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Heavy-ion beam, a type of ionizing radiation, has been applied to plant breeding

as a powerful mutagen and is a promising tool to induce large deletions and

chromosomal rearrangements. The effectiveness of heavy-ion irradiation can be

explained by linear energy transfer (LET; keV µm-1). Heavy-ion beams with

different LET values induce different types and sizes of mutations. It has been

suggested that deletion size increases with increasing LET value, and complex

chromosomal rearrangements are induced in higher LET radiations. In this study,

we mapped heavy-ion beam-induced deletions detected in Arabidopsis mutants

to its genome. We revealed that deletion sizes were similar between different

LETs (100 to 290 keV mm-1), that their upper limit was affected by the distribution

of essential genes, and that the detected chromosomal rearrangements avoid

disrupting the essential genes. We also focused on tandemly arrayed genes

(TAGs), where two or more homologous genes are adjacent to one another in

the genome. Our results suggested that 100 keV µm-1 of LET is enough to disrupt

TAGs and that the distribution of essential genes strongly affects the heritability of

mutations overlapping them. Our results provide a genomic view of large

deletion inductions in the Arabidopsis genome.
KEYWORDS

heavy-ion beam, linear energy transfer, Arabidopsis thaliana, mutagenesis, tandemly
arrayed gene, essential gene
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1 Introduction

Plant molecular genetics has advanced through both forward

and reverse genetic approaches, and recent technological

innovations accelerate its understanding. Genome editing tools

has contributed to the progress of reverse genetics in plants and it

has become easy to obtain knock-out mutants for target genes (Yin

et al., 2017; Zhang et al., 2017). Moreover, large deletions,

inversions, and translocations (Enciso-Rodriguez et al., 2019;

Schmidt et al., 2019; Beying et al., 2020; Schmidt et al., 2020) can

be induced in plant genomes, indicating that chromosomal

engineering is also possible by using genome-editing technology.

On the other hand, in forward genetics, next generation sequencing

(NGS) technology has played important roles for the identification

of gene functions in recent years, and causative genes for mutants

can be identified by whole genome sequencing in Arabidopsis

thaliana (Schneeberger et al., 2009; Ashelford et al., 2011; Austin

et al., 2011; Uchida et al., 2011; Katano et al., 2016; Koide et al.,

2018; Yamatani et al., 2018; Du et al., 2020; Nhat et al., 2021) and

rice (Abe et al., 2012a; Fekih et al., 2013; Morita et al., 2019).

Heavy-ion beam, a type of radiation, has been applied to plant

breeding as a powerful mutagen (Tanaka et al., 2010; Abe et al.,

2012b, 2015, 2021; Ishii et al., 2021; Ma et al., 2021). The

effectiveness of heavy-ion irradiation can be explained by linear

energy transfer (LET; keV µm-1). The LET represents the amount of

energy deposited locally by radiation. The LETs of 60Co g-ray and

250 keV X-ray are 0.2 keV µm-1 and 2.0 keV µm-1, respectively, and

are called low LET radiations. By contrast, the LET of a heavy-ion

beam is variable and higher than those of g-ray and X-ray. For

instance, in the RIKEN RI-beam factory, LETs for biological

research range from 22.5 to 4000 keV µm-1 (Ryuto et al., 2008).

As the energy from heavy-ion beams with high LETs is deposited

more densely on the target than the energy from g-rays and X-rays,

irradiation of the beams efficiently causes double strand breaks on

DNA molecules and results in more significant biological effects.

Difference in LET values affects efficiency of heavy-ion mutagenesis,

with the efficiency being highest at an LET of 30 keV µm-1 for C ions

in A. thaliana (Kazama et al., 2008, 2012). Due to its high efficiency,

heavy-ion beams have been applied to forward genetic approaches,

resulting in many useful mutants (Maeda et al., 2014; Katano et al.,

2016; Aonuma et al., 2021; Nhat et al., 2021; Takeshita et al., 2021;

Tojo et al., 2021). The effects of LET on small mutations including

single nucleotide polymorphisms have been well described (Li et al.,

2017; Ichida et al., 2019; Li et al., 2019; Yang et al., 2019; Hase et al.,

2020; Oono et al., 2020; Zheng et al., 2020; Ren et al., 2023).

Moreover, several investigations have demonstrated that heavy-ion

beams with different LET values induce different types and sizes of

mutations; deletion size increased with increasing LET value, and

complex chromosomal rearrangements were induced in higher LET

radiations (Kazama et al., 2011; Hirano et al., 2012; Kazama et al.,

2013; Hirano et al., 2015; Hase et al., 2017; Abe et al., 2021; Morita

et al., 2021; Sanjaya et al., 2021). Comparison of induced mutations

with the LET of 30 and 290 keV µm-1 by genome resequencing

revealed that the higher LET tended to induce less (0.5 times) small

mutations including single-base substitutions and small indels
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(<100 bp) and more (4.4 times) large mutations including

chromosomal rearrangements or large deletions (≥100 bp)

(Kazama et al., 2017). Appropriate choice of the LET value would

enable to efficiently induce deletions with on-demand size.

Characterization of plant genomes has proceeded in a wide

range of species from various viewpoints. One common feature of

plant genomes is their high proportion of tandemly arrayed genes

(TAGs), where two or more homologous genes are adjacent to one

another in the genome (Rizzon et al., 2006; Jander and Barth, 2007).

To carry out functional analysis in members of TAGs, it is necessary

to disrupt a set of TAGs due to genetic redundancy. Since it is

difficult to accumulate mutations in tightly linked loci through

crossing with single mutants, induction of a large deletion covering

a TAG region is an effective approach to generate knockout mutants

corresponding to the TAGs. For instance, disruption of TAGs was

achieved by induction of large deletions using g-ray irradiation

(Morita et al., 2007) as a forward genetic approach and Zinc Finger

Nucleases as a reverse genetic approach (Qi et al., 2013). It has been

also reported that C-ion or Ar-ion beam with higher LET value at

290 keV mm-1 can induce deletions ranging from several hundred

bp to several Mbp, which are large enough to disrupt TAGs (Hirano

et al., 2012, 2015; Kazama et al., 2018; Abe et al., 2021).

The distribution of essential genes would have contributed to

the formation of the plant genome. Many essential genes in

Arabidopsis were previously reported (Lloyd et al., 2015; Meinke,

2019). If a mutant possesses a deletion covering an essential gene

that is involved in morphogenesis or gametogenesis, the deletion

would not be homozygously inherited. Although disruption of

essential genes should have effects on hereditary nature and/or

size limitation of the induced deletion, the relationship between

essential genes and deletion mutations has not been investigated at

genome level.

In this study, we used three heavy-ion beams at 100, 200, and

290 keV µm-1 and investigated how efficiently the beams induce

large deletions in the Arabidopsis genome. We also designed array

comparative genomic hybridization (array CGH) for the detection

of TAG deletions and examined the effects of LET values on TAG

disruptions. Further, we examined the distributions of both

homozygously and heterozygously inheritable deletions and

compared to that of essential genes in the genome, suggesting

that the distribution of essential genes affects the upper limit of

sizes of homozygously inheritable deletions. Based on these

findings, we provide a genomic view for future studies including

functional analysis of genes and mutagenesis.
2 Materials and methods

2.1 Plant materials and
irradiation treatment

Dry seeds of A. thaliana ecotype Columbia (Col-0) were

irradiated with heavy-ion beams as previously described (Kazama

et al., 2008). In short, the seeds were irradiated with C-ion beams

with LETs of 100 keV mm-1 and 200 keV mm-1, and Ar-ion beams
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with an LET of 290 keV mm-1 at doses of 150 Gy, 75 Gy, and 50 Gy,

respectively, using the E5 beam line in the RIKEN RI-beam factory.

The penetration distances of C-ion beams with LETs of 100 keV

mm-1 and 200 keV mm-1, and Ar-ion beams with an LET of 290 keV

mm-1 in water were calculated to be 1.0 mm, 0.12 mm, and 6.0 mm,

respectively, using the SRIM-2013 code ‘The Stopping and Range of

Ions in Matter (SRIM)’ (http://www.srim.org). All LET values were

calculated behind seeds. Irradiation doses were determined as they

showed around 90% survivals in the M1 generation, which are

defined as the most effective doses in heavy-ion-beam mutagenesis

(Kazama et al., 2008, 2011). More than 1,000 seeds were irradiated

for each condition.
2.2 Growth conditions and preparation for
mutagenized lines

The irradiated M1 seeds were surface-sterilized by dipping in 1%

sodium hypochlorite for 10 min, washed five times with autoclaved

Milli-Q water (1 mL each time), and incubated on Murashige and

Skoog medium supplemented with 3% sucrose and 0.7% agar at 4°C

in the dark for 4 d to induce vernalization. Subsequently, the seeds

were incubated at 22°C under long-day conditions (16 h light, 8 h

dark) with white light from fluorescent lamps at approximately 50-

100 µMm-2 s-1 light intensity. Over 100 seedlings that developed true

leaves were transplanted into plastic trays (13 × 9 cm2) that contained

soil. Two seedlings were planted in each tray and grown at 22°C

under long-day conditions in a growth chamber. The M2 self-

pollinated seeds were collected from each M1 plant.

For each M1 plant, forty M2 plants were grown in the same way

as M1 plants. When the growing M2 plants were transplanted into

the plastic trays, their phenotypes were checked and the M2 plants

were divided into apparently normal plants and mutants; the

former showed Col-0 like phenotypes and the latter showed

visible mutant phenotypes. From each M2 line, one normal plant

and one mutant were randomly selected and transplanted into the

plastic tray. Phenotypes of the mutants were checked again 30 days

and 40 days after the cultivation started. For the lines showing no

visible mutant phenotypes, two normal plants were randomly

selected and transplanted. M3 self-pollinated seed aliquots (40

grains each) derived from each M2 plant were sown and their

seedlings were grown in the same way as the M1 plants

(Supplementary Figure S1). The M3 lines were named according

to the following rule: “irradiation type” (Ar-ion beams with an LET

of 290 keV mm-1: Ar50, C-ion beams with LETs of 100 keV mm-1:

C100, and 200 keV mm-1: C200) - “line identification number in the

M2 generation” - “phenotype” (N means normal), for example,

Ar50-01-N1. After confirmation of their phenotypes when they

were in the M2 generation, leaves of 40 M3 plants were harvested

and bulked to be used for DNA extraction, which were used for

array CGH. At the same time, leaves of 15 individuals were

harvested one by one to extract DNA from each individual,

which were used for PCR and qPCR analyses.
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2.3 Array CGH analysis for tandemly
arrayed genes

TAGs were listed based on a previous study (Rizzon et al.,

2006). The criteria “Low stringency” was adopted; if sequence

similarity between two or more tandemly arrayed genes was 70%

or more, they were listed as TAGs. Tandemly arrayed homologous

genes having another gene between them were also included. Then,

corresponding genes were extracted from the whole-genome

sequence of A. thaliana (TAIR10, http://www.arabidopsis.org/).

For each region having TAGs, 1-kbp upstream to 1-kbp

downstream regions were ti led with oligonucleotides

(Supplementary Table S1). In total, 3,469 genes were mounted on

the DNA array. The sequence of the oligonucleotide probes was

initiated every 100 bp across the genome sequence, excluding

repetitive sequences, and probe lengths ranged from 50 to 75 bp.

DNA was extracted from bulks of M3 leaves by using a DNA

extraction kit, Mag Extractor Plant Genome (Toyobo, Osaka, Japan),

followed by the purification using High Pure PCR CleanupMicro Kit

(Roche Diagnostics GmbH, Mannheim, Germany). The DNA of an

M3 bulk and that of another M3 bulk derived from different

irradiation treatment was labelled with Cy5 and Cy3, respectively.

Hybridization, washing, and scanning of the array CGH were

conducted as previously described (Hirano et al., 2015). The

positive signals of deletion were extracted as previously described

(Hirano et al., 2015). In brief, for each spot on the array, signal values

were calculated as log2 ratios of the Cy3-labeled sample (mutant)

versus the Cy5-reference (wild type). Peak detection was performed

using the Find Peaks feature in SignalMap software, version 1.9

(Roche NimbleGen Inc.) with the peak window size of 400 or 500 bp

and the peak threshold of 35% instead of 10% in the previous study.
2.4 Confirmation of deletions with PCR
and qPCR

The candidate deletions detected as positive peaks in the array

CGH were confirmed by PCR using genomic DNA from the 15

individual M3 plants. Two primer sets were used for each candidate

deletion (Supplementary Table S2). The deletions which were

confirmed by PCR were defined as homozygously inherited

deletions (Supplementary Table S2). For the deletions that were

not confirmed by PCR, in which the same DNA fragment as in the

wild-type plant was amplified, qPCR was performed on genomic

DNA from the seven individual M3 plants by using LightCycler and

the Universal Probe Library detection format (Roche Diagnostics,

Penzberg, Germany). Relative amplification ratios between the

deleted and non-deleted regions were calculated by using the

DDCp method as previously described (Kazama et al., 2015). One

primer set was used for each candidate deletion (Supplementary

Table S3). Deletions determined by qPCR in at least one of the

seven siblings to have half the amount of DNA were defined as

heterozygously inherited deletions. (Supplementary Table S3).
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2.5 Resequencing of the mutant genome

Genomic DNA was extracted from the collected leaves of 10-15

M3 plants using Extractor Plant Genome (Toyobo), followed by the

purification using High Pure PCR Cleanup Micro Kit (Roche

Diagnostics GmbH). The extracted DNA was sequenced using the

HiSeq 4000 sequencing system (Illumina Inc., https://

www.illumina.com) as described previously (Kazama et al., 2017).

The read sequences obtained were analyzed by using AMAP as

described previously (Ishii et al., 2016). The detected candidate

mutations were visually confirmed by using the Integrative

Genomics Viewer (IGV; Robinson et al., 2011). Visualization of

genomic locations of the detected deletions, rearrangements, and

essential genes were performed using Circos (Krzywinski et al., 2009).
2.6 Metabolic profiling by widely targeted
metabolome analysis

Seeds of 90 M3 lines that were confirmed to possess deletions in

this study except for Ar50-76-pl1 and C200-11-N2 lines were used

for metabolic profiling (Supplementary Table S4). For each line,

three replicates were prepared. Metabolic profiling by widely

targeted metabolome analysis (single-grain-based) was conducted

as previously described (Sawada et al., 2017). Metabolome data

matrix with 128 metabolite (Supplementary Table S5) intensities

obtained by LC-ESI-QqQ-MS analysis (UPLC-TQS, Waters) was

generated from the 270 samples: 90 mutant lines × three replicates

derived from each individual plant. The missing values of signal

intensities and the values less than 10 were set to 10. Metabolites

with a signal-to-noise ratio (defined as the ratio of the averaged

signal intensity to that of the extraction-solvent control) < 10 in all

experimental groups were removed. In addition, metabolites that

showed low signal-to-noise ratio in more than 30% of experimental

groups were removed, leaving 75 metabolites. The intensities of the

75 metabolites were divided by those of the internal standards (80%

methanol, 0.1% formic acid, 16.8 nmol L-1 lidocaine, and 105 mol L-

1 10-camphorsulfonic), resulting in the metabolic profiles

(Supplementary Table S4). Further analyses were conducted using

MetaboAnalyst 5.0 (Chong et al., 2018). In brief, missing values

were replaced by 1/5 of minimum positive values of their

corresponding intensities. Then, intensities were normalized by

median. Univariate analysis was conducted by one-way Analysis

of Variance (ANOVA) (Supplementary Table S6). Hierarchical

clustering was performed using ‘euclidean’ distance measure and

‘ward.D.’ clustering algorithm.
2.7 Listing mutable and essential genes

We merged the list of 510 embryo-defective (EMB) genes

(Meinke, 2019) and 705 genes whose homologous deletions are

lethal (Lloyd et al., 2015) into a list consisting of 811 essential genes

(Supplementary Table S7). We cited 1,765 genes that possess

mutations (including 10 or more nonsynonymous SNPs,
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nonsense SNPs, frameshift small indels, full CDS deletions, or

partial deletions) in ecotype Landsberg (Lu et al., 2012), i.e., genes

that are most likely not essential for A. thaliana, and excluded 25

genes (AT1G24340, AT1G30610, AT1G62340, AT2G03870,

AT2G15820, AT2G18510, AT2G24840, AT2G28880, AT2G32590,

AT2G33160, AT3G05770, AT3G23110, AT3G24560, AT3G55400,

AT4G04790, AT4G13750, AT4G16144, AT4G19490, AT4G21100,

AT4G27010, AT4G28590, AT5G08080, AT5G24670, AT5G37630,

and AT5G39750) included in the essential genes. We defined the

consequent 1,740 genes as mutable genes.
2.8 Correlation analysis

The reference genome sequence was divided into 1-Mb bins. In

each bin, the numbers of overlapping breakpoints of chromosomal

rearrangements (Supplementary Table S8) and essential genes

(Supplementary Table S7) were counted. Multiple breakpoints

derived from the same mutant line were counted as one. The

correlation coefficient was calculated using cor.test function

implemented in R software environment (Ihaka and Gentleman, 1996).
3 Results

3.1 Deletion detection for tandemly
arrayed genes

To investigate the effect of high-LET beam on inducing the

deletion of TAGs, the dry seeds of Arabidopsis thaliana Col-0 were

irradiated by heavy-ion beams with three conditions: C-ion beams

with LETs of 100 keV mm-1 and 200 keV mm-1, and Ar-ion beams

with an LET of 290 keV mm-1 (see Materials and Method). For each

irradiation condition, 96 M2 lines were grown (Table 1), and 96 M2-

lines-derived 192 M3 lines (two M3 lines per one M2 line) were used

for the array CGH analysis. As a result, 266 putative deletion signals

were detected (Supplementary Table S2).

There are two types of deletions induced by heavy-ion

irradiation; one is homozygously inherited deletion that shows

mendelian inheritance and the other is deletion that is only

inherited heterozygously because of homozygous lethality. To

confirm these putative deletions that array CGH analysis

sometimes false-positively detects, and to investigate inheritance

pattern, PCR and qPCR were performed on the siblings of the M3

lines. The deletions which were confirmed by PCR were defined as

homozygously inherited deletions (Supplementary Table S2). For

the deletions not confirmed by PCR, qPCR was conducted to

identify heterozygously inherited deletions (Supplementary Table

S3). Deletions in which at least one sibling showed the result “+”

(fragments amplified but with one more amplification cycle) or “-”

(fragment not amplified) were considered positive for heterozygous

inheritance. Reverting to M2 lines, 103 deletions were detected in 79

out of 288 lines by array CGH analysis (Table 1) which included 163

and 125 M2 lines with and without visible phenotypic abnormality,

respectively. The number of induced deletions tended to increase of

the value of LET, though it was not significant (Kruskal-Wallis test).
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Considering that the number of ion particles irradiated on seeds was

highest in the irradiation with LET of 100 keV mm-1, irradiation

with higher LET is likely to induce deletions efficiently. One or

more deletions were detected in 19% and 36% of the lines with and

without visible phenotypic abnormality, respectively, resulting in no

significant difference (chi-square test). This suggests that at least

deletions on TAGs detected by array CGH analysis were induced

regardless of phenotypic abnormality. We focused on the number of

deleted TAGs detected by the array CGH analysis. There were three

types of disruption on TAGs: loss of only a part of the TAGs

(partial), deletion of one set of TAGs, and two or more sets of TAGs

loss (Table 2). Deletions covering only one TAGs were more likely

to be homozygous while those covering two or more TAGs were

more likely to be heterozygous (p < 0.01, chi-square test) (Table 2).

Deletions covering partial TAG were also more likely to be

homozygous than those covering two or more TAGs (p < 0.01,

chi-square test). The number of deleted TAGs tended to increase

with increase of the value of LET, though only the difference
Frontiers in Plant Science 05
between 100 and 290 keV mm-1 was significant (p = 0.047, chi-

square test).

We then asked how the deletions affect the accumulation of

metabolites by conducting metabolic profiling of 126 metabolites on

90 out of 94 M3 lines possessing deletions (Supplementary Tables

S4, S5). Seventy-five metabolites showed significantly different

intensity between some combinations of the lines (Supplementary

Figure S2, Supplementary Table S6). This suggests that metabolisms

of irradiated line were affected by deletions regardless of phenotypic

abnormality, or that mutations undetected by array CGH analysis

affected the amounts of the metabolites.
3.2 Characteristics of homozygous and
heterozygous deletions among three LETs

To compare the sizes between homozygously and heterozygously

inherited deletions in the 94 M3 lines, both ends of probes showing
TABLE 1 Summary of deletions of TAGs detected by array CGH.

Ion species
(LET, dose)

Phenotype No. of M2 lines
No. of deletion
detected lines

No. of
detected deletion

C
(100 keV µm-1, 150Gy)

Normal 34 20 24

Abnormal 62 2 2

Total 96 22 26

C
(200 keV µm-1, 75Gy)

Normal 41 18 23

Abnormal 55 7 11

Total 96 25 33

Ar
(290 keV µm-1, 50Gy)

Normal 50 20 27

Abnormal 46 12 16

Total 96 31 43

Total

Normal 125 58 74

Abnormal 163 21 29

Total 288 79 103
TABLE 2 Number of TAGs deleted by each deletion.

Ion species (LET) Zygosity
No. of deleted TAGs (n)

0 < n < 1 n = 1 n ≥ 2 Total*

C
(100 keV µm-1)

Homozygous 6 8 0
18

Heterozygous 2 1 9

C
(200 keV µm-1)

Homozygous 7 7 2
21

Heterozygous 5 3 9

Ar
(290 keV µm-1)

Homozygous 10 9 5
31

Heterozygous 3 6 11

Total
Homozygous 23 24 7

70
Heterozygous 10 10 29
fron
*Number of deletions containing one or more TAG irrespective of zygosity.
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deletion and both ends of deletions at base-pair levels were used to

determine deletion size in the array-based detection (Supplementary

Table S9). Statistical analysis revealed that there was no significant

difference in deletion size between the irradiation treatments with

different LETs (p > 0.05; Kruskal-Wallis rank sum test; Figure 1A).

This tendency did not change when deletion sizes of homozygous and

heterozygous deletions were compared separately (Figures 1B, C).

However, at each irradiation condition, the mean size of

heterozygously inherited deletions was significantly larger than that

of homozygously inherited deletions (p < 0.05; Wilcoxon rank-sum

test; Figures 1B, C). This tendency may be attributed to their lengths;

longer deletions are more likely to cover essential genes which make

them homozygous lethal. This finding raises a question about how

the homozygous and heterozygous deletions are distributed in the

Arabidopsis genome.
3.3 Distribution of deletions and
essential genes

We compared the distances between the closest pair of essential

genes as theoretical maximum sizes of homozygous deletions and the

sizes of observed homozygous or heterozygous deletions regardless of

the LET value. The mean size of the homozygous deletions was

significantly smaller than that of the distances between the closest

pairs of essential genes (Figure 2, P < 0.01; Wilcoxon rank-sum test).

This result strongly suggests that the mean size of homozygous

deletions seemed to be influenced by the distribution of essential

genes. Then we investigated the influence of essential genes on the

distributions of homozygous and heterozygous deletions of the
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mutants. For the heterozygously inherited deletions that are

relatively larger than others, genome resequencing was performed

to confirm accurate sizes of the deletions as previously described

(Supplementary Table S9; Hirano et al., 2015; Kazama et al., 2017).

We then collected 94 homozygous and 55 heterozygous deletions (>

100 bp) from 94 M3 lines possessing deletions isolated in this study

and 22 mutant lines previously reported (Supplementary Table S9;

Hirano et al., 2015; Kazama et al., 2017; Hase et al., 2020; Sanjaya

et al., 2021). Next, we investigated the distribution of 1,740 mutable

genes. In the 94 homozygous and 55 heterozygous deletions, 593 and

4,061 genes were overlapped, respectively. The mutable genes

occupied 10% of the genes in homozygous (62 out of 593) and

6.6% of the genes in heterozygous (270 out of 4,061) deletions,

respectively (p < 0.01, chi-square test) (Figure 3). Second, we

investigated the overlaps of the essential genes with the

homozygous or heterozygous deletions (Figure 3). No essential

gene (0 out of 593) overlapped with homozygous deletions while

2.2% (90 out of 4,061) of the genes in the heterozygous deletions were

essential genes (p < 0.01, chi-square test). This contrasting situation

can be attributed to the nature of the essential genes that deletions

including them cannot be inherited homozygously. These results

suggest that the distribution of essential genes affects the upper limit

of the deletion size (Figure 2).
3.4 Location of breakpoints and
essential genes

Through whole-genome mutation analysis, we and other groups

have identified chromosomal rearrangements as well as deletions
A B C

FIGURE 1

Distribution of deletion size detected by TAG array. Distributions of all (A), heterozygous (B), and homozygous (C) deletions induced by each heavy-
ion are shown. The median values are indicated by bold horizontal lines in each box. The outliers are indicated by hollow circles.
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induced by heavy-ion-beam irradiation (Hirano et al., 2015; Kazama

et al., 2017; Hase et al., 2020; Sanjaya et al., 2021). To investigate

whether the locations of the breakpoints were influenced by essential

genes, we compared the locations of the 532 breakpoints detected by

NGS-based analysis in this study and the previous studies

(Supplementary Table S7; Hirano et al., 2015; Kazama et al., 2017;

Hase et al., 2020; Sanjaya et al., 2021) and those of essential genes

(Figure 4). Almost all of the breakpoints did not overlap with the

essential genes, except eight breakpoints: five were heterozygous

deletions or chromosomal rearrangements with breakpoints

overlapping the genes AT1G63160, AT4G03430, and AT4G27600,

two were homozygous translocations with breakpoints in the 5′-UTR
region of AT2G28880 gene, and the other one was a homozygous

translocation whose breakpoint was in the coding region of

AT4G27600 (NARA5 gene) which is essential for autotrophic

photosynthetic growth (Ogawa et al., 2009). We supposed that the

distribution of essential genes gave a bias to inheritance of

chromosomal rearrangement. Indeed, the numbers of breakpoints

and essential genes in every 1-Mb window of the Arabidopsis genome

were found to be negatively correlated (Supplementary Table S10)

(correlation coefficient r = -0.32, p = 0.00036).
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4 Discussion

4.1 Omics analysis on mutants induced by
heavy-ion beams

In the current study, we detected large-scale mutations in the

Arabidopsis plants after heavy-ion irradiations. We performed NGS-

based mutation analysis on the mutants that possessing

heterozygously inherited deletions that were detected by array

CGH analysis and were relatively larger than others. Some

deletions were only detected through NGS-based analysis

(Supplementary Table S9). As the deletions were small (< 1 kbp), it

is likely that they were not detected by the array CGH analysis, which

can only detect deletions that overlap with probe regions. The

breakpoints of chromosomal rearrangements, such as inversions,

can also be detected through NGS-based analysis. Others were

detected only by array CGH analysis, possibly due to resequencing

mixed samples of 10-15 M3 plants derived from the same M2 plants,

resulting in the deselection of infrequent mutations. Consequently,

the combination of array CGH and NGS-based analyses has enabled

comprehensive mutation detection.

We also performedmetabolic profiling on 90M3 lines possessing

deletions and suggested the influence of deletions on metabolome

(Supplementary Table S6). A heatmap of hierarchical clustering

(Supplementary Figure S2) showed that several metabolites were

upregulated or downregulated specifically in some lines and

clustered in the heatmap. For example, in the Ar50-44-as1 line

that showed an abnormal shape of leaves (Supplementary Figure S1;

mutant ID 15 in Supplementary Figure S2), a metabolite cluster

containing three metabolites (metabolite IDs 1128, 200005, and

200009) was upregulated. We set relevant keywords corresponding

to these metabolites and searched the pathway map of A. thaliana in

the KEGG PATHWAY database (Kanehisa et al., 2021) for pathways

in which these metabolites are involved. These metabolites were

commonly involved in the flavonoid biosynthesis pathway

(ath00941) (Supplementary Table S11). In the Ar50-44-as1 line, a

deletion in chromosome 2 was also detected by microarray probes

located from 8058304 bp to 8099777 bp. The size of this deletion

could be expanded to the positions of adjacent probes leading to a

maximum size possible (chr2:7920277-8245220) in which 92 genes

were included (Supplementary Table S12). We also searched the

pathway map of A. thaliana in the KEGG PATHWAY database for

pathways in which these genes are involved. The gene coding a

peroxidase superfamily protein (AT2G18980) was involved in the

phenylpropanoid biosynthesis (ath00940) that is connected to the

flavonoid biosynthesis pathway (ath00941) via metabolites

cinnamoyl-CoA and p-coumaroyl-CoA. It can be considered that

the upregulation of the metabolite cluster was presumably due to the

deletion of AT2G18980 gene though it is uncertain whether this

metabolic change affected the phenotype. A series of combinational

information of deletions and metabolite intensities of the mutant

lines would help functional analysis of the deleted TAG in

further studies.
FIGURE 2

Distributions of heterozygous and homozygous deletions and
theoretical maximum sizes of homozygous deletions. The detected
deletions were classified into homozygous and heterozygous ones,
and distributions of their sizes are shown. Theoretical maximum
sizes of homozygous deletions were estimated from distances
between the closest pair of essential genes. The median values are
indicated by bold horizontal lines in each box. The outliers are
indicated by hollow circles. ***; P<0.01 in Wilcoxon rank-sum test.
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4.2 Deletion inheritance influenced by both
LET and distribution of essential genes

In the current study, we detected multiple deletions in the

Arabidopsis plants after irradiations with LET of 100, 200, and 290

keV mm-1. In terms of TAG disruption, heavy-ion-beam irradiation

with LETs of ≥100 keV µm-1 was enough to disrupt TAGs of about

two or three genes without affecting the essential genes. In addition

to the frequency and size of deletions, the deletions and

rearrangements detected in this study provided information for

inheritable rearrangements that did not disrupt any essential genes.

This could be a beneficial view in inducing deletions in the plant

genome. Recently, mutation analysis has been effectively

conducted by using whole genome sequencing and exome

sequencing in several plant species (Li et al., 2017; Ichida et al.,

2019; Li et al., 2019; Hase et al., 2020; Liu et al., 2023; Yang et al.,

2019; Oono et al., 2020; Zheng et al., 2020, 2021; Sun et al., 2022;

Ren et al., 2023; Wen et al., 2023; Xiong et al., 2023). By using

whole-genome mutation analysis, we previously found a significant

difference in mutation spectrum between 30 keV mm-1 and 290 keV

mm-1 heavy-ion-beam irradiations (Hirano et al., 2015; Kazama

et al., 2017; Morita et al., 2021). It was suggested that heavy-ion

beams with higher values of LET tend to induce larger sizes of

mutations. In this study, however, the lengths of deletions were not
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significantly different by LET in a range of 100-290 keV mm-1

(Figure 1A), presumably affected by the distribution of essential

genes. These results imply that the scale of induced mutation

increases with the increasing value of LET but that the upper limit

of the scale is subject to the distribution of essential genes. Indeed,

the einkorn wheat mutants induced by heavy-ion beams showed

deletions over 20 kbp or more, even those induced by carbon-ion

irradiation with an LET of 50 keV µm-1 (Shitsukawa et al., 2007;

Nishiura et al., 2018; Hashimoto et al., 2021). In the 570 Mbp long

Silene latifolia Y chromosome, C-ion irradiation with an LET of 30

keV µm-1 induced large deletions covering more than a quarter of

the Y chromosome (Kazama et al., 2016; Krasovec et al., 2019).

These findings suggest that such large deletions can be induced by

C-ion irradiation with the LETs of 30-50 keV µm-1 in the species

with long distances between essential genes. These findings were

consistent with a classical image that any radiations can induce

large deletions effectively. However, upper limits of heritable

deletion sizes are largely dependent on the distribution of

essential genes and only deletions that do not disrupt the

essential genes can be inherited homozygously. Conversely, the

ability of the heavy-ion beams with high LETs to induce large

deletions with high efficiency in the Arabidopsis genome, in which

essential genes are densely distributed, may be due to the ion beam

causing localized damage on chromosomes.
FIGURE 3

Distributions of genes and deletion mutations. Chromosomes are indicated by white rectangles. Centromeres are indicated by gray spindles.
Essential and non-essential genes are indicated by magenta and blue rectangles outside the chromosome, respectively. Heterozygously and
homozygously inherited deletions are indicated by magenta and blue rectangles inside the chromosome, respectively. Scale bar = 10 Mbp.
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4.3 Putative essential genes overlapped
with heterozygous deletions

We investigated the overlap between the essential genes and the

55 heterozygous deletions and revealed that 21 heterozygous

deletions overlapped with essential genes (Figure 3). In the

remaining 34 heterozygous deletions, 32 deletions included 471

genes. It is possible that some of these genes are essential

(Supplementary Table S13), or that those deletions are linked

with small mutations that disrupt the function of essential genes.

It is also possible that a deletion including all genes in some TAG

leads to lethality as if the TAG behaves as an essential gene. We

compared the theoretical maximum sizes of homozygous deletions

and the sizes of observed homozygous or heterozygous deletions

(Figure 2). This result not only strongly suggests that the mean size

of heterozygous deletions also seemed to be influenced by the

distribution of essential genes though not as much as

homozygous deletions, but also implies that the essential genes of

Arabidopsis might not be fully discovered yet. Moreover, deletions

of some genes involved in gametogenesis are critical even if they are

heterozygous, which would be a factor for the upper limit of sizes of

both homozygous and heterozygous deletions. Naito et al. (2005)

investigated the transmissibility of various sizes of deletions

including GL1 gene induced in pollen cells (M1) and proposed

that compared to the small deletions (1-4 bp), large deletions (> 6

Mbp) are not transmitted to progeny (M2) because the possibility

that genes involved in gamete development or viability are

overlapped with increasing size of deletions. Kitamura et al.
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(2022a) compared mutation spectrum between M1 and M2

generation after gamma-ray irradiation and revealed that

chromosomal rearrangements tend not to be inherited to the next

generation. Observations of the heritability of deletions in our study

corroborates this hypothesis.
4.4 Influences of essential gene on
inheritance of chromosome rearrangement

Our result implied that the locations of the essential genes are

also influential on the locations of breakpoints (Figure 4;

Supplementary Table S10). As one of the exceptions of the

relationship, we found a breakpoint in the coding region of

NARA5 which is essential for autotrophic photosynthetic growth

(Ogawa et al., 2009). The translocation was detected in the Ar-57-

al1 mutant line that was grown on the medium containing sucrose

from germination to young plantlet (Hirano et al., 2015). Therefore,

Ar-57-al1 plants would be able to overcome the growing stage when

NARA5 is essential. Except for this, no homozygous breakpoint was

located in the coding region of essential genes. The irradiation

experiments on the pollen grains of Cyrtanthus mackenii showed

that C-ion irradiation with an LET of 22.5 keV µm-1 is sufficient to

induce rearrangements in the chromosomes of the male

gametophyte and produces more pronounced biological effects on

chromosomal bridge induction than Ar-ions with an LET of 280

keV µm-1 during the first cell division (Hirano et al., 2013, 2021).

Since almost all chromosomal bridges cannot be transmitted to the
FIGURE 4

Distributions of essential genes and chromosomal rearrangements. Chromosomes are indicated by black arcs. Essential genes are indicated by
magenta lines outside chromosomes. Breakpoint junctions of chromosomal rearrangements and large (≥ 100 bp) deletions listed in Supplementary
Table S8 are indicated by orange (inter-chromosomal) or light blue (intra-chromosomal) arcs inside chromosomes.
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next generation, the C-ion irradiation with an LET of 22.5 keV µm-1

cannot effectively produce inheritable rearrangements. On the other

hand, inheritable chromosomal rearrangements were frequently

produced with higher LET radiations (Kazama et al., 2017;

Hirano et al., 2022). These results suggest that heavy-ion beams

with higher LETs can effectively induce inheritable rearrangements

because of localized damage on chromosomes.

Different mutation frequencies after heavy-ion irradiation were

also observed between chromosomal locations (Kitamura et al., 2022b).

In the current study, the percentage of intra-chromosomal

rearrangements including large (≥ 100 bp) deletions in all

chromosomal rearrangements was 72%. Ex-TAQing system that can

induce chromosomal rearrangements randomly using restriction

enzymes has been developed (Tanaka et al., 2020). The percentage of

intra-chromosomal rearrangements in all chromosomal

rearrangements induced by Ex-TAQing that were detected in the

two diploid mutants was 82% (18 out of 22). Both heavy-ion beam

and Ex-TAQing tend to induce more intra-chromosomal

rearrangements than inter-chromosomal rearrangements (not

significantly different by Z-test), which is probably because the

heritability of inter-chromosomal rearrangement is less than that of

intra-chromosomal rearrangement through cell division.

This study led to the conclusion that the distribution of essential

genes affects the heritability of large deletions and chromosomal

rearrangements. To create large deletions that are effective in

destroying TAGs without deleting essential genes, more dense

ionization, for example caused by high-LET heavy-ion beams,

would be effective. Although less data of the effects of high-LET

irradiations on phenotypic spectrum has been provided than low-

LET irradiations or chemical mutagens, the effectiveness of the

high-LET irradiations on the induction of large deletions and

rearrangements may be a beneficial source for creating a new

variety of mutants.
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