
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R2 of 0.27-0.42 (Torres et al., 2015), citric acid with R2 of 0.66-0.94

(Ding et al., 2016) and lycopene with R2 values ranging from 0.45-

0.75 (Clément et al., 2015), 0.73-0.83 (Ciaccheri et al., 2018) and

0.85-0.89 (Tilahun et al., 2018). However, tomato exhibits

differences in the structural and biochemical characteristics of

different tissues, which leads to significant ramifications in the

absorption and scattering of light inside the tomato fruit (Skolik

et al., 2019). These complex structures of tomato make it

challenging to investigate the inner tissues through Vis-NIR

spectroscopy and how they behave during maturation.

Spectral information about the inner tissues of fruits can be

acquired using Vis-NIR data (Martins et al., 2023). Martins et al.

(2022) demonstrated empirically that different grape tissues

influence the whole fruit during the maturation process and that

the concentration of pigments changes during maturation in

various tissues. Obtaining spectral information of the internal

tissues of fruits through Vis-NIR requires appropriate modelling

techniques. Principal component analysis (PCA) is one such

technique that uses latent variables (LV) to perform an

orthogonal transformation of the original dataset onto a reduced

subspace that is spanned by the principal components (Dahlstrand

et al., 2019). Conversely, the combination of LV creates a superset,

presenting a direct relationship with the original information. LV

models can deal with significant and correlated variables (Trygg and

Wold, 2003). Multi-block hierarchical PCA (HPCA) and

hierarchical partial least squares (HPLS) are frequently used in

chemometrics to deal with spectral information from different

sensors and a batch of data (Mishra et al., 2021; Martins et al.,

2023). Therefore, multi-block analysis can create a bi-directional

reconstruction of whole tomato fruit from the skin, pulp, and seed

spectral data.

Tissue reconstruction is based on hierarchical latent

relationships between the spectral patterns of the observed tissues,

providing details of the internal plant structures (Martins et al.,

2023). This manuscript uses the term “tomography-like” to partly

define the capacities of data-driven class reconstruction using

hierarchical relationships. The practicality of bidirectionality

involves connecting the principal latent space derived from

tomato tissues to the entire tomato spectrum and executing the

reverse process, which consists of breaking down the tomato fruit’s

spectra into the spectra of its tissues, namely the skin, pulp, and

seed. This methodology was recently applied to grapes, as

demonstrated by Tosin et al. (2023), and it is expected to work in

tomato, in which the tissue composition is different from grapes.

The term tomography-like is debatable in that it only implies the

resolution of the tissue image; here, it is aimed to provide a median

spectrum of each tissue, given the fruit spectra in a non-destructive

way. Once several spectra are taken from different positions on the

fruit, a 3D resolved image can be reconstructed by relating the

positions [x, y, z] and spectral gradients within internal tissues

(Martins et al., 2022; Tosin et al., 2023). In this sense, this work can

be considered ‘tomography-like’. Data-driven reconstruction does

not use the same numerical approaches and solutions as the

classical approaches but is entering several research areas due to

their computational efficiency (Bar-Sinai et al., 2019; Martins

et al., 2022).
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Furthermore, spatially resolved tissue fruit composition is yet

very complex to be obtained experimentally (Tosin et al., 2023).

There are still very significant constraints at the level of analytical

chemistry state-of-the-art on the quantity of sample that can be used

to quantify parameters considered in today’s routine analysis, such as

SSC and pigments. Therefore, metabolic or compositional imaging

validation is still limited to the laboratory ground truth methods.

This research used a point-of-measurement (POM), where the

light enters the fruit and has internal reflections, being only able to

return to the spectrometer through a centre fibre optics pinhole,

meaning that all light reaching the spectrometer interacts with the

inner fruit’s tissues, maximising the spectral information on all

internal tissues.

In multispectral or hyperspectral imaging, light is generally

illuminated outside the fruit. This demonstrates that most light

reaching the imaging sensor is reflected, non-absorbed, and carries

little information about internal tissue composition.

Therefore, relationships with the recorded spectra using this

method are generally limited to covariant information with

pigmentation, which has the danger of quantifying through

correlation and not due to the causal characteristic features present

in the spectra. At present, it is believed that POM devices can be of

more practical application to field studies than hyperspectral cameras.

Through multi-block analysis, this research facilitates the

reconstruction of hyperspectral data by utilising information from

individual spectra of tomato tissues, namely skin, pulp, and seed. This

method enables the decomposition of the overall tomato spectrum

into its constituent tissues, offering a bi-directional relationship. This

study further provides a qualitative analysis of the tomato ripening

process, elucidating the maturation levels in the skin, pulp, and seed at

various developmental stages. By employing a POM sensing approach

that maximises spectral information from internal tissues, the research

addresses the limitations of traditional destructive methods, providing

a non-destructive alternative for characterising tomato biochemical

parameters. This contribution to the high-tech horticulture food

supply chain can be used to ensure superior quality produce, reduce

waste, enhance market value, and advance agricultural practices.

Therefore, three main objectives have been established in this

work: i) to reconstruct the tomato hyperspectral data using

information from the skin, pulp, and seed spectra through multi-

block analysis; ii) to demonstrate that the spectral information of

the entire tomato can be decomposed into the skin, pulp, and seed;

and iii) to provide a qualitative analysis of the dynamics of the

tomato ripening process, demonstrating the maturation levels in the

skin, pulp, and seed, and how these tissues behave at different stages

of the maturation process.
2 Materials and methods

2.1 Sampling and tomato properties

A total of 118 cherry tomatoes, freshly picked at several

maturation stages, were promptly taken to the laboratory for

analysis. Puncture force (N) and SSC (%) were performed after

measuring the tomato spectra using a digital penetrometer (model
Frontiers in Plant Science 04
PCE-PTR 200, PCE Group, D-59872 Meschede, Germany),

registering the resistance force and maximal force until puncture

and a hand refractometer Milwaukee model MR32ATC, with a scale

range of SSC from 0 to 32.0%, respectively.

The tomato skin, pulp, and seeds were methodically extracted from

each tomato (n = 118) and subjected to individual analysis to obtain

their respective spectral records. Then, aliquots measuring

approximately 0.5 cm² were taken using a lancet and deposited onto

a glass microscope slide. The procedure involved peeling the tomato

skin, slicing the pulp to a thickness of approximately 3 mm, and

directly placing a single well-developed seed, selected from the various

seeds present in the tomato, onto themicroscope slide. This meticulous

process ensured the separation of tomato tissues and allowed the

acquisition of specific spectral data for the skin, pulp, and seeds.

The tomato process of maturation progresses from green to red

and can be classified into six different colours: i) green, ii) breakers,

iii) turning, iv) pink, v) light-red and vi) red (USDA, 1991).

Tomato is a complex fruit regarding internal tissues (Figure 1,

Supplementary Figure 1). At the green stage of maturation, the tissues

are not well developed, whichmakes tissue separation hard. Therefore,

this work considered the epidermis as the skin, columella, placenta

and pericarp as pulp and seeds as seeds (Figure 1). The jelly

parenchyma and sepal were not considered in the analysis.
2.2 Spectroscopy

Tomato spectra were recorded with a white LED platform

(Supplementary Figure 1). The platform comprises a reflection

disk with a power LED (6500K, Philips SpotOn Ultra 69141/31/

PH) at the bottom. The spectral range of the LED emits light from

380 nm to 780 nm. Therefore, LED spectra were used as a reference

to check measurement and light emission stability. The tomato is

placed above the LED, and the measurement is performed by

collecting reflectance with a fibre optic probe (Ocean Insite). Skin,

pulp, and seeds are placed on the microscope slide centred with the

LED, and the reflectance probe also collects light. Spectra were

recorded by a high-resolution spectroradiometer (Ocean Insite

HR4000), which obtains information from 195.34 nm to 1118.33

nm; the integration time was optimised for each sample to maintain

most of the spectra within the linear response.

After collecting all the spectral data, a logarithm multiplicative

scattering correction (Martins et al., 2022) was applied to normalise

and reduce the noise in the spectral information. The correction is a

widely used method that addresses the issue of light scattering,

which can distort the spectral signal and lead to inaccuracies in

the measurements.

The logarithmic transformation helps to remove this scattering

effect and improve the accuracy of the spectral data.
2.3 Hierarchical latent
structures reconstruction

Latent structures are spaces obtained by matrix decomposition

into their eigenvectors, a new basis where the contained

information is projected. Latent structures provide a geometrical
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interpretation of the dataset and its samples by understanding their

position on the eigenvector basis. Eigenvectors can be extracted

with different properties, but one of the most common

decompositions is PCA, where orthogonal eigenvectors are

obtained by maximising the dataset variance, allowing to provide

the interpretation of relevant variation. PCA can be obtained from

the dataset X by singular value decomposition (SVD) after

subtracting the mean of X: X = USVt ; where U is the left

singular, S the singular values and Vt the left singular. In PCA,

the scores (aka latent structures) t are given by US, and the loadings

(aka basis/eigenvectors) by pt = Vt .

The geometry of information contained in X can be studied to

determine what eigenvectors represent non-random information by

performing randomisation tests (Martins et al., 2022), where the

spectra dataset reconstruction can be decomposed into X = tpt + e,

where e is random information, irrelevant for spectral

reconstruction (Martins et al., 2023).

Let’s consider the corresponding database of tissue spectra: skin

X1, pulp X2 and seeds X3 and their corresponding relevant PCA

decomposition (Algorithm 1):

X1 = t1p
t
1 + e1 (1)
Frontiers in Plant Science 05
X2 = t2p
t
2 + e2 (2)

X3 = t3p
t
3 + e3 (3)

Where t1, t2, t3 are the relevant latent features that reconstruct

the original tissue spectra X1, X2, and X3, and e1, e2 and e3
discarded random spectral information. The latent information

associated with each tissue can now be fused by determining the

relevant common dimensions of their latent variance in geometry

along each eigenvector.

Let’s take tf = ½ti1, ti2, ti3�   as the concatenation of the i dimension

of t1, t2, t3, to be fused into a superset latent space T by finding the

relevant information of each sub-level. The superset latent space can

be determined by:

tf = TiP
t
i (4)

Being Ti the superset latent information of the i dimension of

the subsets (tissue spectra), and Pt
i provide the contribution of each

subset to the fused information Ti.

If the information of ½ti1, ti2, ti3� has the same direction, Ti will be

described by a single eigenvector Pt
i or a single dimension;

otherwise, further relevant dimensions are added to Ti.
FIGURE 1

Internal tomato tissues and the spectroscopy system used to obtain spectral information from the entire tomato and the respective tissues (skin,
pulp and seed).
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The superset latent structure is constructed for each dimension

of X1, X2, and X3, representing the relevant information of the

tissue dataset, that is, the relevant characteristics from the skin,

pulp, and seeds that relate to the observed tomato spectra.
2.4 Association and bi-directionality

The relevant features extracted from the sub-levels represented

in the superset T have a similar latent structure to the direct PCA

decomposition of the tomato spectra (Y). By performing a PCA

decomposition to Y, it is gotten Y = UCt ; where a direct association

between the latent spaces T and U is expected (T ≃ U). One can

expect that samples with similar composition and morphological

characteristics will generate cluster aggregations in T and U,

reflecting the different skin, pulp, and seed maturation state

combinations (Martins et al., 2023).

Therefore, one can establish a direct relationship between

neighbouring samples in T or U, ensuring bi-directionality

between the subsets X1, X2, X3 and Y (Figure 2).

Inferring the internal tissues for a given unknown sample is

performed by projecting the spectra Y into the feature space U, by

U = YC, and finding the neighbouring samples (k) in this feature

space. The k can be used to verify its propagation from T to the sub-

level spaces t1, t2 and t3, by reconstructing tf (Algorithm 2,

Equation 4).
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2.5 Validation

The hierarchical latent structure model was optimised and

validated in a two-step approach: i. cross-validation (CV) to

optimise the number of principal components (PC) of the sub-

spaces t1, t2 and t3 and superspace T; and ii. hold-out samples (HO)

are used to test predictions and provide quantitative metrics.

CV is a test to the null hypothesis, and HO samples are double-

check confirmations of the CV metrics. If the knowledge base is

representative, any unknown HO or removed from the dataset, CV

should provide statistically similar prediction metrics, proving the null

hypothesis. By leaving samples out, CV provides the determination of

the optimal error of each tissue reconstruction, e = ½e1   e2   e3�
(Algorithm 3, Equations 1–3). For each sample, the training set, the

CV algorithm removes one sample (leave-one-out) for determining the

error (e) for increasing the number of PCs of sub-space and superset.

The optimal number of PCs is considered the one that provides

minimal CV errors, preventing over-characterisation of random

features at the sub-level passing into the superset. Suppose the

training set is representative, CV and HO errors are expected to be

similar. In that case, the model can efficiently reproduce the spectral

information, and the null hypothesis is verified.

After reconstructing and decomposing the spectral data, a

standardisation of the original, reconstructed, and decomposed

spectral data was applied to mitigate the effects of signal intensity.

Standardisation is a common practice used in data analysis to

rescale variables with a mean of zero and a standard deviation of
FIGURE 2

Representation of the bi-directional reconstruction process and decomposition of the spectral information. T is the superset latent space; T24 the
superset latent information of the dimension of the subsets (T1, T2, T3); U is the feature space of each subset; U8 the superset latent information of

the dimension of the subsets Y is the tomato spectra; Pt
118 is the contribution of each subset (P8

1 , P
8
2 , P

8
3 ); X1, X2 and X3 spectra of the skin, pulp and

seed, respectively.
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one. In this study, the formula ((x −mean)=sd) was used to

standardise the spectral data. This method allows us to compare

and analyse the spectral data more accurately, as it removes any

differences in signal intensity that could impact the interpretation of

the results.

The following metrics were used to benchmark spectral

reconstruction: i. mean standard error (MSE) in counts/

wavelength (nm), representing the average reconstruction error

per wavelength (nm); ii. mean absolute percentage error (MAPE)

in % wavelength (nm), representing the average bias per wavelength

(nm); iii. Pearson’s correlation coefficient and the p-value were

extracted to check for significant differences between the original

and reconstructed datasets; and iv. Euclidean distances in T and U

of CV and HO samples: This metric measures the knowledge-base

representativeness and stability, which is important for evaluating

the performance of the spectral reconstruction model.
Fron
Require: X1, X2, X3

Ensure: j = argmin(Xi − tip
t
i)

     X1 = t1p
t
1

     X2 = t2p
t
2

     X3 = t3p
t
3

While j > jmindo

          ti ←½ti1 ti2
�
�

�
�ti3 �

          ti = UiSiV
t
i

          Ti = UiSi

          Pt
i = Vt

i

end while

Output: T = ½T1 … Tn�; P = ½P1 … Pn�
Algorithm 1. Hierarchical latent structures algorithm.
Require: Y, T

Ensure: Y = UQt

Uk = Tb

Tk = Uc

     Yk = (Tb)Qt

Output: Yk
Algorithm 2. Outer relationships for reconstruction.
Require: Y, T, P, ½t1, t2, t3�
Ensure: j = argmin(Xi − tip

t
i)
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     Y = UQt

     T = Ub

     ½t1, t2, t3� = TpP
t

     X1 = t1p
t
1

     X2 = t2p
t
2

     X3 = t3p
t
3

Output: X1, X2, X3
Algorithm 3. Latent structures reconstruction algorithm.
2.6 Prediction of tomato quality

As a proof of concept, the organoleptic characteristics of

tomatoes were predicted by comparing quantification results

obtained from real spectral datasets with those obtained from

reconstructed spectra using latent hierarchical structures. The

visible range of the spectral data, which falls between 400-700

nm, contains valuable information related to pigments,

specifically chlorophyll and lycopene content. Based on the

findings of Ciaccheri et al. (2018) and Moco et al. (2007), the

inferred chlorophyll content used the ratio of green (520-570 nm) to

red (571-700 nm) spectral bands, and lycopene content used the

ratio of red to green spectral bands. The results demonstrate that

the reconstructed tissue spectra provide a good relationship to the

estimates obtained with the fruit spectra, thus serving as proof of the

principle of internal tissue quantification. Also, it presents other

parameters obtained with the fruit, such as puncture force and SSC,

which correlate with the reconstructed tissue spectra, further

demonstrating the feasibility of the approach. Although there is a

state-of-the-art, optimised ground truth method for measuring fruit

composition at the fruit level for small fruits such as grapes (Martins

et al., 2022; Tosin et al., 2023), recording that data would not

provide significant advantages as it does not allow better tissue

resolution quantification than the one presented in this work.

This investigation employed a computational approach to

assess tomato pigment content in tissue reconstruction, driven by

the need for a time-efficient evaluation of lycopene and chlorophyll.

Wet lab analyses commonly used for larger tissue samples were

unsuitable due to the small tissue quantities (around 0.5 cm²)

involved in the spectral analysis (Tosin et al., 2023). Routine

methods for these analytes require larger tissue quantities,

hindering direct comparison with results obtained through

computational methods (Clément et al., 2008; Tilahun et al.,

2018). Sophisticated analytical methods for small tissue quantities

are costly and impractical for evaluating a system at a low

technology readiness level (TRL). Therefore, validating the results

using expedited and cost-effective methods suitable for assessing the

mentioned pigments and potentially other analytes is advisable.

Adopting expedited approaches and avoiding expensive wet lab
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methods can validate the proof of concept without incurring high

costs, facilitating a smoother transition for further system

development and refinement.

The study employed a partial least squares (PLS) approach to

predict the quality parameters of tomatoes. The dataset comprised

118 samples, divided into two sets: 70% (n=82) for training and 30%

(n=36) for validation. This division of the dataset into training and

validation sets ensures the utilisation of a significant portion of the

data for model development while still allowing for robust

evaluation and assessment of the model’s performance.

A robust validation technique, leave-one-out cross-validation

(LOOCV), was employed to evaluate the model’s performance. This

approach involved systematically excluding one sample at a time

during the evaluation process, allowing for an accurate estimation of

the model’s predictive ability and mitigating the risk of overfitting.

The determination of the optimal number of LV in PLS model

was carried out through an assessment of root mean square error

(RMSE) values. This integral step in PLSmodelling aimed to minimise

the RMSE, underlining its fundamental role in refining the model for

superior precision and effectiveness in predicting outcomes. The

selection of the ideal number of LV was strategically driven by the

overarching goal of achieving the most accurate and reliable results, a

chase evident in the search of minimised RMSE values.

Within the data-driven analysis, representativeness and hypothesis-

testing principles serve as foundational pillars. Representativeness

ensures that the dataset employed for training and validation

accurately represents the entire population of interest. Hypothesis

testing facilitates the formulation and evaluation of statistical

hypotheses, guaranteeing the results’ reliability and significance.
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By adhering to these principles, it is possible to construct robust

models and generate reliable predictions in data-driven analysis.

Benchmarks were performed using the following modelling

approaches: i. Similarity(Sim)-Euclidean distance as a metric of the

spectral and compositional similarity between neighbouring samples in

the feature space (e.g., FaChada et al., 2014); ii. Principal component

regression (PCR) - where the latent structures of the sub-level spectra

½t1   t2   t3�, superset T and tomato spectra U; PLS maximises the

covariance between the spectra X and tomato composition Y by

determining the eigenvectors of XtY (Martins et al., 2023). This

method forces the latent structures of spectra and composition (PLS

scores - U) to be equal (NIPALS algorithm) (Ergon, 2009) for the

determination of each correspondent basis Ut and Qt (Geladi and

Kowalski, 1986). It proceeds with deflation and sequential orthogonal

eigenvectors of the remaining information inXtY (Phatak and De Jong,

1997). The number of deflation or LV is optimised by cross-validation/

hold-out samples with minimal predicted sum of squares (PRESS)

(Krstajic et al., 2014). PLS uses an oblique projection to determine the

bpls coefficients in Y = Xbpls (Phatak and De Jong, 1997; Ergon, 2009).
3 Results

3.1 Tomato tissue reconstruction

Figure 3 presents an application of PCA to investigate the

spectral data of tomatoes, including the entire tomato and its

internal tissues (skin, pulp, and seeds). Each data point represents

a unique spectral measurement obtained from an individual
A B

D EC

FIGURE 3

Spectral bi-directionality in reconstructing tomato components: skin, pulp, and seeds, at different maturation levels. The numbers in the box indicate
the observations from the dataset for each maturation stage: ▪ (53) for green, ▴ (102) for turning, and • (5) for red. (A, B) represent the feature space for
the total and total reconstructed spectra, respectively. (C–E) define the feature space of the skin, pulp and seed, respectively.
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tomato. The primary objective of PCA is to identify a lower-

dimensional representation of the data that captures the most

important information.

In this study, the analysis classified the tomatoes into three

maturation stages: i) green, ii) turning, and iii) red. A random

sample from each maturation stage was selected to represent the

feature space of these samples.

Figure 3A illustrates the comprehensive space occupied by the

assessed tomatoes. Each tissue of the tomato, namely the skin, pulp,

and seeds, possesses its distinct feature space, as illustrated in

Figures 3C–E, respectively. PCA enables the decomposition of the

space, resulting in individual spaces corresponding to each

tomato fraction.

In Figure 3B, the plot demonstrates the reconstructed spectral

data of the tomato obtained by combining the information from the

skin, pulp, and seeds. The reconstructed data provides a condensed

version of the original spectral data while preserving essential

characteristics. It is also possible to reverse the process, enabling

the data decomposition into the individual feature spaces of the

tomato’s skin, pulp, and seeds.

The application of PCA in this study enhances the understanding

of the tomato’s spectral data and internal structures. In addition, it

provides insights into the relationships between different tomato

fractions and their corresponding spectral properties, shedding light

on the distinct characteristics of each tissue within the tomato.

Figure 4 shows the spectral signature of tomato tissues at

different stages of maturation: green, middle stage (turning), and

ripened (red). The bi-directional spectral reconstruction (Figure 2)

works better for internal tomato tissues than for the entire tomato

(Figure 4, Table 1). In addition, during the experiments, it was

observed that the light had more difficulty passing through the

green tomatoes (Figure 4), which is a limitation in obtaining

complete information about the internal tissues. It is suggested

that at this stage of maturation, the tissues are not fully developed

and contain a high concentration of pectin, which interferes with

the optical properties of the tomato.

The dynamics of maturation in tomato is shown in Figure 4.

Based on these spectral signatures, different band peaks in the

spectral signature are suggested to be related to tissue pigments

(e.g., chlorophyll and lycopene). For example, green tomato

presents higher signal intensity in the bands 460-500 nm and

660-700 nm, suggesting a correlation with chlorophyll content.

Likewise, the 500-550 nm range of bands is more related to the

carotene group, probably related to lycopene content in the more

advanced stages of maturation.

Table 1 presents a benchmark for spectral reconstruction and

shows that the spectral reconstruction did not present significative

differences (p-value< 0.001) over the original spectral data.

However, compared with the respective tissues, the total spectral

of tomato shows a higher MSE (0.30) and MAPE (30.4%) and a

lower Pearson’s correlation coefficient (r=0.85; p-value< 0.001).

Three leading causes can explain the low accuracy of the whole

tomato: i) the green stage of maturation seems to be a hindrance for
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the light going through the internal tissues; ii) during the green

stage of maturation, the tissues are not fully developed; and iii) the

acquisition of the spectral information with an optical probe aimed

at finding the best position to obtain the light signal through the

internal tissues.

On the other hand, the decomposition of the whole tomato to

predict the internal tissues worked better (Figure 4, Table 1). These

results suggest that the spectral data of the tomato presented

sufficient information on the internal tissues studied in this work.

The lower accuracy in the reconstruction of tomato is discussed

in the next section.
3.2 Quality parameters evaluation

The original and reconstructed spectral information were used

to predict the quality parameters of the tomato and their respective

tissues. Overall analysis showed that the original and reconstructed

spectral data were consistent and robust for predicting the quality

parameters analysed (Table 2). Additionally, the different tissues of

tomato could be used to predict the quality parameters assessed in

this experiment. It is important to highlight that for SSC and

puncture force, the entire tomato was considered for the

measurement, and the different tissues of the tomato could

predict these values for the whole tomato fruit. The results

presented for chlorophyll and lycopene used an empirical dry lab

method based on the spectral information of each tissue and the

whole tomato, which helped to infer the pigment concentration in

each tissue individually and in the entire tomato. Regression plots of

the SSC (%), chlorophyll (a.u.), lycopene (a.u.) and puncture force

for the skin, pulp and seed are presented in the Supplementary

Materials (Supplementary Figures 2–5).

Figure 5 presents the changes in chlorophyll and lycopene

concentrations in different tomato tissues during ripening. As the

tomato ripens, chlorophyll concentration decreases while lycopene

increases, as demonstrated by the spectral information and dynamic

concentration data in Figure 5.

During the early maturation stage (Figure 5A), the tomato skin

has a higher concentration of chlorophyll and a lower concentration

of lycopene. Likewise, the pulp has a higher concentration of

chlorophyll and a lower concentration of lycopene than other

tissues of the tomato. This distribution of chlorophyll and

lycopene is also reflected in the peaks observed in the tomato

spectra. Specifically, peaks in the 460-500 nm and 670-700 nm

range are associated with chlorophyll, while those in the 530-560

nm range are associated with carotenes, including lycopene. These

wavelength assignments are drawn from the findings of Ciaccheri

et al. (2018) and Moco et al. (2007).

During the ripening process, the peaks associated with

chlorophyll decrease while those associated with lycopene increase,

as shown in Figure 5 for the tomato skin, pulp, and seed. These

changes in pigment concentrations are responsible for the observed

colour changes in the tomato from green to red as it ripens.
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4 Discussion

This paper presents a disruptive methodology for the bi-

directional reconstruction of whole tomato hyperspectral data and

internal tissues (skin, pulp, and seeds). This non-destructive
Frontiers in Plant Science 10
method can explain how different tomato tissues behave at

various stages of the ripening process. As described in

Figures 1–3, this work aims to bi-directionally reconstruct the

spectral information of the tomato from the data of the skin,

pulp, and seed and to decompose the information of the tomato
A B C

FIGURE 4

Spectral signatures of the tomato and the internal tissues. In the red line (—) is the original spectral signature, and in the blue dashed line (––) is the
reconstructed spectral. Figures (A–C) are tomatoes subjected to LED light. Figure (A) is a tomato in the green stages of maturation; (B) tomato in the
turning stages of maturation; (C) tomato in the red stage of maturation. The p-value< 0.001 indicates no significant difference between the original
and reconstructed spectra. r is Pearson’s correlation.
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TABLE 2 Reconstruction benchmark of the tomato, skin, pulp and seed in predicting the soluble solid content (SSC), chlorophyll, lycopene and
puncture force.

Property Metric
Real dataset

Tomato Skin Pulp Seeds

SSC (%) r 0.99 – – –

R2 0.98 – – –

MSE (%) 0.85 – – –

MAPE (%) 10.78 – – –

LV 3 – – –

Puncture force (N) r 0.98 – – –

R2 0.97 – – –

MSE (N) 2.94 – – –

MAPE (%) 15.87 – – –

LV 3 – – –

Reconstructed Dataset

SSC (%) r 0.99 – – –

R2 0.98 – – –

MSE (%) 0.86 – – –

MAPE (%) 11.12 – – –

LV 3 – – –

Chlorophylls (a.u.)* r 0.95 0.99 0.99 0.99

R2 0.90 0.99 0.99 0.99

MSE (a.u.) 0.49 0.64 0.53 0.51

MAPE (%) 51.32 6.01 10.06 13.51

LV 2 2 3 2

Lycopene (a.u.)* r 0.92 0.99 0.98 0.99

R2 0.84 0.99 0.96 0.98

MSE (a.u.) 0.62 0.64 0.73 0.57

MAPE (%) 37.68 6.44 11.09 12.91

LV 2 2 2 2

Puncture force (N) r 0.90 – – –

R2 0.95 – – –

(Continued)
F
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TABLE 1 Mean square error (MSE), mean absolute percentage error (MAPE), p-value and Pearson’s correlation coefficient (r) for the reconstruction of
tomato spectra and decomposition of the entire tomato spectra into skin, pulp and seeds spectra.

Reconstruction
MSE(Count/wave-

length (nm))
MAPE (%) p-value r

Tomato Spectra 0.30 30.44 < 0.001 0.85

Skin Spectra 0.04 5.37 < 0.001 0.98

Pulp Spectra 0.02 5.25 < 0.001 0.99

Seeds Spectra 0.03 6.42 < 0.001 0.99
Mean square error (MSE), mean absolute error (MAPE), and p-value< 0.001 indicate that there is no significant difference between the original and reconstructed spectral matrices.
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spectra into the internal tissues. Although each tomato tissue

presented a particular space (Figure 3), creating a superset with

the scores of each tomato fraction made it possible to reproduce the

entire spectral tomato (Figure 4). The most important LV of each

fraction formed the superset used to reconstruct the tomato spectra.

Through hierarchical PLS, the tissues could predict the entire

tomato spectral data. The decomposition of the whole tomato

data and the same number of LV combined in the hierarchical

PLS can predict the tomato tissues. The literature reports that the

tomography-like approach (Martins et al., 2023) successfully

worked in grapes (Tosin et al., 2023), and the results of this paper

support that it can be applied to aqueous fruits like tomato. Due to

the complex nature of tomato maturation and the diverse

biochemical compositions of its internal tissues (Skolik et al.,

2019), encompassing skin, pulp, and seed, this work presents a

technique for the bi-directional spectral reconstruction of tomatoes

using Vis-NIR data.
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The literature offers several methodologies (Mishra et al., 2021)

that could be used for spectral reconstruction. For instance, O2-PLS

(Trygg and Wold, 2003) and OnPLS (Lofstedt et al., 2013) utilise

spectral data’s local and global joints, bioheat models (Alzahrani

and Abbas, 2019; Marin et al., 2021) could be adapted to predict the

internal tomato tissues and adaptive neuro-fuzzy inference system

(Abdullahi et al., 2021; Abdullahi et al., 2022), a hybrid

computational model that combines the adaptive capabilities of

neural networks with the interpretability of a mathematical

framework that deals with uncertainty and imprecision in

decision-making. However, these methods are not hierarchical

and do not allow for convolution and fusion of information in a

superset or deconvolution in a reverse way. Similarly, advanced

approaches such as deep learning (DL) can deal with complex data

(Mishra et al., 2022) and reconstruct the whole tomato with spectral

information from the different tissues. Nevertheless, the

decomposition of the tomato spectra into the spectral data of its
TABLE 2 Continued

Property Metric
Real dataset

Tomato Skin Pulp Seeds

MSE (N) 3.84 – – –

MAPE (%) 21.83 – – –

LV 2 – – –
*Values computed with the spectral information (nm); the number of latent variables (LV) used in the partial least square (PLS). SSC and puncture force measurements were exclusively
conducted for the entire tomato. Prediction based on individual tissues such as skin, pulp, and seeds is deemed impractical, given the integrated nature of these tissues. As a result, a dash (–) is
denoted to signify the exclusion of these components in the predictive analysis.
The original dataset exclusively predicted SSC and puncture force for the entire tomato. Chlorophyll and lycopene content were predicted solely in the reconstructed dataset, as these pigments
were estimated using real data, rendering their prediction in the original dataset nonsensical.
A

B

C

FIGURE 5

Spectral information obtained from tomatoes at different maturation stages and internal tissues and the dynamics of lycopene and chlorophyll
during maturation. Chlorophyll content was empirically quantified, with light green representing lower levels and dark green representing higher
levels. Lycopene levels were also quantified, with dark red representing lower levels and light red representing higher levels. (A–C) are red, turning
and green tomatoes over the light source, respectively. The green spectra signature (·····) represents the spectral signature of the skin, the orange
spectral signature (––) represents the spectral signature of the pulp, and the red spectra signature (—) represents the spectral signature of the seed.
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tissues becomes even more complex and challenging. Nonetheless,

the results presented in Table 1 show that hierarchical PCA

combined with PLS can effectively perform bi-directional

modelling with the directions X − Y and Y − X, and remove

orthogonal data between Y and X, facilitating the reconstruction

of the tomato and its internal tissues.

Owing to the multiple internal tissues that compose the tomato

fruit, it faced a challenge in reconstructing the complete spectral

information of the tomato (Figure 4). Furthermore, separating and

identifying different tissues in green tomato are difficult because

green tomato presents more fibre concentration (Chandra and

Ramalingam, 2011) and pectin (Moco et al., 2007; Huang et al.,

2018b). As a solution, all internal tissues (except the jelly

parenchyma) were considered the pulp. Nevertheless, green

tomatoes have less interest when compared with more advanced

stages of maturation.

Spectral data acquisition encountered a few challenges related to

the position of the tomato in the system used to obtain spectral data.

First, green tomato is opaque, limiting light’s ability to pass through

(Figure 4). This limitation requires the optical fibre probe to be well-

positioned to obtain more light signals. However, searching for light

using the probe may not obtain a signal from all internal structures,

which limits tissue reconstruction. A similar effect was observed in

matured tomato. Depending on the probe position, some internal

tissues may not be assessed, or less information may be obtained.

Second, the tissues considered as the pulp will affect the

reconstruction of the entire tomato.

During the data acquisition of the entire tomato, almost all the

internal tissues are expected to be evaluated using a fibre probe.

However, to provide detailed information in the superset utilised to

reconstruct the entire tomato, it may be necessary to individually

assess each tissue considered as pulp and examine their specific

details. Therefore, the errors observed in Table 1 and Figure 4 indicate

less accuracy in the reconstruction of the entire green tomato and less

in the other tomato fractions of the matured tomato. Nevertheless,

this method can reconstruct the Vis-NIR spectra of tomato and

internal tissues and be used for different purposes.

This work assessed the SSC, chlorophyll, lycopene, and

puncture force of the tomato using the original and reconstructed

spectra for each fraction of the tomato (Table 2). The SSC and

puncture force were assessed in the entire tomato, and the spectral

data of each fraction were considered in the modelling. Chlorophyll

and lycopene provided spectral information for each tissue and

empirically demonstrated the concentration of each pigment in the

tissues. The original and reconstructed spectra results were very

similar for reconstructing the entire tomato and the reconstructed

spectra (Table 2).

Among the quality parameters assessed, the SSC results were

the most stable and robust for the original and reconstructed

spectra. Nevertheless, it is essential to highlight that the different

tomato tissues present distinct SSC concentrations, and the

individual tissues could have been assessed to predict the

concentration of SSC in each fraction. For chlorophyll and

lycopene, the ratio of the zones of the spectrum empirically

demonstrated the different concentrations of pigments in the

distinct tissues (Supplementary Figures 2–5). Considering all the
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tomato tissues, the skin is the part that is indicated to have more

concentration of chlorophylls. This study reveals that the skin has

the highest concentrations of chlorophyll and lycopene, except

during the red maturation stage. These results align with existing

literature, particularly Chandra et al. (2012), highlighting the skin’s

elevated lycopene levels compared to pulp and seeds. However, in

terms of chlorophyll content, the skin ranks as the second lowest

tissue during maturation, as observed by Moco et al. (2007). The

qualitative approach to classifying internal tomato tissues

throughout maturation may contribute to these variations

compared to the quantitative methods in the cited literature.

Consistent with prior research (Moco et al., 2007; Chandra

et al., 2012), this paper reveals that the skin exhibits a higher

concentration of lycopene, as shown in Supplementary Figure 3.

Puncture force analysis indicates elevated values in green tomatoes,

probably attributable to heightened fibre and pectin content. This

coincides with lower levels of SSC and lycopene, alongside increased

chlorophyll concentrations (Moco et al., 2007; Huang et al., 2018b).

The temporal dynamics of maturation across distinct tomato

tissues are demonstrated in Figure 5, where chlorophyll

concentrations, particularly in the skin, are higher in green

tomatoes (Figure 5A). Conversely, matured tomatoes (Figure 5C)

tend to exhibit increased lycopene concentrations, mainly in the

skin. Considering the spectral signatures of the tomato fractions

(Figure 5), further studies can be conducted to determine the type of

information that can be extracted. Empirically assessing the full

tomato spectrum (Figure 5), two bands peak near 500 nm and 690

nm in green tomato, probably related to chlorophyll (Ecarnot et al.,

2013; Huang et al., 2018b). In the spectral skin signature, a similar

peak (near 490 nm) in the green tomato may be related to

chlorophyll a. When the pulp and seed were analysed, the same

peak (near 490 nm) was present but with less intensity, suggesting a

lower chlorophyll concentration in those tissues. The peaks near

550 nm are related to the carotene group (Ciaccheri et al., 2018),

especially the lycopene concentration. For matured tomato, these

picks present more intensity in the full tomato spectra, skin, and

pulp, suggesting a higher concentration of lycopene when compared

with less mature tomatoes.

Vis-NIR data can enhance the efficiency and quality of crop

production by providing valuable information for optimising various

agricultural practices, such as irrigation, fertilisation, and pruning

(Xia et al., 2021). Furthermore, by leveraging this data, crop growers

can gain precise insights into the maturation process of fruits, which

is influenced by a range of biotic and abiotic factors, including

diseases, water availability, temperature, and light intensity.

The methodology presented in this paper has the main

advantage of providing more accurate and detailed information

about the internal structure of the fruit as a tomography-like system

when compared to the whole-fruit measurement by using

hyperspectral or multispectral data (e.g., Mishra and Woltering,

2023; Mishra et al., 2023) that obtain majority external information.

The tomography-like presented in this paper allows for the

assessment of individual tissues, facilitating the acquisition of

more accurate and detailed information about the internal

structure of the fruit (Martins et al., 2023). Figure 3 represents

the feature space of the entire tomato and the skin, pulp and seed,
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where the different maturation stages occupy distinct feature spaces.

In contrast, traditional whole-fruit measurements often lack

precision in providing insights into the inner tissue of the fruit.

Also, the methodology presented in this paper can lead to more

accurate predictions of the internal tissue properties and better

quality control. It can also enable a more specific and targeted

analysis of internal tissue properties by offering comprehensive and

high-dimensional data. These data provide more detailed

information about the fruit’s internal structure and can also be

utilised to determine additional components beyond those

presented, particularly in supporting metabolomic studies. This

knowledge can help to fine-tune agricultural practices and

mitigate potential risks, ultimately leading to improved crop

yields and higher-quality produce.

This paper presents a novel technique for determining the

quality parameters SSC (%), chlorophyll (a.u.), lycopene (a.u.)

and puncture force (N) of fruits using visible and near-infrared

(Vis-NIR) spectroscopy of their skin, pulp, and seed. The approach

builds upon a growing body of research demonstrating the ability of

hyperspectral sensors to measure a wide range of quality parameters

non-destructively and accurately in crops (Martins et al., 2022;

Tosin et al., 2022; Tosin et al., 2023). Furthermore, by leveraging the

high-dimensional data obtained for each tissue, the method

showcased in this study has the potential to unlock a multitude of

additional quality parameters during fruit maturation. This capacity

for rapid and precise determination could enhance fruit

production’s efficiency and effectiveness while elevating the final

product’s overall quality. Finally, it is worth noting that the

extensive dimensionality of the data obtained for each tissue

opens possibilities for identifying and characterising other

components beyond those currently presented, particularly in

supporting metabolomic studies.
5 Conclusion

This paper proposes a tomography-like system that can predict

the Vis-NIR information of the internal tissue. Applying multi-

block hierarchical component analysis in conjunction with PLS

enables the bi-directional reconstruction of spectral information,

facilitating the prediction of internal tissue spectra (skin, pulp, and

seed) and the decomposition of the overall tomato spectral

information into its constituent tissues.

This novel approach allows assessing tomato maturation dynamics

by analysing internal tissue characteristics, offering pertinent

information for precision agricultural practices. Moreover, the

method can identify physiological issues related to abiotic (e.g., water

stress, high temperature) and biotic (e.g., bacterial infection). These

identified stressors can be integrated into multifaceted omics

techniques to understand the plant’s physiological responses.

Building on successful testing in grapes this technique,

demonstrates its efficacy in the complex tissue structure of
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tomato. Thus, the same approach could be applied to other

aqueous fruits, such as blueberries. However, further work is

necessary to test the applicability of this technique in other fruits,

to study the dynamic of the Vis-NIR information with the internal

tissues during the maturation process, and to incorporate additional

analytical data for validation.
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