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Sugar signals pedal
the cell cycle!
Sanjay Singh Rawat and Ashverya Laxmi*

National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
Cell cycle involves the sequential and reiterative progression of important events

leading to cell division. Progression through a specific phase of the cell cycle is

under the control of various factors. Since the cell cycle in multicellular

eukaryotes responds to multiple extracellular mitogenic cues, its study in

higher forms of life becomes all the more important. One such factor

regulating cell cycle progression in plants is sugar signalling. Because the

growth of organs depends on both cell growth and proliferation, sugars

sensing and signalling are key control points linking sugar perception to

regulation of downstream factors which facilitate these key developmental

transitions. However, the basis of cell cycle control via sugars is intricate and

demands exploration. This review deals with the information on sugar and TOR-

SnRK1 signalling and how they manoeuvre various events of the cell cycle to

ensure proper growth and development.
KEYWORDS

target of rapamycin (TOR), SnRK1 kinase, CDK (cyclin-dependent kinase), sugar
signalling, glucose
Introduction

Energy derived from sugars propels a wide range of activities essential for an organism

to function properly. This is orchestrated by cell signalling events that comprises the

regulation of various proteins by upstream kinases and their downstream signalling

effectors. Since cell division cycle in plants is responsive to energy availability, the role of

sugars, such as glucose and sucrose, holds utmost importance in this regard, as they are the

end products of photosynthesis. Sugars as signalling molecules are important re-modelers

of an organism’s metabolism as well as physiology. The majority of the responses governed

by sugars are mediated by the highly conserved serine/threonine kinase, TOR (TARGET

OF RAPAMYCIN), the master regulator of key developmental processes in eukaryotic cells

(Wullschleger et al., 2006; Dobrenel et al., 2013; Xiong and Sheen, 2015). On the contrary,

their insufficiency induces an altogether different transcriptome through the AMPK (AMP-

ACTIVATED PROTEIN KINASE)/SNF1 (SUCROSE NON-FERMENTING 1)/SnRK1

(SNF1-RELATED PROTEIN KINASE 1) signalling that favours stress induced responses

over growth (Hedbacker and Carlson, 2008; Mihaylova and Shaw, 2011; Crozet et al., 2014;

Margalha et al., 2019).
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It was as early as 1966 when Van’t Hof demonstrated the

provision of sucrose to excised pea root tips in promoting

transition of cells from G1 to enter the active M phase (Hof,

1966). This was probably the first report on the crucial bearing of

sugar signalling in the regulation of the cell cycle. Thereafter, several

other studies have pointed towards the importance of sugars as

crucial metabolites in the control of cell cycle. For instance, in the

budding yeast Saccharomyces cerevisiae, fermentable sugars like

glucose and sucrose activate protein kinase A (PKA) which is

required for the expression of both growth and stress responsive

genes, inactivation of which leads to arrest at the G1 phase of the cell

cycle (Santangelo, 2006; Zaman et al., 2008). Similarly, in the fission

yeast Schizosaccharomyces pombe, glucose depletion seems to

reduce cell size and restrict the cells in the G2 phase (Masuda

et al., 2016). Similar yet complex mechanisms exist in multicellular

organisms in the regulation of cell cycle by various factors including

nutrients, sugars, oxygen, amino acids etc (Elledge, 1996; Fingar and

Blenis, 2004). Specifically, the TOR kinase integrates these signals to

regulate cell growth and proliferation (Loewith and Hall, 2011). For

instance, nutrients are particularly important TORC1 (TOR

complex1) activator in unicellular organisms like yeast (Wang

and Proud, 2009). Furthermore, more than one pathway is

implicated in mTOR activation in mammals (Foster and Fingar,

2010). Additionally, the glucose-induction of mTOR (mechanistic/

mammalian TOR) activity occurs in an amino acid (AA) dependent

pathway, suggesting AA supremacy over other factors on mTOR

activation (Avruch et al., 2009; Segev and Hay, 2012; Jewell et al.,

2013). Interestingly, in plants, sugar-activation of TOR is a

prerequisite to induce cell proliferation at the shoot and root

meristems and lies upstream of its induction by other factors

(Xiong et al., 2013; Pfeiffer et al., 2016; Li et al., 2017). Because

plants are sessile, this simple yet unique regulatory mechanism of

TOR activation might be beneficial across their various

ontogenic regimes.
TOR signalling drives the cell cycle

In the budding yeast, two TOR genes are present which encode

for the paralogs, Tor1 and Tor2, that make up the catalytic subunits

of the TORC1 and TORC2 complexes, respectively, though TORC1

can also accommodate Tor2 at its active site (Loewith et al., 2002;

Wedaman et al., 2003). Moreover, the structural aspects and

composition of TORC1 and TORC2 are distinct, leading to

rapamycin insensitivity in the latter (Loewith and Hall, 2011). On

the other hand, in animals, only TOR, encoded by a single gene

makes up the catalytic subunit of both mTORC1 and mTORC2

(Saxton and Sabatini, 2017). The two multimeric complexes vary in

their overall subunit composition and therefore have specialized

functions (Emmerstorfer-Augustin and Thorner, 2023). As in yeast,

the mTORC1 in mammals and TORC1 in plants (hereafter TOR,

since it lacks the TORC2 complex), control various aspects of cell

cycle, growth and autophagy, while the TORC2/mTORC2

complexes regulate actin cytoskeleton dynamics (Schmidt et al.,

1998; Cybulski and Hall, 2009; Emmerstorfer-Augustin and

Thorner, 2023). Since the activity of TORC1/mTORC1/TOR
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complexes is controlled by nutrients, such as glucose and amino

acids, and their regulation by these is well-known, therefore only

their regulation in the cell cycle control will be discussed in the

following sections.

Cell growth and cell proliferation are co-ordinately coupled

processes which are regulated by the TOR kinase through its control

over initiation of protein biosynthesis and ribosome biogenesis

(Mahajan, 1994; Powers and Walter, 1999; Wullschleger et al.,

2006). It is due to this property, in part, that necessitates TOR

participation in the progression of the cell cycle. Additionally, the

crucial role of TOR in this regard is exemplified by the action of the

immunosuppressant drug rapamycin, (which specifically inhibits

TORC1 and not TORC2) which results in a reduced rate of cell

division, cell growth and cell cycle progression (Heitman et al.,

1991; Barbet et al., 1996). In particular, TORC1 is crucial in

maintaining cell cycle progression in the budding yeast, since its

inhibition is lethal in the progression across all points in the cell

cycle (Berset et al., 1998; Barbet et al., 2017). Specifically, the yeast

TORC1 complex evokes both G1 to S and G2 to M phase transitions

mostly by activation of various cyclins and de-repression of various

CDKs (CYCLIN-DEPENDENT KINASES) (Heitman et al., 1991;

Nakashima et al., 2008; Barbet et al., 2017) (Figure 1). Similarly,

mTORC1 inhibition through rapamycin results in cell cycle arrest

through repression of various cell cycle components including

cyclins, CDKs as well reduced phosphorylation of the Rb

(RETINOBLASTOMA) prote in in var ious ce l l types

(Hashemolhosseini et al., 1998; Decker et al., 2003; Gao et al.,

2004; Balcazar et al., 2009; Jung et al., 2010) (Figure 1). Strikingly,

many mammalian cancerous cells exhibit aberrant mTOR

activation (Hsieh et al., 2012), suggesting a regulatory role of

TOR in the tight regulation of cel lular responses to

environmental signals.

The support of TOR in the regulation of the plant cell

proliferation and organ growth comes from the genetic screen of

the TOR knockdown mutants and treatment of plant cells to TOR

competitive inhibitors (Deprost et al., 2007; Montané and Menand,

2013). The TORmutant displays various growth trait anomalies viz.

reduced shoot and root growth, smaller rosette size, and reduced

seed yield (Deprost et al., 2007), indicating TOR regulates plant

fitness and life cycle traits. In line with this, pharmacological TOR

inhibition through rapamycin treatment to the green alga,

Chlamydomonas resulted in cell cycle arrest (Pérez-Pérez et al.,

2017). Furthermore, supplementation of TOR inhibitors to

Arabidopsis seedlings led to decreased overall meristem activity

(Montané and Menand, 2013). In particular, the second-generation

TOR inhibitor, AZD-8055 was shown to arrest Arabidopsis cell

cycle specifically in the G1 phase in the roots (Desvoyes et al., 2020).

Beyond controlling cell division, TOR also controls cell size.

Generally, cell growth is preceded by biosynthesis of

macromolecules (Conlon and Raff, 1999; Polymenis and Schmidt,

1999). This is achieved through the activation of serine/threonine

kinase, S6K1 (RIBOSOMAL PROTEIN S6 KINASE 1) signalling in

eukaryotes (Thomas and Hall, 1997; Gingras et al., 2001; Magnuson

et al., 2012). Moreover, phosphorylation of the S6K1 through TOR

is frequently proposed as a readout of its activity (Brown et al., 1995;

Schepetilnikov et al., 2013; Dobrenel et al., 2016) In mammals, the
frontiersin.org

https://doi.org/10.3389/fpls.2024.1354561
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rawat and Laxmi 10.3389/fpls.2024.1354561
mTORC1 controls cell size through independent regulation of the

downstream effectors, S6K1 and 4E-BP1 (eIF4E-BINDING

PROTEIN 1) (Fingar and Blenis, 2004) (Figure 1). In Drosophila,

yeast and mice, a reduction in both cell size and life span was

observed upon S6K1 deficiency (Shima et al., 1998; Montagne et al.,

1999; Sengupta et al., 2010). Particularly, the Sch9, S6K1 ortholog of

yeast, regulates entry into G0 phase (quiescence) besides

functioning to regulate ribosome biogenesis, protein synthesis and

chronological life span (Fabrizio et al., 2001; Wang and Proud,

2006; Urban et al., 2007), hence pointing towards the conserved role

of S6K1 in controlling cell size and ultimately proper growth and

development (Figure 1). Of note, S6K1 deficiency mimics the effect

of TOR inhibitors on cell size but not on cell proliferation,

suggesting the regulation of cell size and proliferation can be

uncoupled (Montagne et al., 1999; Ohanna et al., 2005; Dowling

et al., 2010; Fumagalli and Pende, 2022).

In line with this, AtS6K1 also limits cell division and regulates

growth in Arabidopsis (Henriques et al., 2010) (Figure 1). In the

meticulous study by Henriques et al., 2010, AtS6K1 was shown to

interact with both RBR1 and E2Fb. The S6K1 protein was

demonstrated to be necessary for RBR1 localization into the

nucleus where it suppresses E2Fb activity (Uemukai et al., 2005;

Shimizu-Sato et al., 2008). Silencing of S6K1 resulted in cytoplasmic

movement of RBR1 (RETINOBLASTOMA-RELATED 1) where it

is phosphorylated via the CYCD3;1-CDKA1 protein complex
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(marker of the G1 and S phase) (Nakagami et al., 2002; Henriques

et al., 2010). Interestingly, the suppression of AtS6K1 resulted in the

reduction of cell size, increased ploidy levels and expression of

CDKB1;1 (Henriques et al., 2010), a major marker of G2 to M phase

transitions (Figure 2), suggesting that S6K1 negatively regulates cell

proliferation (Henriques et al., 2010, Henriques et al., 2013).

A role of TOR signalling cascade is also evident in cellular

differentiation in plant roots (Montané and Menand, 2013; Xiong

et al., 2013). Recently, a downstream effector of TOR signalling, named

AtYAK1 (for YET ANOTHER KINASE), an ortholog of the yeast

YAK1, was shown to positively regulate the expression of the cell cycle

inhibitors, SMRs (SIAMESE-RELATED) which repress CDKs activity,

causing reduced meristematic activity and early differentiation along

the root meristem, a phenotype also reminiscent of AZD-8055

treatment to roots (Montané and Menand, 2013; Barrada et al., 2019;

Forzani et al., 2019) Moreover, AtYAK1 was also demonstrated to limit

the expression of various cyclins along the root meristem, further

implying AtYAK1 as a negative regulator of the cell cycle (Barrada

et al., 2019). AtYAK1 is also directly phosphorylated by TOR, resulting

in its inactivation (Forzani et al., 2019), suggesting that TOR through its

direct control over YAK1, might control the progression from the G1 to

S as well as G2 to M phase of the cell cycle (Figure 1).

In the light of above observations, TOR becomes all the more

important in linking plant cell proliferation to organ growth,

especially since TOR is highly expressed at the meristems
A B C

FIGURE 1

TOR regulation of cell cycle in different organisms. (A) In mammals, mTORC1-mediated signalling is relayed through the activation of its
downstream effectors S6K1 and 4E-BP1 which regulate cell growth and cell cycle progression. Besides this, mTOR also controls the activation of
various cyclins and CDKs which promote progression of different phases of the cell cycle (B) In Saccharomyces cerevesiae, the TORC1 favours
progression of the cycle through activation of several G1 cyclins which activate various CDKs promoting the transition from G1 to S phase.
Additionally Sch9, a major target of TORC1, which apart from controlling translation initiation and ribosome biogenesis also regulates entry into G0

(quiescence) (C) In plants, TOR, similar to the mammalian and yeast counterpart, controls phosphorylation events crucial for cell expansion and
proliferation. This, in part, is mediated through S6K1 phosphorylation which integrates with the cell cycle machinery to favour growth over
proliferation (see main text). Unlike S6K1, YAK1 is a negative regulator of growth. Phosphorylation by TOR inhibits YAK1’s activity which relieves the
inhibition of CDKs by SMRs. Green arrows indicate direct phosphorylation by upstream targets.
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(Menand et al., 2002). Plant meristems are marked by active cellular

divisions and maintain stem cell population via self-renewal (Stahl

and Simon, 2010). Because TOR is involved in cell proliferation,

expansion and elongation through its induction of translation

capacity, its participation is crucial in maintaining meristem

activity in both shoot and root. Interestingly, differential

activation of TOR kinase is observed across plant organs (Li

et al., 2017). For instance, the synergistic effect of light and auxin

activation of TOR is required to induce proliferation at the shoot

apical meristem (SAM), while cell divisions at the root apical

meristem (RAM) are merely glucose-TOR dependent (Xiong

et al., 2013; Li et al., 2017), which makes good sense as shoots

and roots are spatially separated and the former are the primary

organs which are exposed to light. Hence, sugar-TOR signalling at

the shoot apex is essential for transduction of these signals to the

root, enforcing proper growth and development.
AMPK/SNF1/SnRK1 mediate cell
survival under stress

In eukaryotes various checkpoints govern the gatekeeping of

progression of the sequential events of the cell cycle (Gorbsky, 1997;

Velappan et al., 2017; Marescal and Cheeseman, 2020). Several

checkpoints are also called upon during various stages of an

organism’s normal growth and development as well as during

times of stress (Qi and Zhang, 2019; Pedroza-Garcia et al., 2022).

In this context, sugar availability plays an important role. For

example, a drop in exogenous glucose levels resulted in the cell

cycle halt as soon as in the G1 phase in animal cell cultures (Pardee,

1974). This glucose availability mediated arrest is also observed in

case of yeast and plants (Jones et al., 2005; Hartig and Beck, 2006;

Masuda et al., 2016), which demonstrates that sugars serve as

conserved fundamental metabolites in regulating cell cycle

checkpoints. In the presence of sufficient metabolic resources

these checkpoints are bypassed to enable the organism to transfer

error-free DNA to the next generation (Francis and Sorrell, 2001).

The halt in cell cycle progression is due, at least in part, to

AMPK (in animals)/SNF1 (in yeast)/SnRK1 (in plants) pathways

that harmonize growth in response to energy inadequacy, which is

quite in line with their stress responsive roles (Jones et al., 2005;

Gwinn et al., 2008). The AMPK/SNF1/SnRK1 are heterotrimeric

proteins which serve as metabolic sensors to transduce signals

activated upon energy starvation to regulate various

transcriptomic and metabolic regimes and in this way promote

cell survival (Hardie, 2007; Hedbacker and Carlson, 2008; Crozet

et al., 2014; Emanuelle et al., 2015; Jamsheer K et al., 2021).

Additionally, they control various aspects of normal growth and

development including meiosis, aging and sporulation in yeast

(Carlson et al., 1981; Ashrafi et al., 2000), normal cell cycle

progression is mammals (Bettencourt-Dias et al., 2004; Lee et al.,

2007; Dasgupta and Chhipa, 2016), and regulation of flowering

time, circadian induction of gene expression in plants, to name a

few (Wurzinger et al., 2018).

The SnRK family comprises of three subfamilies viz. SnRK1,

and the plant specific SnRK2 and SnRK3 (Hey et al., 2010). The
Frontiers in Plant Science 04
latter two subfamilies regulate several biological processes in

response to various stresses (Halford and Hey, 2009). Since the

AMPK/SNF1 proteins are more similar to the SnRK1 than to its

other homologues, further discussion will be aimed at SnRK1

signalling-mediated regulation of the cell cycle. As in the other

prototypes, the SnRK1 complex consists of one a catalytic and non-

catalytic b and the hybrid bg subunits (Gissot et al., 2004; Baena-
González et al., 2007). Furthermore, each subunit type has many

members, for instance, there are three variants of the a subunits

(SnRK1.1/KIN10, SnRK1.1/KIN11 and SnRK1.3/KIN12) giving rise

to many functional isozymes (Emanuelle et al., 2015).

AMPK has been linked to cell growth inhibition and the

induction of autophagy (Hardie, 2011; Li and Chen, 2019). In

mammals, glucose deprivation causes cell cycle arrest regulated by

the AMPK-dependent mTOR inhibition and activation of the

tumour suppressor, p53 (Inoki et al., 2003; Jones et al., 2005)

(Figure 2). The AMPK has also been reported to directly control

mTOR activity through phosphorylation of its components,

implicating a regulatory control of mTOR activity by AMPK

signalling, leading to cell cycle arrest (Gwinn et al., 2008)

(Figure 2). Additionally, AMPK induces autophagy after detection

of error in DNA synthesis (Mihaylova and Shaw, 2011; Szewczuk

et al., 2020). The otherwise gratuitous induction of cell cycle

through abnormal mTOR signalling is a key signature of

cancerous cells (Inoki et al., 2003; Luo et al., 2010). Because DNA

replication and subsequent cell proliferation are energy demanding

processes, the activation of AMPK signalling to mediate a halt in the

cell cycle progression is preeminent in this regard (Jeon and

Hay, 2015).

The role of SNF1 signalling is also evident in controlling cell

cycle progression since the yeast snf1 mutants fail to arrest the cell

cycle even under acute nutrient deprivation and additionally show

reduced tolerance to heat shock (Thompson-Jaeger et al., 1991). In

addition, SNF1 is also correlated with correct mitotic spindle

assembly, suggesting it exerts positive role in cell division

dynamics (Tripodi et al., 2018). This idea further supports the

role of SNF1 in regulating cytokinesis through its interaction with

other cell cycle components (Coccetti et al., 2018) (Figure 2).

Besides this, SNF1 is also critical for the extension of

chronological lifespan of yeast cells grown under caloric restricted

environments, thus conferring longevity (Wierman et al., 2017;

Maqani et al., 2018). More recently, a phosphoproteomic analysis

has also demonstrated the ability of SNF1 to phosphorylate Sch9,

the yeast S6K1, under nutrient limitation, impairing its

phosphorylation by TORC1 and hence its activity (Caligaris et al.,

2023). This indicates that SNF1 can antagonize the energy pathway

through repression of the TOR-Sch9 axis under acute nutrient-

deprived conditions (Figure 2).

In plants, the first functional evidence of SnRK1 signalling in

the regulation of cell cycle was depicted through heterologous

expression of rye, Secale cereale SnRK1 in the yeast system

(Dickinson et al., 1999). As a result of SnRK1 overexpression, a

reduction in cell size of yeast cells was noticed, probably because the

cells exited too early from the cell cycle (Dickinson et al., 1999).

Earlier, it was shown that the shuttling of AMPK/SNF1 to and from

the nucleus is regulated through their association with distinct
frontiersin.org
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complexes, which can alter their biological functions depending

upon substrate availability in different subcellular spaces

(Hedbacker and Carlson, 2008; Afinanisa et al., 2021). In plants,

such spatial regulation of TOR activity by SnRK1 was recently

demonstrated to operate during ABA signalling in Arabidopsis root

meristem (Belda-Palazón et al., 2022). In particular, under

unstressed conditions, SnRK1 is sequestered in the nucleus

through its interaction with ABA signalling components (Belda-

Palazón et al., 2022). However, upon ABA perception, the

translocation of the catalytic subunit of SnRK1 (KIN10) out of

the nucleus results in the inhibition of TOR activity as KIN10

directly interacts with and phosphorylates RAPTOR, leading to

attenuation of TOR activity and hence root growth (Nukarinen

et al., 2016; Belda-Palazón et al., 2022). This indicates a considerable

role of the interplay of SnRK1-TOR in the modulation of root

system architecture through the control of cell growth dynamics.

A recent report has also suggested that SnRK1 might have a role

in sensing DNA damage, eliciting what is known as the DDR (DNA

Damage Response) (Hamasaki et al., 2019; Pedroza-Garcia et al.,

2022) In essence, DDR comprises the structural changes in DNA

which affects its replication and transcription and the ensuing

mechanisms that come into play to preserve and protect genome

integrity (Nakad and Schumacher, 2016). In plants, the

transcription factor SOG1 (SUPPRESSOR OF GAMMA

RESPONSE 1), similar to p53 in mammals with respect to
Frontiers in Plant Science 05
function, lies at the heart of the DDR in response to various

environmental stresses (De Schutter et al., 2007). Interestingly,

SOG1 was identified to interact with SnRK1 catalytic subunits

KIN10 and KIN11, in response to low energy (Hamasaki et al.,

2019). Upon sensing low energy levels through ATP, SnRK1 was

shown to phosphorylate SOG1 which then enhanced the expression

of cell cycle-related genes in the hypocotyl including CYCA2s and

CYCD3 to induce divisions rather than growth (Hamasaki et al.,

2019) (Figure 2). Nevertheless, a direct and concrete link between

SnRK1 activity and SOG1 mediated DNA repair is difficult to

pinpoint and needs further exploration.

A vast body of evidence has also demonstrated the crosstalk

between cell cycle regulation and autophagy, which is required for

cell survival under metabolic pressures of general stress and energy

starvation (Matsui et al., 2013; Chen et al., 2017; Marshall and

Vierstra, 2018). Autophagy is the intracellular catabolic pathway of

“self-engulfment” in which the cell breaks down its own organelles

and cytosolic components upon perception of various stresses

(Mathiassen et al., 2017). SnRK1, like its mammalian prototype,

as a modulator of cell growth is also associated with autophagy in

plants. This is exemplified by the induction of SnRK1 activity

through KIN10 overexpression or downregulation of the TOR

pathway components, both of which are shown to accelerate

autophagy induction (Soto-Burgos and Bassham, 2017; Soto-

Burgos et al., 2018). In yeast, TOR negatively regulates autophagy
A B C

FIGURE 2

The regulation by AMP/SNF1/SnRK1 pathways of cell growth and proliferation. (A) In mammals, AMPK is essential to maintain genome integrity
through phosphorylation of p53, leading to cell cycle arrest upon sensing DNA damage. Parallely, under starvation conditions AMPK overcomes
mTORC1 signalling through RAPTOR phosphorylation. Besides this stress-triggered AMPK activation also induces autophagy (B) In Saccharomyces
cerevisiae, under glucose limitation the SNF1 protein kinase modulates the expression of several factors crucial for DNA replication, repair and
metabolism. Additionally, the Sch9 is inhibited by SNF1 under starvation conditions, thereby attenuating TORC1-mediated energy signalling. (C) In
plants, SnRK1 mediates autophagy induction through activation of various ATG proteins. Furthermore, SnRK1 is activated through components of
autophagy such as ATG8 by relieving its repression by the FLZ14 protein, which in turn controls the regulation of SnRK1 activity, hence forming a
positive feedback loop. In addition, SnRK1 also controls cell growth and divisions through activation of the SOG1 protein under energy stressed
conditions. Green arrows indicate direct phosphorylation by upstream targets.
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induct ion through regulatory control over the Atg1

(AUTOPHAGY-RELATED 1) protein complex, which consists of

various other Atg proteins (Kamada et al., 2010). Under nutrient

starvation, TORC1 activity is repressed resulting in the activation of

the Atg13 (dephosphorylation), whose association with the Atg1

protein kinase is crucial for induction of autophagy (Kamada et al.,

2010).Similarly, in plants, TOR knockdown lines exhibited

constitutive autophagosome formation especially in the roots (Liu

and Bassham, 2010), indicating the conserved role of TOR in

autophagy repression. Conversely, TOR overexpression under

nutrient limiting conditions restricted autophagy induction

suggesting that stress-induced autophagy proceeds through

repression of TOR activity (Pu et al., 2017).

Likewise, SnRK1 activation of autophagy is brought into action

through both transcriptional and translational induction of ATG genes

(Baena-González et al., 2007; Chen et al., 2017). Interestingly, the

SnRK1-mediated induction of autophagy was reported to act upstream

of TOR-mediated repression since a constitutive autophagy response

was observed in the kin10 loss-of-function mutants subjected to AZD-

8055 treatment. Similarly, activation of TOR in KIN10 overexpressing

seedlings subdued autophagy (Soto-Burgos and Bassham, 2017). A

recent report by Yang et al., 2023 has depicted a crosstalk between

SnRK1 and components of autophagy in Arabidopsis which might be

conserved across the seed plants. In particular, SnRK1 induction of

ATG8 activity through phosphorylation induces its interaction with the

FLZ14 (FCS-LIKE ZINC FINGER) protein, thereby relieving SnRK1

repression by FLZ14 (Yang et al., 2023). Given that FLZ14 mediates

SnRK1 inactivation under normal conditions, its overexpression in

Arabidopsis responds poorly to carbon starvation (Yang et al., 2023).

Essentially, this reveals a bi-directional flow of information between the

SnRK1 signalling and the components of autophagy to induce

appropriate responses under energy starved conditions (Figure 2).

Sugar availability and TOR-SnRK1
crosstalk regulate cell cycle events
in plants

G1 to S phase

The typical cell division cycle in plants is categorized into four

major phases: two gap/interphases (post-mitotic interphase G1 and

the pre-mitotic interphase G2) that separate the M (mitosis) and S

(synthesis) phases. CDKs are key regulators of cell cycle

progression. CDKs bind to their regulatory subunits called cyclins

to promote transitions through the cell cycle. The combinatorial

and orderly participation of CDKs with cyclins is crucial for their

activation and distinct phase progression (Vandepoele et al., 2002;

Inagaki and Umeda, 2011; Sablowski and Carnier Dornelas, 2014).

In plants various CDKs have been identified among which the

CDKA;1 helps in both the G1 to S and G2 to M transitions, while the

CDKBs mediate G2 to M phase transitions (Boudolf et al., 2004;

Inzé, 2005; Nowack et al., 2012; Sablowski and Gutierrez, 2022). The

CDKBs are suggested to be plant specific and their genesis can be

traced back to some of the green alga, although red algae and other

eukaryotic groups are also reported to possess B-type CDK activity
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(Corellou et al., 2005; Huysman et al., 2015). A similar diversity in

the number of plant cyclins is also observed which bind the core

CDKs and help mediate the transition through each phase of the cell

cycle (Harashima and Schnittger, 2012). The A and B-type cyclins

are closely related phylogenetically and are expressed during

different intervals of the cell cycle (Wang et al., 2004; De Jager

et al., 2005). More specifically, the A-type cyclins regulate nearly all

the phases of the cell cycle while the B-type cyclins are preferential

in their regulation of the G2 to M phase (De Jager et al., 2005).

The D-type cyclins are unique in their ability to be regulated via

distinct environmental cues and regulate G1 to S phase progression

(Meijer and Murray, 2000; Dewitte et al., 2007). Moreover, reports

have also suggested the involvement of D-type cyclins during the G2

to M phase of the cell cycle (Kono et al., 2003). Previously, the effect

of sugars in promoting G1 to S phase transition through the rate

limiting factor, CYCD3;1, one of the major D-type cyclins in plants,

had been suggested, indicating the link between sugar signalling and

the initiation of cell cycle progression (Riou-Khamlichi et al., 2000;

Menges et al., 2006). For instance, in starved Arabidopsis seedlings,

the addition of metabolizable sugars was shown to induce the

expression of CYCD2 and CYCD3 (Soni et al., 1995; Riou-

Khamlichi et al., 2000). Interestingly, the expression of CYCD3

was induced upon sugar supplementation and was not induced

upon addition of cytokinin alone, suggesting sugar dependency on

the activation of CYCD3 lies upstream of hormonal control of

CYCD3 activation (Riou-Khamlichi et al., 2000). Similarly, sucrose

responsiveness of CYCD4;1 expression in regulating lateral root

(LR) formation in Arabidopsis was shown to occur independently

of the auxin-mediated LR induction (Nieuwland et al., 2009),

further suggesting that multiple D-type cyclins are regulated

independently by sugar signals.

The CYCD3;1 together with CDKA;1 mediate the inhibition of

RBR1 protein through phosphorylation to facilitate the expression

of genes required for the S phase entry (Weinberg, 1995; Meijer and

Murray, 2000; Dewitte et al., 2007; Borghi et al., 2010) (Figure 3).

The Arabidopsis thaliana RBR1, the only ortholog of animal Rb1, is

crucial in controlling various events of cell division cycle ranging

from progression into the cell cycle to stem cell maintenance,

proliferation and differentiation (Borghi et al., 2010; Desvoyes and

Gutierrez, 2020). Together with the E2F group of transcription

factors, the E2F-RBR1 module plays a crucial role in determining

cellular fate (Wildwater et al., 2005). In Arabidopsis, six E2F

members are present (E2Fa, E2Fb, E2Fc, E2Fd/DEL2, E2Fe/DEL1

and E2Ff/DEL3) (Vandepoele et al., 2002). The binding of E2Fa, b

and c to their recognition sequences are mediated by the

dimerization partners DP (DPa and DPb) while DEL1/2/3 can act

independently of DP proteins (Del Pozo et al., 2005). Furthermore,

while E2Fa, b and c are considered as typical E2Fs, the latter three

are atypical E2F proteins, since they lack transactivation and RBR1-

binding domains (Sozzani et al., 2010). During G1 to S phase, RBR1

protein is hyper-phosphorylated via the CDKA;1-CYCD3;1 module

(Hirano et al., 2008; Desvoyes et al., 2014), relieving its inhibitory

effect on E2Fa/E2Fb and promoting S phase progression (Weinberg,

1995; Brehm et al., 1998; Desvoyes and Gutierrez, 2020) (Figure 3).

The ability of sucrose to mediate progression from the G1 to S

phase is also RBR1 phosphorylation-dependent, failure of which
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results in cell cycle arrest in the Arabidopsis suspension cells

(Hirano et al., 2011). This stems from the fact that sucrose

starved cells exhibit decline in CYCD3;1 activity, leading to its

subsequent degradation by the proteasome-dependent pathway,

hence resulting in hypophosphorylation of RBR1 (Hirano et al.,

2008, Hirano et al., 2011). RBR1 was also indicated to be a

phosphorylation target of TOR probably through S6K1 as

revealed in the quantitative phosphoproteomic analysis by Van
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Leene et al., 2019. In line with this, sucrose availability was also

shown to enhance the phosphorylation of RBR1 at the conserved

Ser807/811 sites, which is mediated by the CYCD3;1-CDKA1

protein module (Magyar et al., 2012). Furthermore, the

interaction between the E2Fs and RBR1 was also shown to be

mediated by sucrose (Magyar et al., 2012). Sucrose availability led to

the formation of E2Fa-RBR1 dimer, while its depletion favoured

E2Fb-RBR1 hetero-dimerization (Magyar et al., 2012).
FIGURE 3

Regulation of the cell cycle components by integration of the sugar-TOR-SnRK1 signalling in the model plant Arabidopsis. Photosynthetically derived
sugars drive various stages of the cell cycle. Glucose, the major end product of the light reactions activates TOR signalling which is repressed under
starvation conditions by the SnRK1 signalling. Moreover, auxin activation of the ROP2 protein leads to its direct interaction with TOR, resulting in its
phosphorylation, which further relays the signals to its downstream effectors like S6K1 and RPS6. The most common readout of TOR activity, the
S6K1 protein however, exerts its effect on cell size rather than cell proliferation. S6K1 enhances cell growth and this is related to its RBR1 activating
capacity through the promotion of its localization into the nucleus where it inhibits E2Fb protein activity. On the contrary the CYCD3;1-CDKA1
module is necessary for phosphorylation of RBR1, thereby promoting its retention in the cytoplasm. Sugar availability also leads to direct
phosphorylation by TOR of the E2Fa/E2Fb proteins (N-terminal) that regulate the expression of various G1 to S phase marker genes encoding
proteins required for DNA replication. E2Fa is repressed by hypophosphorylated RBR1 resulting in the inhibition of its transcription-inducing capacity.
On the other hand, E2Fa is also directly phosphorylated (T314/T315) by the SnRK1 resulting in its degradation, the result of which is reduced
transcription of these genes. Contrarily, SnRK1 also positively impacts cell cycle progression through direct phosphorylation of KRPs which abrogates
their binding with cyclin/CDK complexes. Glucose-TOR signalling might also exert control over the G2 to M phase of the cell cycle through its
interaction with the YAK1, which is involved in the suppression of various CDKs through activation of the SMRs. Moreover, metabolic sugars also
directly control the expression of CYCB1;1/CDKB1 which is required for activation of cell division at the meristems.
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E2Fs have been regarded as the key regulators of DNA synthesis

in organisms (Dyson, 1998; Inzé and De Veylder, 2006). In essence,

E2Fs bind to the promoter of various S phase specific genes viz.

ORC2,6 (ORIGIN RECOGNITION COMPLEX), MCM3,5,7

(MINICHROMOSOME MAINTENANCE), CDC6 (CELL

DIVISION CYCLE 6), ETG1 (E2F TARGET GENE) and PCNA1

(PROLIFERATING CELL NUCLEAR ANTIGEN), which are

involved in DNA replication (De Veylder et al., 2002) (Figure 3).

Recent findings have suggested that E2Fa activity is largely

regulated by glucose-TOR signalling. For instance, glucose-

activated TOR kinase was shown to phosphorylate the N-terminal

of the E2Fa protein in particular (Xiong et al., 2013; Li et al., 2017).

Precisely, in shoots, both E2Fa and E2Fb proteins were shown to be

the phospho-targets of TOR in the regulation of true leaf

organogenesis, whereas in case of root meristem activation only

E2Fa was demonstrated to be a TOR target, probably since E2Fa is

predominantly expressed in the roots (Xiong et al., 2013; Li et al.,

2017). Consistent with the role of E2Fa in maintaining cell cycle

progression, the e2fa e2fb double mutants exhibited reduced

expression of the S phase genes and a defective true leaf

development pattern (Li et al., 2017). Furthermore, the single e2fa

null mutant also displayed diminished expression of the S phase

genes and a compromised root growth under glucose fed conditions

(Xiong et al., 2013).

Interestingly, E2Fa has also been shown to be a target of SnRK1

signalling. In the most recent analysis of SnRK1 regulation of cell

cycle, Son et al., 2023 demonstrated that SnRK1 impinges on E2Fa

activity by directly phosphorylating it at T314/T315, causing its

degradation and leading to suppression of cell proliferation and

therefore restricted primary root growth. As discussed above, a

concomitant decrease in the expression of various S phase marker

genes was also observed (Son et al., 2023). Collectively, it can be

noticed that E2Fa as a mutual target, acts like a switch for the TOR-

SnRK1 duo in the control of G1 to S transition which is regulated

through a differential impact on its activity (Figure 3).

Like in the mammalian counterpart, plants genes also encode

for CDK inhibitors which upon physical contact cause the

inhibition of their activity (Komaki and Sugimoto, 2012).

Surprisingly, SnRK1 has been reported in the negative regulation

of these inhibitors, implicating its role in the regulation of cell cycle

progression in a positive light. In particular, both AtKRP6 and

AtKRP7 (for KIP-RELATED PROTEINS) were shown to be

directly phosphorylated by SnRK1 at Thr152 and Thr151,

respectively (Guérinier et al., 2013). KRPs are associated with

various CDKs through their binding ability, eventually affecting

cell cycle progression (De Veylder et al., 2001; Van Leene et al.,

2010). However, this post-transcriptional modification impaired

their ability to bind and inhibit the CDK/cyclin complex, suggesting

a promotive role of SnRK1 in the regulation of G1 to S phase

transition (Figure 3).
The G2 to M phase

Sugars have also been known to exert considerable influence

over the G2 to M phase transition via regulating the activity and
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expression of mitotic cylins, especially CYCB1 (Riou-Khamlichi

et al., 2000; Skylar et al., 2011). In plants, the progression into the M

phase largely centres around the CYCB1;1 protein which was also

the first B-type cyclin to be characterized in Arabidopsis (Colón-

Carmona et al., 1999). Given that CYCB1;1 confers positive impact

on cell division, various cycb1 mutants display reduced root and

shoot growth and seed yield (Motta et al., 2022), implicating CYCB1

as a major factor linking plant cell divisions to organ growth

and development.

The main support for the involvement of sugar regulation of

mitotic CYCB1;1 in plant growth is the observation that the glucose

insensitivity of the gig (GLUCOSE INSENSITIVE GROWTH)

mutants resulted in reduced cell divisions and therefore

compromised growth of root meristem as monitored by

CYCB1;1::GUS expression (Lee et al., 2012). Most strikingly, the

finding that meristems of the stip mutants (for STIMPY) which are

arrested in the G2 phase, can be substituted by metabolic sugars in

their requirement for CYCB1;1 induction (Skylar et al., 2011),

further confirms the involvement of sugar availability in the

stimulation of both shoot and root meristem activity through cell

proliferation. Interestingly, the meristem defects in the stipmutants

were ascribed to the induction of high levels of the transcriptional

repressor TSS (TPR-DOMAIN SUPPRESSOR OF STIMPY) which

is responsible for the meristem cell division arrest (Skylar et al.,

2011) (Figure 3). Metabolic sugars like glucose and sucrose and not

sorbitol were able to rescue stip mutants of the TSS mediated

repression (Skylar et al., 2011). Similarly, in maize, sugars, both

glucose and sucrose were shown to regulate ZmCYCB1;2 and

ZmCYCB2;1 expression upon seed germination (Lara-Núñez

et al., 2021), indicating sugar induction of cyclins is prevalent in

other plants too.

Glucose signalling was also demonstrated to confer

transcriptional control over several cell cycle-related genes

including those that are required for maintaining root meristem

integrity (Xiong and Sheen, 2013; Xiong et al., 2013). In a very

intriguing study by Li et al., 2017, glucose was reported to scavenge

meristematic cells from mitotic quiescence. However, the

mechanism by which glucose signalling activates this process is

differentially regulated in shoot versus the root. In the shoot apex,

both light and glucose act synergistically in inducing cell

proliferation through stimulation of TOR activity, while glucose

but not light was strictly necessary for inducing cell divisions in the

root apex (Li et al., 2017). Furthermore, auxin was found to

substitute for light but not glucose-dependency of TOR

activation, suggesting that both photosynthetically derived sugar

signals and auxin can induce cell cycle progression to activate

divisions in the SAM (Figure 3). Furthermore, light-enhanced

TOR induction of initiation of protein biosynthesis is also

mediated by auxin signalling directly through the ROP2 GTPase

(RHO OF PLANTS 2) (Schepetilnikov et al., 2017). Previously,

ROPs have been reported to be auxin responsive, transducing the

signals within very short time periods after the hormone treatment

(Dubey et al., 2021). Because ROP2 positively affects TOR activity,

the ablation of ROP2 activity results in reduced TOR signalling in

the rop2,4,6 mutant plants (Schepetilnikov et al., 2017).

Furthermore, a recent study suggested that the TOR-ROP2
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module is itself regulated by the light signalling protein COP1

(CONSTITUTIVE PHOTOMORPHOGENIC 1) (Cai et al., 2017),

a negative regulator of light mediated responses (Ang et al., 1998)

(Figure 3). Interesting, TOR through its downstream effector S6K1,

also conveys signals from light through phosphorylation of the

RPS6 (ribosomal protein S6), a key component of the 40S ribosomal

subunit (Ruvinsky and Meyuhas, 2006) to augment initiation of

translation in de-etiolating seedlings (Chen et al., 2018).

Accordingly, a constitutive gain-of-function of RPS6 resulted in

the induction of protein biosynthesis and an enhancement in

cotyledon opening and development (Ren et al., 2012; Chen et al.,

2018). Such interconnections are integral to promote leaf

organogenesis at the shoot apical meristem (Ren et al., 2012;

Pfeiffer et al., 2016).

Interestingly, in yeast, endogenous IAA production was

demonstrated to downregulate TORC1 activity (Nicastro et al.,

2021). The repression in TORC1 activity, as discussed above,

leads to cell quiescence, hence this strategy of accumulation of

high IAA during the stationary phase might prove beneficial in

providing prolonged survival in this organism. Similarly, in an

earlier report, auxin was shown to inhibit RPS6 (Snyder et al., 2019).

This fact is in stark contrast to what is discussed above in case of

plant system, in which auxin has been described as a well-known

TOR activator. This diversity in auxin responses amongst different

taxa of organisms stems from the capacity of the hormone to have

dose-dependent effects (Leyser, 2018). Thus, it appears that the

concentration-dependent role of auxin on TOR activity could

regulate prioritization of cellular responses in different taxa.

Previously, a co-occurrence of CYCB1;1-CDKB1 expression

and genotoxic stress has been reported, which points out the

duality of these proteins in regulating not only mitosis but also

DDR (Chen et al., 2003; Culligan et al., 2006; Biedermann et al.,

2017). Interestingly, this upregulation in CYCB1;1 transcript levels

was shown to be mediated through the central DNA damage

sensors kinase, ATM (ATAXIA TELANGIECTASIA MUTATED)

and ATR (ATAXIA TELANGIECTASIA MUTATED and RAD3

RELATED) which are known to phosphorylate SOG1 (Culligan

et al., 2006; Yoshiyama et al., 2013; Roitinger et al., 2015).

Furthermore, reports have demonstrated that CYCB1;1 as a direct

target of SOG1 might play a crucial role in DDR (Weimer et al.,

2012, Weimer et al., 2016; Biedermann et al., 2017; Schnittger and

De Veylder, 2018). In line with this, the CDKB1-CYCB1 complex

was shown to be essential in mediating RBR1 nuclear localization

during DNA damage where it recruits the RAD51 (RADIATION

SENSITIVE 51), a core mediator of DNA repair to the damaged

sites (Biedermann et al., 2017). Concomitant with the role of sugars

in the regulation of root meristem activity through CYCB1;1

expression, it is likely that sugar-induced activation of TOR

activity might act to regulate both cell division and repair

mechanisms. However, the exact mechanism by which TOR

might participate in this regard remains to be shown. Likewise,

SnRK1 was also shown to be associated with transcriptional

regulation of CYCB1;1 (Krasnoperova et al., 2016). In particular,

this study in Arabidopsis demonstrated the transcript levels of

CYCB1;1 to be diminished in loss-of-function mutants of KIN10/
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KIN11 resulting in a reduced mitotic index in the RAM under both

normal and energy deficient conditions (Krasnoperova et al., 2016),

though it remains unclear how this effect is linked to growth

and development.

Clearly, the above examples suggest that TOR-SnRK1 signalling

might not always act antagonistically in regulating the same process

as depicted in the recent study by (Saile et al., 2023) wherein a

concerted effect of TOR-SnRK1 mutualism was shown to induce

hypocotyl elongation under the skotomorphogenic regime. Another

study indicates the concurrent role of TOR and SnRK1 in fine-

tuning stomatal development (Han et al., 2022). This harmony

between the TOR-SnRK1 crosstalk has also been reviewed at length

by Rodriguez et al., 2019. Such concerted roles are in contrast to

their already well-known antagonism and reveal a mechanism by

which antagonistic regulatory pathways can function

simultaneously to promote key aspects of plant growth

and development.
Conclusion and future prospects

In summation, sugars appear to serve as a fundamental role in

the cell cycle progression. The master regulators, TOR and SnRK1

co-ordinate several such processes in accordance with nutrient

availability. Most often than not, the sugar mediated TOR-SnRK1

signal transduction pathways are considered to be governing

mutually exclusive processes. Evidence has accumulated

suggesting that these pathways might be coordinated to operate

in the same pathway of growth and development such as discussed

in case of the modulation of cell cycle events. This is also

exemplified by various studies which do not fall under the scope

of this review and are discussed in detail elsewhere. Combating

future challenges would warrant identification of direct targets that

connect TOR-SnRK1 signalling to gain a deeper understanding on

how these central kinases affect several developmental processes.

Particularly in plants, since much of the regulation of cell cycle

progression and its modulation by essential factors are affected by

TOR governed signalling, future prospects should be aimed at

elucidating various facets of SnRK1-mediated pathway in the

modulation of these events. Furthermore, quantitative

phosphoproteomics might reveal potential targets of the TOR/

SnRK1 enzymes as well as the putative phosphosites on these

targets. Also, it will be interesting to decipher probable candidates

that are intertwined in the regulation of cell cycle in plants beyond

the model plant Arabidopsis. A complete overview of the cell cycle

regulation in different organisms through combinatorial omics

approach might be utilized in order to understand the shared

ancestry of eukaryotic cell cycle and its regulatory factors in

different taxa especially in the green lineage.
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