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1State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop
Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding,
Hebei, China, 2Institute of Cotton Research of Chinese Academy of Agricultural Sciences, National
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Introduction: Plant responses to drought stress are influenced by various factors,

including the lateral root angle (LRA), stomatal regulation, canopy temperature,

transpiration rate and yield. However, there is a lack of research that quantifies

their interactions, especially among different cotton varieties.

Methods: This experiment included two water treatments: well-watered (75 ±

5% soil relative water content) and drought stress (50 ± 5% soil relative water

content) starting from the three-leaf growth stage.

Results: The results revealed that different LRA varieties show genetic variation

under drought stress. Among them, varieties with smaller root angles show

greater drought tolerance. Varieties with smaller LRAs had significantly increased

stomatal opening by 15% to 43%, transpiration rate by 61.24% and 62.00%,

aboveground biomass by 54% to 64%, and increased seed cotton yield by 76%

to 79%, and decreased canopy temperature by 9% to 12% under drought stress

compared to the larger LRAs. Varieties with smaller LRAs had less yield loss under

drought stress, which may be due to enhanced access to deeper soil water,

compensating for heightened stomatal opening and elevated transpiration rates.

The increase in transpiration rate promotes heat dissipation from leaves, thereby

reducing leaf temperature and protecting leaves from damage.

Discussion: Demonstrating the advantages conferred by the development of a

smaller LRA under drought stress conditions holds value in enhancing cotton’s

resilience and promoting its sustainable adaptation to abiotic stressors.
KEYWORDS

drought, lateral root angle, stomata, canopy temperature, cotton
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1358163/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358163/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358163/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1358163&domain=pdf&date_stamp=2024-02-05
mailto:liult@hebau.edu.cn
mailto:auhlcd@163.com
https://doi.org/10.3389/fpls.2024.1358163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1358163
https://www.frontiersin.org/journals/plant-science


Guo et al. 10.3389/fpls.2024.1358163
1 Introduction

Drought stress has a detrimental effect on agriculture (Abbas

et al., 2018). Approximately one-third of the world’s arable land is

characterized by arid or semiarid conditions and limited water

resources, which reduce the annual crop yields by over 50%

(Tuberosa and Salvi, 2006; Toker et al., 2007). Cotton (Gossypium

hirsutum L.), as a globally significant cash crop, has been severely

affected by drought, making it crucial to explore the strategies of

crops to adapt to drought stress to enhance agricultural productivity

(Chen et al., 2013).

The root is a vital organ that actively senses the soil

environment. It acts as a conduit between the aboveground and

the soil and is pivotal in nutrient and water uptake. Therefore, the

development of root systems directly influences the aboveground

growth. In addition, under drought stress, there is a highly

significant correlation between the root system and aboveground

development (Lynch, 2007; Erice et al., 2010), and this is garnering

increasing attention from breeders (Trumbore and Gaudinski,

2003; Epstein, 2004; Sugden et al., 2004; Collins et al., 2008). The

spatial structure and distribution of roots is known as the root

system architecture (RSA) (Lynch, 2007). It is a crucial indicator for

evaluating crop drought tolerance (Lynch and Brown, 2001; Lynch,

2013) since it significantly influences the plant’s adaptation

to drought.

The RSA exhibits high plasticity and genetic diversity, which

enables the root morphology to adapt to challenging environments

(Rubio et al., 2003; Ochoa et al., 2006). An accurate description of the

growth structure and spatial distribution of RSA in soil would allow

an ideal RSA to more efficiently absorb water and nutrients from the

soil environment and then distribute them to the plant aboveground

part by signaling when resources are limited. For instance, research

on wheat (Triticum aestivum L.) (MansChadi et al., 2010) and maize

(Zea mays L.) (Lynch, 2013) has revealed that narrower/steeper root

angles improve the root architecture, which leads to deeper roots and

the enhanced uptake of deeper water resources. Furthermore, Uga

et al. (2013) demonstrated that genotypes with narrower root angles

and deeper root systems achieved higher seed yields under upland

drought stress conditions than genotypes with shallower and wider

angles. Roots exhibiting a steep growth angle potentially aid in

accessing mobile nutrients, particularly nitrogen, present in deeper

soil layers (Trachsel et al., 2013; Dathe et al., 2016; Liang et al., 2017).

This growth pattern allows plants to tap into deep soil water, enabling

them to sustain evapotranspiration needs during prolonged periods

without additional water input. Thus, crops modulate their root

system architecture, such as by reducing the lateral root angle (LRA)

to more efficiently access water in the deeper soil environment,

improve drought tolerance of the aboveground crop, and ultimately

stabilize yields.

Stomatal regulation and leaf temperature influence the

adaptation of plants under drought stress (Casson and

Hetherington, 2010). Notably, the stomatal size and regulatory

function along with the leaf photosynthesis and transpiration

rates are significantly reduced under drought stress (Casson and
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Gray, 2008; Dong et al., 2018). Generally, the decrease in stomatal

opening reduces the rate of plant transpiration and damage owing

to drought stress (Xiong and Zhu, 2003). However, transpiration

maintains stable leaf temperatures by lowering the leaf temperature

(Testi et al., 2008). Therefore, decreased plant stomatal opening

under drought stress increases the leaf temperature owing to the

reduction in transpiration rate and increased water retention.

Elevated leaf temperatures beyond the threshold disrupts the

activity of protective enzymes, impairs the normal plant functions

and ultimately leads to reduced crop yields (Fan et al., 2023).

Therefore, changes in stomatal regulation and canopy

temperature are often utilized as key indicators to monitor the

stress levels of plants.

In summary, several factors of plants undergo significant

changes, including LRA, stomatal regulation, canopy temperature,

and yield under drought stress. However, the characteristics and

interrelationships of these factors in cotton under drought stress are

still understood. The hypothesis of the present study is that cotton

varieties with smaller LRA experience reduced yield losses under

drought stress, potentially due to enhanced water absorption from

deeper soil layers, compensating for increased stomatal opening and

transpiration rates. Specifically, the objectives of the study were (1)

to explore the regulation of lateral root angle, (2) to elucidate the

impacts of drought stress on stomatal traits, transpiration rates, and

canopy temperature, and (3) to determine the response of LRA,

stomatal traits, transpiration rates, canopy temperature, and yield

under drought stress, while investigating their interrelationships.
2 Materials and methods

2.1 Plant materials

Eighty cotton varieties from diverse geographical regions were

chosen as the study’s experimental materials in this study

(Supplementary Table 1). The selection process took into account

the geographical distribution and ecological adaptability of the

varieties, with the objective of highlighting their broad

distribution and rich diversity.
2.2 Experimental site

The experiment was conducted at Hebei Agricultural

University’s Qingyuan Experimental Station in China (38.85°N,

115.30°E) during 2021 and 2022. Rain-out shelter were utilized in

the field to minimize the impact of rainfall interference. The

recorded average temperatures were 20.75°C with 2091.4 hours of

sunshine in 2021, and 20.96°C with 2199.8 hours of sunshine in

2022 (Supplementary Figure 1). The soil is sandy loam with organic

matter 13.83 g·kg-1, total nitrogen 0.93 g·kg-1, available nitrogen

69.45 mg·kg-1, available phosphorus 17.40 mg·kg-1 and available

potassium 121.36 mg·kg-1. Details regarding soil bulk density and

field water capacity are available in Supplementary Table 2.
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2.3 Experimental design

This experiment included two water treatments: well-watered

(WW), maintained at 75 ± 5% soil relative water content; and

drought stress (DS), maintained at 50 ± 5% soil relative water

content. The seeds were planted in a randomized complete block

design with three replicates per treatment. The drought stress

treatment was initiated at the three-leaf stage and continued until

maturity. The irrigation method was micro-sprinkler. The volume

of irrigation water was monitored using a water meter (with an

accuracy of 0.0001 m3). During the study, under well-watered and

drought stress treatments detectors were used soil water content,

including Sensoterra (Soil moisture monitoring system,

Netherlands) and TDR (Trime Pico 64 Portable Soil Moisture

Meter, EMIKO, GmbH, Bochum, Germany). Sensoterra

monitored the 0-30 cm soil water content (Supplementary

Figure 2), and TDR monitored the 0-20 cm, 20-40 cm, and 40-

60 cm soil water content over the entire growth period

(Supplementary Figure 3).
2.4 Field management

Cotton was sown using the hole-sowing method on April 24,

2021, and April 24, 2022. The planting density was 90,000 plants

hm-2 with a row spacing of 50 centimeters. Each plot received

450 kg ha-1 of compound fertilizer containing 15% nitrogen, 15%

P2O5 and 15% K2O as base fertilizer. Additionally, 150 kg ha-1 of

urea (containing 46% nitrogen) was top-dressed at the flowering

stage. Other field management practices, aligned with the methods

employed in local high-yield cotton fields.
2.5 Measurement methods

2.5.1 Measurement of the plant height,
aboveground and root biomass

On July 2, 2021, and July 5, 2022, five representative cotton

plants were chosen to measure the individual morphological indices

within each plot. The plant heights was measured using

a straightedge.
2.5.2 Measurement of the leaf canopy
temperature and stomata

On July 4, 2021, and July 8, 2022, between 9:00 and 11:00 a.m.,

three representative plants were selected, and the third functional

leaf was selected to measure the leaf canopy temperature and

stomatal traits within each plot.

Canopy temperature was measured using a hand-held infrared

thermometer (AGRI-THERM II, Model 6110, USA). The sensor

probe was positioned 5 cm away from the upper third of the main

stem functional leaf, which was perpendicular to the direction of

leaf unfolding. Temperature measurements were recorded as soon

as the probe was stable (Vantyghem et al., 2022).
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Stomata were measured using a the nail polish and transparent

tape technique (Baresch et al., 2019). Briefly, the nail polish was

evenly applied evenly to the abaxial surface of the third functional

leaf from the top and allowed to dry naturally for 2 to 5 min. The

tape was then placed on the dried nail polish layer and attached to a

slide without an additional coverslip. Images of the stomata were

captured with an optical microscope (LEICA 2500, Wetzlar,

Germany). Additionally, the length, width, opening and density of

the stomata were determined on five randomly selected fields of

view in each image (Wilson et al., 2009; Jiao et al., 2022).

2.5.3 Measurement of the LRA
Root sampling: The LRA was determined on July 2, 2021, and

July 5, 2022, using the “Shovelomics” method (Shao et al., 2019).

This developmental stage is the critical period of cotton root system

development when the root network is established. Three

representative cotton plants were selected per plot. The soil

volume around the plant root system (20 cm × 55 cm × 40 cm

for the plant spacing × row spacing × depth, respectively) was

excavated using a standard shovel. The root obtained was gently

shaken to remove the adhering soil and then soaked in 0.5%

detergent to remove the remaining soil particles. Finally, a low-

pressure rinse was performed to remove any remaining soil particles

and obtain a clean root system.

Homemade imaging: The imaging devices were composed of a

laptop, an industrial digital camera (MER-500-14U3C; lens,

M1224-MPW2 [Daheng Imaging, Beijing, China]), and an

imaging tent. In its natural growth state, the root system was

suspended from the top at the top of the tent and secured with

spring clips. Subsequently, the Daheng Galaxy Viewer (x64)

imaging software was utilized to adjust the optimal shooting

parameters, including an exposure time of 65000 (us), a desired

gray value of 120, and a white balance coefficient of 1.1484. Once

the root system was properly fixed and stable, the images were

captured without additional focus or light adjustments. The

acquired root images were saved as JPEGs.

Image processing with DeepLab V3C and RootNav: The images

were tagged and renamed for organization purposes. Next, the root

images were segmented using DeepLab V3C (Zhao et al., 2022).

Finally, the LRAs were extracted from the segmented root images

using RootNav (Liao et al., 2001; Christopher et al., 2013).

2.5.4 Measurement of the aboveground and root
dry weight

The dry weight of the aboveground and root portions was

determined using a weighing method, starting with the separation

of the aboveground and root at the cotyledon node. Following this,

the harvested leaf and root samples underwent heating at 105°C for

30 minutes and then at 80°C until a constant weight was achieved.

2.5.5 Measurement of the yield and
yield components

Cotton bolls were harvested from 20 plants in the center of each

plot. The bolls were harvested on October 18, 2021, and October 15,

2022. The harvested cotton bolls were counted and weighed.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1358163
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2024.1358163
Subsequently, the seed cotton from each harvest was collected,

placed in nylon mesh bags, and stored in a dry room for 20 d for air

drying, the seed cotton was weighed and then ginned. At the end of

the drying period, the seed cotton in the plot was weighed (g) to

calculate Weight per plant and seed cotton yield (kg hm–2, seed

cotton yield =weight per plant (g) × harvest density/1000). Lint

yield obtained by weighing after ginning.
2.6 Statistical analysis

Microsoft Excel 2019 (Redmond, WA, USA) was utilized for

data entry. The quantitative data was analyzed by a one-way

analysis of variance (ANOVA) using R version 4.1.2. Cluster

analysis were drawn using the Origin 2019b Software Program

(OriginLab, Northampton, MA, USA). The graphs were generated

using GraphPad Prism 9.0 (GraphPad Software, Inc, San Diego,

USA). Adobe Illustrator 2020 (Adobe, San Jose, CA, USA) was used

to compose the images.
3 Results

3.1 The small and large LRAs

Varieties with small LRA and large LRA were selected using

Euclidean distance flattening and systematic cluster analysis. In

2021, the varieties were clustered into five classes with a Euclidean

distance of 0.5. Class I was composed of 25 (32%) varieties

characterized by a small LRA. Class II consisted of 14 (18%)

varieties characterized by a lesser LRA. Class III included 35

varieties, representing 44% of all the varieties, with an

intermediate LRA. Class IV represented one variety, 1% of all the

varieties, with a larger LRA. Category V was composed of four

varieties, accounting for 5% of all the varieties, characterized by the

largest LRA (Supplementary Figure 4A). In 2022, the varieties were

clustered into four classes with a Euclidean distance of 0.5. Category

I included 15 varieties, which represented 19% of all the varieties,

with a small LRA. Category II was composed of 43 varieties (54% of

all the varieties) characterized by a lesser LRA. Class III was

composed of 20 varieties (26% of all the varieties) with a larger

LRA. Category IV included one variety (1% of all the varieties) with

the largest LRA (Supplementary Figure 4B).

Based on the two-year experimental results, three varieties with

small LRAs were identified, variety #38, variety #77, and variety #7;

and three varieties with large LRAs were identified, variety #48,

variety #47, and variety #75 (Supplementary Figure 4). Further

analysis will be conducted on these six varieties.
3.2 Phenotypic variation in the root-
related traits

There are genotypic differences among different LRA varieties

under drought stress. Significant genotypic differences (p < 0.05) in

the LRA were observed in both planting years (Figure 1A). In 2021,
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the range of the small LRA was 49.99 - 65.02 in varieties under

drought stress and 59.65 - 79.33 for the large LRA. Drought stress

significantly reduced the LRA in varieties with a small LRA and

increased it in varieties with a large LRA compared to the well-

watered (Figure 1C). Furthermore, under drought stress, the root

dry weight and LRA were significantly reduced by 60% and

increased by 22% in varieties with a large LRA compared to

varieties with a small LRA (Figures 1B, C). In 2022, the range of

the small LRA was 40.76 - 70.82 under drought stress and 63.16 -

79.17 for the large LRA (Figure 1E). Similarly, the root dry weight

and LRA significantly increased by 26% and 32%, respectively, in

the varieties with small LRAs under drought stress compared to the

varieties with large LRAs (Figures 1D, E).
3.3 Phenotypic variation in the stomatal-
related traits

Changes in the stomatal opening, length, width, and density in

the leaves of cotton varieties with different LRAs under well-

watered and drought stress are shown in Figure 2A. Under well-

watered, the differences in the stomatal opening (Figures 2B, F),

width (Figures 2C, G), length (Figures 2D, H), and density

(Figures 2E, I) among the cotton varieties with the different LRAs

were insignificant. However, the stomatal width, length, and

opening were suppressed, while the stomatal density was

promoted in varieties with large and small LRAs under

drought stress.

Moreover, the cotton varieties with different LRAs

demonstrated varying abilities to regulate stomatal opening under

drought stress. Cotton varieties with small LRAs exhibited a

stronger regulatory capacity, and varieties with large LRAs

exhibited the weakest ability to regulate the stomatal openings

(Figures 2B, F). Under drought stress in 2021, the stomatal

density of the small LRA varieties was significantly reduced

compared to the large varieties of LRA. In addition, the stomatal

opening and width were significantly increased by 15% and 47% in

the small LRA compared to the large LRA, respectively (Figures 2B,

C). However, the differences in stomatal length were insignificant

(Figure 2D). The stomatal density also reduced by 10% (Figure 2E).

In 2022, under drought stress, varieties with small LRAs exhibited a

significant increase of 43% in stomatal opening and 47% in stomatal

length compared to varieties with large LRAs (Figures 2F, H), with

no significant difference in stomatal width (Figure 2G).

Additionally, the stomatal density was significantly reduced by

21% (Figure 2) for varieties with the small LRAs compared to

those with the large LRAs.
3.4 Phenotypic variation in the leaf canopy
temperature, leaf water potential and
relative water content

There were significant differences in the canopy temperature

between 2021 and 2022 under drought stress (p < 0.05, Figure 3). In

2021, the canopy temperatures under drought stress were
frontiersin.org

https://doi.org/10.3389/fpls.2024.1358163
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2024.1358163
significantly higher than those under well-watered in plants with

large and small LRAs (p < 0.05). However, the canopy temperature

in varieties with small LRAs was significantly reduced by 12% under

drought stress compared to varieties with large LRAs (Figure 3A).

The same pattern persisted in 2022, although the canopy

temperature in the varieties with small LRAs was reduced by 9%

under drought stress compared to the varieties with large

LRAs (Figure 3E).

Drought stress had an inhibitory effect on the leaf water

potential for both the large and small LRAs (Figures 3B, F).

Nevertheless, notable distinctions emerged in the response of

LRAs to drought stress. In particular, in 2021 and 2022, the leaf

water potential of the small LRAs exhibited a significant increase of

13.68% and 25.77%, respectively, compared to their counterparts

with large LRAs under drought stress. The trend in relative water

content of leaves with large and small LRAs under drought stress
Frontiers in Plant Science 05
mirrored the patterns observed in the leaf water potential

(Figures 3C, G).

Drought stress inhibited the transpiration rate of both large and

small LRAs (Figures 3D, H). However, there were significant

genotypic differences in the response of LRAs to drought stress.

Under drought stress in 2021 and 2022, the transpiration rate of

small LRAs varieties increased significantly by 61.24% and 62.00%

compared to that of large LRAs varieties (Figures 3D, H).
3.5 Phenotypic variation in the plant height
and aboveground biomass

Drought stress significantly impacted the plant height and

aboveground dry matter mass across varieties with different LRAs

(Table 1). In particular, drought stress reduced the height of plants
A

B

D E

C

FIGURE 1

Responses of root traits to drought stress between three varieties with small LRAs and three varieties with large LRAs. Comparative charts illustrating
different varieties based on LRA (A); Quantitative analysis of the root dry weight (B) and LRA (C) in 2021; Quantitative analysis of the root dry weight
(D) and LRA (E) in 2022. Different letters indicate significant differences in drought stress and between varieties at p < 0.05. WW, well-watered; DS,
drought stress; LRA, lateral root angle. Values represent means ± standard error (n = 9). Red represents well-watered and blue represents
drought stress.
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with small LRAs by 36% (2021) and 6% (2022) compared to plants

under well-watered treatment. Compared with the well-watered,

drought stress reduced the height in the plants with large LRAs by

54% (2021) and 45% (2022). Additionally, the aboveground

biomass of varieties with the small LRAs was reduced by 32% and
Frontiers in Plant Science 06
12% under drought stress in 2021 and 2022, respectively, compared

to well-watered conditions. Alternatively, the aboveground biomass

in the varieties with large LRAs was reduced by 75% and 71% in

2021 and 2022, respectively. Furthermore, under drought stress, the

plant height and aboveground biomass in varieties with small LRAs
A

B D E

F G IH

C

FIGURE 2

Responses of stomatal traits to drought stress between three varieties with small LRAs and three varieties with large LRAs. Comparative charts
illustrating different varieties based on stomatal morphology (A); Quantitative analysis of stomatal opening (B), stomatal width (C), stomatal length
(D), and stomatal density (E) in 2021; Quantitative analysis of stomatal opening (F), stomatal width (G), stomatal length (H), and stomatal density (I) in
2022. WW, well-watered; DS, drought stress; LRA, lateral root angle. Different letters represent significant differences in drought stress and between
varieties (p < 0.05). Values represent means ± standard error (n = 9). Red represents well-watered and blue represents drought stress.
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increased by 23% and 54% in 2021 compared to the large LRAs.

Similarly, in 2022, the plant height and aboveground biomass of

varieties with small LRAs increased by 39% and 64%, respectively,

compared to the large LRAs (Table 1).
3.6 Variation in seed cotton yield and
related traits

Drought stress significantly reduced weight per plant, seed cotton

yield and lint yield of cotton. Under drought stress in 2021, the seed

cotton yields for varieties with small and large LRAs were 20% and 80%

lower (Figure 4B); the lint yield was 36% and 80% lower (Figure 4C),

and the weight per plant was 20% and 80% lower (Figure 4A),

respectively, compared to under well-watered conditions. The same

trend persisted in 2022, where the seed cotton yield was 24% and 71%

lower (Figure 4E); the lint yield was 32% and 73% lower (Figure 4F),

and the weight per plant was 24% and 71% lower (Figure 4D) under

drought stress for varieties with small and large LRAs, respectively,

compared to those under well-watered conditions.

There were genotypic differences in weight per plant, seed

cotton yield and lint yield of cotton under drought stress. Under
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drought stress in 2021, the varieties with small LRAs recorded

significantly increased seed cotton yield, lint yield and weight per

plant by 79, 75 and 79%, respectively, compared to varieties with a

large LRA (Figures 4A-C). Similarly, in 2022, varieties with smaller

LRAs significantly increased seed cotton yield, lint yield, and weight

per plant by 76%, 77%, and 76%, respectively, compared to varieties

with larger LRAs (Figures 4D-F).
3.7 Relationships between the root system
and key traits in field trials

The LRA, stomatal opening and canopy temperature of the six

varieties were significantly correlated with seed cotton yield under

drought stress in 2021 and 2022. The findings revealed significant

regressions (p < 0.05) between the LRA with stomatal opening,

canopy temperature, and seed cotton yield in 2021 (Figure 5). In

particular, in 2021, the LRA significantly increased with the

increasing canopy temperature (p < 0.05, Figure 5B) and

significantly decreased with the increasing stomatal opening

(p < 0.05, Figure 5A) and seed cotton yield (p < 0.05, Figure 5C).

Similarly, in 2022, the LRA significantly increased with the
A B D

E F G H

C

FIGURE 3

Responses of leaf physiological traits to drought stress between three varieties with small LRAs and three varieties with large LRAs. In 2021, we
conducted statistical analyses of canopy temperature (A), leaf water potential (B), leaf relative water content (C), and transpiration rate (D). Similarly,
in 2022, statistical analyses were carried out for canopy temperature (E), leaf water potential (F), leaf relative water content (G) and transpiration rate
(H). WW, well-watered; DS, drought stress; LRA, lateral root angle. Different letters indicate significant differences in drought stress and between
varieties (p < 0.05). Values for canopy temperature in 2021 and 2022 are indicated by means ± standard errors (n = 9). Red represents well-watered
and blue represents drought stress.
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increasing canopy temperature (Figure 5E) and significantly

decreased with the increasing stomatal opening (Figure 5D) and

seed cotton yield (p < 0.05, Figure 5F).
4 Discussion

4.1 Cotton LRA under drought stress

Under drought stress, the root system’s capacity to delve into

the soil becomes crucial because it enables the plants to extract

water from deeper layers, which directly influences their growth

(Adcock et al., 2007). Thus, measuring the root angle is vital to

assess the drought tolerance of crops (Lynch, 2013; Lynch and

Wojciechowski, 2015; Colombi and Walter, 2017).

Notably, previous research demonstrated that the root angle in

barley (Hordeum vulgare L.) (Robinson et al., 2018) and rice (Uga

et al., 2013) directly impacting their final yield. Moreover,

MansChadi et al. (2010) further illustrated that with narrower

roots, more soil water was extracted, especially at profile depth.

Maize also provides an excellent example where the root angle

proves to be a significant factor in increase crop yield under drought

stress (Ali et al., 2015). MansChadi et al. (2008) revealed that

drought-tolerant wheat genotypes had a narrower angle of

seminal axes. Furthermore, the wheat varieties cultivated in arid

regions tend to exhibit narrower root angles and a more compact

root structure, which enhances their ability to access deep soil water

(MansChadi et al., 2008). This study was consistent with the results

of these findings. These findings are consistent with the results of
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this study. In the context of this study, different cotton varieties

exhibited genetic differences in their LRAs. In particular, drought

stress significantly reduced the LRAs of varieties with smaller LRAs

and increased those of varieties with larger LRAs.
4.2 Stomata-related traits in cotton under
drought stress

This study explores the complex relationship between cotton

LRA and stomatal traits under drought stress. Stomata are a vital

component of the regulation of water by the plant under drought

stress conditions. Generally, the leaf stomatal density increases

under mild to moderate stress levels or at the onset of stress, such

as drought stress (Fraser et al., 2009). This study was consistent with

Fraser et al. (2009). We observed an increase in stomatal density in

varieties with small and large LRAs under drought stress compared

to well-watered conditions.

The extent of the increase in stomatal density varies among

types of crops. In this study, we found that under drought stress,

varieties with smaller LRAs had a 10% and 21% reduction in

stomatal density compared to those with larger LRAs in 2021 and

2022, respectively. Additionally, we observed that under drought

stress, as the stomatal density increased, the stomatal width, length,

and aperture decreased. This is consistent with the results of

Hetherington et al. (2003), who indicated that the stomatal size

decreases with increasing stomatal density. Plants exchange gases,

including water vapor, through stomata. This is particularly

important for plants grown under limited water resources (Gray
TABLE 1 The plant height and aboveground biomass between varieties with small LRAs and large LRAs under well-watered and drought stress.

Plant height (cm) Aboveground biomass (g)

2021 2022 2021 2022

WW DS WW DS WW DS WW DS

LRA group

small LRA 36.19 ± 3.39 23.61 ± 2.24 56.22 ± 3.85 52.83 ± 3.33 25.08 ± 2.14 17.01 ± 6.29 41.13 ± 5.53 33.42 ± 7.80

large LRA 38.92 ± 4.01 17.83 ± 3.06 58.50 ± 5.44 32.16 ± 10.09 31.71 ± 7.05 7.90 ± 1.91 44.60 ± 6.77 14.44 ± 5.44

varieties

#7 31.50 ± 1.22 25.67 ± 0.94 60.07 ± 1.80 55.10 ± 1.92 23.64 ± 3.73 16.29 ± 0.68 35.37 ± 0.85 28.66 ± 8.40

#77 37.67 ± 0.24 24.67 ± 0.47 50.97 ± 1.10 48.13 ± 0.97 23.50 ± 0.44 9.69 ± 3.95 39.43 ± 12.08 27.17 ± 0.77

#38 39.40 ± 4.17 20.50 ± 0.41 57.63 ± 1.23 55.27 ± 1.23 28.10 ± 2.06 25.04 ± 4.40 48.59 ± 4.36 44.42 ± 2.30

#47 34.43 ± 0.90 21.50 ± 0.00 57.33 ± 2.36 46.33 ± 1.25 22.04 ± 3.58 6.12 ± 0.21 51.05 ± 24.40 13.88 ± 0.80

#48 44.17 ± 2.25 18.00 ± 0.41 52.50 ± 1.08 23.67 ± 2.94 38.66 ± 1.21 10.55 ± 0.20 47.50 ± 13.78 21.36 ± 5.36

#75 38.17 ± 0.62 14.00 ± 0.41 65.67 ± 2.36 26.47 ± 4.23 34.42 ± 10.74 7.04 ± 1.39 35.25 ± 4.78 8.07 ± 3.31

Summary Statistics

minimum 30.00 13.50 50.00 20.00 17.54 4.99 9.80 4.51

maximum 46.00 25.00 69.00 57.80 49.57 29.64 89.79 73.42

mean 37.56 ± 3.70 20.35 ± 2.65 57.36 ± 4.64 42.49 ± 6.71 28.39 ± 4.59 12.45 ± 4.10 42.86 ± 6.15 24.57 ± 6.62
fr
LRA, lateral root angle; WW, well-watered; DS, drought stress; #7, #77, and #38 are varieties with small LRAs; #47, #48, and #75 are varieties with large LRAs.
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and Hetherington, 2004; Shimazaki et al., 2008; Yoo et al., 2009;

Zhang et al., 2018). Drought stress reduced the stomatal opening in

metatarsal leaves (Grantz and Schwartz, 1988), soybean (Ohashi

et al., 2006), and winter wheat (Li et al., 2004), which is consistent

with the results of this study. Our research showed that the stomata

of varieties with large and small LRAs reduced their degree of

stomatal opening under drought stress. However, the extent of the

reduction of stomatal opening varied among crop types. We found

that compared to cotton varieties with larger LRAs, those with

smaller LRAs increased their stomatal opening by 15% and 43%

under drought stress in 2021 and 2022, respectively. Our results are

in agreement with Vinarao et al. (2023) who showed that the

narrow root cone angle rice genotypes have higher stomatal

conductance compared to the wide root cone angle rice genotypes.

Overall, drought-tolerant varieties can more easily access deep

water, and the amount of water accessed can be greater to

compensate for the loss of large transpiration caused by stomatal
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opening, which can improve the drought tolerance of plants,

leading to better survival and growth of plants under drought

stress conditions.
4.3 Canopy temperature in cotton under
drought stress

The canopy temperature is affected by genetic, environmental,

and field management factors (Balota et al., 2007; Reynolds

et al., 2009). The exchange of energy between the canopy and the

external environment happens through radiation, conduction,

convection, transpiration, and various metabolic processes,

including enzymatic reactions, respiration, and photosynthesis

(Yoshimoto et al., 2005). In various crops, such as upland rice,

sugar beet (Beta vulgaris subsp. vulgaris Altissima Group), and

potato (Solanum tuberosum L.), the difference between the canopy
A B

D E F

C

FIGURE 4

Responses of yield to drought stress between three varieties with small LRAs and three varieties with large LRAs. Quantitative analysis of the weight
per plant (A), seed cotton yield (B), and lint yield (C) in 2021; Quantitative analysis of the weight per plant (D), seed cotton yield (E), and lint yield (F)
in 2022. Different letters indicate significant differences in drought stress and between varieties (p < 0.05). WW, well-watered; DS, drought stress;
LRA, lateral root angle. Values represent means ± standard error (n = 9). Red represents well-watered and blue represents drought stress.
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and air temperatures indicate drought tolerance (Fukuoka et al.,

2003). Therefore, the canopy temperature is a crucial indicator to

monitor the responses of plants to drought stress.

This study delved into the effects of drought stress on cotton

canopy temperature, and it is closely related to the LRA. During

drought stress, elevated canopy temperatures may increase the rates

of plant transpiration and accelerate the evaporation of soil water,

which increases the plant’s water needs (Carvalho et al., 2020).

However, excessively high canopy temperatures can trigger heat

stress responses in plants, which disrupts their normal growth and

development (Mohammed et al., 2018). Moller et al. (2006) also

suggested a model to estimate the water status of grape (Vitis

vinifera L.) using the canopy temperature. Different plant varieties

exhibit varying adaptations to temperature. This study shows that,

under drought stress conditions, cotton plants experienced a

notable increase in canopy temperature. However, in the years

2021 and 2022, cotton varieties with smaller LRAs exhibited a

significant reduction in the canopy temperature by 12% and 9%,

respectively, when compared to varieties with larger LRAs under

drought stress. This results is consistent with Vinarao et al. (2023),
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who showed that compared to rice genotypes with wide root cone

angle, the narrow root cone angle group had a 0.3-1.0° C decrease in

canopy temperature below 20 centimeters.

The reduction in canopy temperature among in cotton varieties

with smaller LRAs suggests an improved ability to regulate water

use under drought stress. This adaptation enables these plants to

adapt to limited water availability more effectively, which ultimately

results in improved drought tolerance and potentially higher yields.

These findings underscore the intricate relationship between the

root system traits, canopy temperature, and drought tolerance

in cotton.
4.4 The relationship between the LRA,
canopy temperature, stomatal traits, and
seed cotton yield

Our research unveiled a compelling correlation between the

LRA and leaf stomatal opening, canopy temperature, and yield.

Research has shown that cotton varieties with larger LRAs may lead
A B

D E F

C

FIGURE 5

Correlation analysis between LRA and stomatal opening, canopy temperature, and seed cotton yield in three varieties with small LRAs and three
varieties with large LRAs. In 2021, linear regression analysis was used to investigate the relationship between LRA and stomatal opening (A), canopy
temperature (B), and seed cotton yield (C) in three varieties with small LRAs and three varieties with large LRAs under drought stress (n = 18); In
2022, linear regression analysis was used to investigate the relationship between LRA and stomatal opening (D), canopy temperature (E), and seed
cotton yield (F) in three varieties with small LRAs and three varieties with large LRAs under drought stress (n = 18).
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to elevated leaf temperatures during drought stress. Conversely,

under drought stress conditions, cotton varieties with smaller LRAs

consistently displayed lower leaf canopy temperatures. This

phenomenon arises from their enhanced ability to efficiently

access water deep within the soil, which potentially induces

greater transpiration in plants, thus, ameliorating water stress.

These findings align closely with the research by Kato and Okami

(2010) in which deeper-rooted varieties maintained open stomata

and sustained lower leaf temperatures even when soil water

potential dropped below -50 kPa, which illustrated the varietal

adaptation of stomatal traits to drought stress. This discovery

emphatically underscores the pivotal role played by the LRAs in

facilitating the access of plants to deeper soil layers, thereby

alleviating water deficits in the topsoil. The resultant reduction in

leaf canopy temperatures suggests the potential of smaller LRAs to

mitigate the heat stress induced by drought.

Furthermore, since the plant leaf temperature is typically

influenced by the canopy temperature and controlled by the

stomatal opening, our study highlights the significant correlation

between the LRA and stomatal traits. The LRA affects the internal

water transport in plants by influencing the stomata opening. We

found that under drought stress, cotton varieties with smaller LRAs

had relatively increased stomatal openings compared to varieties with

larger LRAs. This could be because cotton plants with smaller LRAs

can typically access deeper soil water, maintain a higher water supply,

alleviate drought stress, and enable sufficient stomatal openings to

support transpiration losses. In contrast, cotton plants with larger

LRAs may face a lower water supply and be unable to sustain

transpiration losses. Thus, they respond to drought stress by

closing their stomata. In particular, under drought stress, cotton

varieties with smaller LRAs exhibited a 15%-43% increase in their

stomatal opening compared to varieties with larger LRAs. These

results are consistent with those of Kato and Okami (2010) and

Vinarao et al. (2023), who demonstrated that, varieties with deeper or

narrower root systems maintained larger stomatal openings and

higher stomatal conductance under drought stress. Therefore, this

response is crucial for water resource conservation since it is sufficient

to maintain a higher water supply, alleviate drought stress, and

improve the plant’s resistance to water deficits.

Importantly, these findings significantly impact seed cotton

yield. Under drought stress conditions, cotton varieties with

smaller LRAs consistently outperform other varieties, primarily

owing to their ability to access more water resources, thereby

increasing seed cotton yield. However, cotton varieties with larger

LRAs may be subject to water limitations, which results in reduced

yields. Our research indicates that the seed cotton yield, lint yield,

and individual plant weight of varieties with smaller LRAs increased

significantly by 76%-79%, 75%-77%, and 76%-79%, respectively,

compared to varieties with larger LRAs. These results are consistent

with those of MansChadi et al. (2010), who demonstrated that

wheat genotypes with narrow root angles exhibit 6%-28% higher

yields than conventional varieties.

This correlation between the LRA and canopy temperature, stomatal

opening, and yield strongly suggests the potential to use the LRA as a key

trait in breeding programs aimed at developing drought-resistant cotton

varieties. Recent studies provide support for such interrelationships.
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Vinarao et al. (2023) published research that illustrated a similar

relationship, albeit in a different crop context. In particular, the RCA

had significant negative correlations with the total root length (r = -0.70),

leaf area (r = -0.67), proportion of deep roots below 20 cm (r = -0.65),

and stomatal conductance (r = -0.71). Conversely, it had a significant

positive correlation with canopy temperature (r = 0.66). These findings

align closely with our results where we identified a negative correlation

between the LRA and stomatal opening and seed cotton yield along with

a positive correlation with canopy temperature.

In summary, the reduction in stomatal aperture reduces water

loss, but also weakens photosynthesis and transpiration, and blocks

assimilate transfer and heat dissipation in the plant body, a large

increase in temperature will cause irreversible damage to

plant organs and the yield loss of cotton will be greater

(Sánchez et al., 2014). This understanding provides valuable

insights into the mechanisms by which cotton adapts to water

scarcity, thus, offering a promising avenue for precision breeding

efforts. By selecting cotton varieties with smaller LRAs, breeders can

facilitate the development of more robust cotton crops, ensuring

sustainable production in water-limited environments and

addressing the challenges posed by evolving climate patterns.
4.5 More needs to be done

The evaluation of drought tolerance using physiological

mechanisms has made little progress. There are three main issues at

the heart of this dilemma. First, the specific plant traits that enhance

drought tolerance remain uncertain. Secondly, whether plant traits

represent mutually exclusive substitutes, trade-offs, or orthogonal

processes is unclear. Third, it is unclear whether some traits should

be included in the drought stress treatment group. This study has

addressed the first and second challenges. Our results demonstrate that

the LRA, leaf canopy temperature, and stomatal opening are important

factors in improving plant water relations and achieving higher seed

cotton yield under drought stress. Despite the progress in linking LRA

phenotypes and performance, the genetic basis of LRA remains poorly

understood and merits further investigation.
5 Conclusion

This study offers a comprehensive insight into the intricate

connections between the cotton LRA, stomatal traits, canopy

temperature, and yield under drought stress. Our study

emphasizes the pivotal significance of the LRA as a hereditary

trait that profoundly impacts how cotton responds to water scarcity.

This study reveals that in drought stress, cotton varieties with

smaller LRAs positively influence both yield and plant

adaptability. Smaller LRAs could more easily access deep water,

allowing the plants to obtain more water to compensate for the

massive transpiration water loss caused by stomatal opening, thus,

reducing the degree of plant water stress. As a result, smaller LRAs

are better able to maintain stomatal opening. Additionally, cotton

plants with smaller LRAs display improved stomatal regulation,

which leads to lower canopy temperatures. Smaller LRAs are linked
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to reduced canopy temperatures. In summary, smaller LRAs

significantly influence the aboveground growth of cotton,

enhances drought tolerance, and reduces yield losses. Cotton

varieties with smaller LRAs exhibit higher drought tolerance and

seed cotton yields, primarily owing to their capacity to access deep

soil water, thereby increasing plant water acquisition, lowering

canopy temperatures, and permitting partial stomatal opening

(Figure 6). Consequently, the LRA of cotton varieties proves

critical in the selection of genotypes adapted to drought stress,

and high yield potential.
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stress; LRA, lateral root angle.
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SUPPLEMENTARY FIGURE 1

The mean temperature and sunshine duration during the cotton growing
seasons in 2021 (A) and 2022 (B).

SUPPLEMENTARY FIGURE 2

The soil relative water content in 2021 (A) and 2022 (B) in the experimental

fields. The data were recorded from April 24 to October 15 (n = 4021). WW,
well-watered; DS, drought stress.

SUPPLEMENTARY FIGURE 3

Soil relative water content in cotton fields. The relative water content of the

soil was 75 ± 5% in 2021 (A) and 2022 (B). The relative water content of the soil
was 50 ± 5% in 2021 (C) and 2022 (D).

SUPPLEMENTARY FIGURE 4

Systematic clustering based on LRA drought tolerance coefficients for 80
cotton varieties in 2021 (A) and 2022 (B).
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