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Geographical Sciences, Hebei Normal University, Shijiazhuang, China, 2Geography Postdoctoral
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Introduction: Variation in plant nitrogen uptake rate and substrate preference is

complicated due to the combined influence of abiotic and biotic factors. For the

same species of tree across different ages, the interactions between root

structural traits, nitrogen uptake rate, and soil environment have not been fully

characterized, a situation that constrains our understanding of underground

resource strategies employed by trees at different ages.

Methods: In the present study, we examined the nitrogen uptake rate,

mycorrhiza, morphology, architecture, and chemistry of the roots of Larix

principis-rupprechtii in a chronosequence (aged 18, 27, 37, 46, and 57 years) in

the Saihanba Mechanical Forest Farm in Northern China.

Results: L. principis-rupprechtii preferred to absorb ammonium, followed in

order by glycine and nitrate. The ammonium uptake rate of L. principis-

rupprechtii significantly decreased (aged 18–37 years) and then increased

(aged 46–57 years) with tree age. The glycine, nitrate, and total nitrogen

uptake rates decreased with tree age. The root resource acquisition strategy

appeared to shift from an acquisitive strategy to a conservative strategy

associated with increasing tree age.

Discussion: Along the root-mycorrhizal collaboration gradient, the younger L.

principis-rupprechtii relied more on their own root morphology and physiology

to acquire resources, adopting a “do it yourself” strategy comprising increasing

the specific root length, the specific root area, and the N uptake rate (nitrate and

glycine). Conversely, older trees depended more on mycorrhizal partners to

acquire nitrogen resources, an “outsourcing” strategy. The results contribute to

our understanding of underground resource-use strategies of plants and the

nitrogen cycle in forest ecosystems according to stand age.
KEYWORDS

nitrogen uptake, root economics space, tree age, root traits, mycorrhizal colonization
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1358367/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358367/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358367/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358367/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1358367/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1358367&domain=pdf&date_stamp=2024-03-12
mailto:liuqianyuan333@126.com
mailto:330896729@qq.com
https://doi.org/10.3389/fpls.2024.1358367
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1358367
https://www.frontiersin.org/journals/plant-science


Liu et al. 10.3389/fpls.2024.1358367
1 Introduction

Nitrogen (N) is one of the most important and limiting

elements in forest ecosystems (LeBauer and Treseder, 2008).

Plants utilize nitrogen in various forms, including ammonium

(NH4
+–N), nitrate (NO3

−–N), and organic nitrogen, and the

absorbed nitrogen contributes to their productivity, biodiversity,

and ecosystem functions (Kahmen et al., 2008; Andersen and

Turner, 2013).

The N-acquisition strategies of plants are influenced by abiotic

and biotic factors. The availability of soil N can affect root N uptake

and substrate preference. For example, plants in boreal forests

(Nordin et al., 2001), temperate forests (Zhou et al., 2019),

subtropical plantations (Liu et al., 2020), and tropical forests (Liu

et al., 2017) preferred to absorb ammonium where the ammonium

content was higher than the nitrate level in the soil. Similarly, in

areas where soil nitrate was dominant, temperate Fagus sylvatica

(Jacob and Leuschner, 2015), Schima superba, and Liquidambar

formosana (Gessler et al., 1998) preferred to absorb nitrate. Some

evidence suggests that plants may prefer organic N over inorganic

N, or absorb both equally, especially in low-temperature, N-

restricted polar, alpine, and boreal ecosystems (Chapin et al.,

1993; Näsholm et al., 1998; Öhlund and Näsholm, 2001; Simon

et al., 2021). However, some studies have reported that the plant N

uptake preference was in contrast to the predominant form of N in

the soil. For example, Fagus grandifolia seedlings (Templer and

Dawson, 2004), Larix gmelinii, and Betula platyphylla (Gao et al.,

2020) preferred to absorb nitrate, although the content of

ammonium in the soil was 2–14 times higher than that of nitrate.

This indicates that the plant uptake preference for different forms of

N is not only related to the availability of N in the soil but also to

internal factors specific to the species. For instance, the inorganic N

uptake rate of arbuscular mycorrhizal species was higher than that

of ectomycorrhizal species (Liese et al., 2018). In recent years,

negative correlations (Liu et al., 2020; Yi et al., 2023), positive

correlations (Hong et al., 2018), and no correlation (Ma et al., 2018)

have been reported regarding the linear relationship between

physiological N uptake rate and the morphology of specific root

length (SRL). Therefore, the root N uptake rate and preference are

complex phenomena due to the combined influence of abiotic and

biotic factors. In addition, the relationship between the root N

uptake rate and the structural traits of the same tree species based

on age is an aspect that has yet to be examined.

With the increase in tree age, the biotic and abiotic factors that

affect root N absorption often change, which in turn will affect root

N absorption. However, the existing research results have shown

large variations in the N uptake with tree age due to differences in

the study sites and tree species. Tropical Hevea brasiliensis aged 7–

49 years showed a preference for ammonium. The ammonium

uptake rate increased initially and then decreased sharply, and the

glycine uptake decreased initially and then increased sharply with

age (Liu et al., 2018). Subtropical Cunninghamia lanceolata aged 5–

30 years preferred to absorb ammonium, and the ammonium

uptake rates for 30- and 5-year-old trees were similar and were

higher than those of 13-year-old trees (Li et al., 2016). Temperate

Pinus koraiensis aged 14–217 years preferred ammonium, and the
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ammonium uptake rate decreased with tree age (Ren et al., 2021). F.

sylvatica aged 5–130 years preferred organic glutamine and

arginine, and the inorganic and glutamine uptake rates did not

differ among age classes (Simon et al., 2021). Therefore, given the

uncertainties in the relationship between N uptake preferences (or

the uptake rates) and stand age, conducting studies in different

geographic regions and forest types will contribute to a more

comprehensive understanding of the N acquisition strategies

during forest succession.

Root traits can reflect the underground resource strategies of

tree species. Root trait variation was initially assumed to be a one-

dimensional root economic spectrum with a trade-off between

resource acquisition and conservation (Comas and Eissenstat,

2004; Roumet et al., 2016). The roots in nutrient- and water-rich

environments were characterized by their smaller diameter, higher

SRL, higher N content, lower root tissue density (RTD), shorter root

life span, and lower mycorrhizal colonization rate. As such roots

have high nutrient and water absorption capacity, this indicated a

resource-acquisitive strategy (Roumet et al., 2006, 2016; Pinno and

Wilson, 2013; McCormack et al., 2015; Fort et al., 2016; Li et al.,

2017). When the water and fertilizer contents are low, plant roots

show the opposite pattern, a resource-conservative strategy.

However, an increasing number of studies have demonstrated

that variations in root traits are multidimensional rather than

reflecting a single axis related to resource economics (Kong et al.,

2014; Wang et al., 2018; Kong et al., 2019; Bergmann et al., 2020;

Ding et al., 2020; Weigelt et al., 2021; Yan et al., 2022). For example,

Bergmann et al. (2020) analyzed the root traits of 1,810 species and

proposed a two-dimensional root economic space with

conservation and collaboration gradients. In addition, root

exudation traits (Wen et al., 2022), root respiration (Han and

Zhu, 2021), and N uptake rate (Yi et al., 2023) were integrated

into the current theoretical framework of root economic space. The

above studies reflect the trade-off dimensions of the root

morphological, architectural, anatomical, chemical, and

physiological traits across species. However, there are few studies

on root economic space based on the age gradient of the same

tree species.

In this study, root physiology (N uptake rate), morphology

(diameter, SRL, and RTD), architecture (branching ratio and

intensity), chemistry (N and C contents), and mycorrhizal

colonization rate in the L. principis-rupprechtii chronosequence

(aged 18, 27, 37, 46, and 57 years) in the Saihanba Mechanical

Forest Farm in Northern China were analyzed. We aimed to verify

1) how the N uptake rates and substrate preferences of L. principis-

rupprechtii plantations change with tree age and 2) how the

economic space based on root functional traits changes along the

age gradient in L. principis-rupprechtii plantations. Here, we

hypothesized that 1) with the increase in tree age, the N uptake

rate of L. principis-rupprechtii roots would decrease while the

nitrogen preference would not vary (Simon et al., 2021; Ren et al.,

2023) and 2) trees with different ages would show different N

strategies, indicating two dimensions of collaborative and

conservative root functional traits along the age gradient. These

hypotheses were formed following the root economic space theory

for multi-tree species (Bergmann et al., 2020).
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2 Materials and methods

2.1 Study site and experimental design

This study was conducted at the Saihanba Mechanical Forest

Farm (116°53′–117°39′ E, 41°92′–42°36′ N) in Chengde City, Hebei

Province, Northern China. The elevation of the area is 1,010–1,939

m. This region has a typical semi-arid and semi-humid cold

temperate continental monsoon climate, with an average annual

precipitation of about 460 mm and an average annual temperature

of about −1.3°C. The soil is of a gray forest type. The main tree

species in this region are L. principis-rupprechtii, Pinus sylvestris,

Betula platyphylla, Picea asperata, and Populus davidiana. The larch

plantation accounts for more than 90%, with a few understory

shrub species, mainly Rosa davurica, Lonicera microphylla, and

Spiraea pubescens. There are many species of herbs in the L.

principis-rupprechtii plantations, including Agrimonia pilosa,

Sanguisorba officinalis, Ranunculus japonicus, Veronica longifolia,

Adenophora stricta, Carex lanceolata, Thalictrum petaloideum,

Papaver nudicaule, and Trollius chinensis.

In July 2021, five L. principis-rupprechtii plantations of different

ages with similar stand conditions, good growth, and adjacent

distribution were selected for the experiments. The five larch

plantations were all wasteland before afforestation and had not

been disturbed by human activities. The age of the trees was

confirmed by the annual ring of the tree cores sampled from the

growth cone. Trees with different ages were in different ontogenetic

stages depending on their diameter at breast height and the height

that was surveyed. Table 1 displays the plantation characteristics.

Four 20-m × 20-m plots were randomly set up for each age of the L.

principis-rupprechtii plantations, and soils at a depth of 0–15 cm

were collected with a soil drill using the five-point mixing method.

In each plot, the roots of L. principis-rupprechtii were carefully

excavated in four directions along the trunk, taking care to ensure

the integrity of the fine roots. The four root samples in each plot

were placed in centrifuge tubes with three 15N labeling solutions of

ammonium, nitrate, and glycine and one controlled unlabeled

solution. The concentration of each solution was 100 mmol N L−1

and contained a 1:1:1 nitrogen ratio of ammonium, nitrate, and

glycine, with only one 15N form. All solutions contained 10 mg L−1

ampicillin to inhibit microbial activity that would degrade glycine

and 200 mmol L−1 CaCl2 to maintain membrane stability (Warren
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and Adams, 2007). After 2 h of the labeling experiment, the roots

were harvested, cleaned with 50 mmol L−1 KCl solution and

deionized water, placed in an envelope, and brought back to the

laboratory. In addition, roots were collected within 20 cm of the

sampling point for isotopic labeling hydroponics, and these roots

were used to determine the morphological, architectural, and

mycorrhizal traits.
2.2 Root trait measurements

Roots were dried and ground to powder for the determination

of isotope 15N/14N and total C and N contents using an isotope ratio

mass spectrometer (IRMS, MAT253; Finnigan MAT, Bremen,

Germany) coupled to an elemental analyzer (EA 1110; CE

Instruments, Milan, Italy). Other root samples were graded,

scanned on an Epson scanner at 300 dpi, dried, and weighed. The

scanned images were analyzed using WinRHIZO software (Regent

Instruments Inc., Quebec City, QC, Canada) to obtain the average

diameter (AD), total length, total surface area, and total volume.

The number of root segments in each image was obtained by

counting. The calculation formulas for SRL, specific root area

(SRA), RTD, root branching ratio (BR), and branching intensity

(BI) were from a previous study (Liu et al., 2023). A total of 200 root

segments were observed under an anatomic microscope with ×20

magnification (EZ4W; Leica, Wetzlar, Germany) to determine

whether they were infected by mycorrhizal fungi based on the

features of a yellow-brown or golden-brown color and a swollen

appearance. The ectomycorrhizal colonization rate (ECM) was

defined as the ratio of the number of root tips infected by fungi

to the total number of root tips observed.
2.3 Soil trait measurements

Fresh soil was extracted with a 0.05 mol L−1 K2SO4 solution and

measured using an automatic continuous flow analyzer (AA3; Bran-

Luebbe, Hamburg, Germany) to obtain the NH4
+ and NO3

−

contents. The soil glycine concentrations were measured using

high-performance liquid chromatography–tandem mass

spectrometry (HPLC-MS/MS API 3200 QTRAP; CA, USA) after

the derivatization of amino acids. The total C and total N were
TABLE 1 Basic characteristics of Larix principis-rupprechtii plantations at different tree ages.

Tree
age (years)

Longitude
and latitude

Altitude (m)
Density (hm−2) Diameter at

breast height (cm)
Height (m)

18 (±1) 117°14′10″ E, 42°23′9″ N 1,489 3,225 11.60 ± 1.00 10.20 ± 0.58

27 (±1)
117°13′24″ E, 42°27′
54″ N

1,497
3,000

13.90 ± 0.66 14.00 ± 4.67

37 (±2)
117°16′24″ E, 42°23′
23″ N 1,515

2,325
21.55 ± 1.46 16.37 ± 0.42

46 (±2) 117°14′28″ E, 42°24′1″ N 1,491 1,350 24.33 ± 0.55 17.44 ± 0.34

57 (±1) 117°19′6″ E, 42°24′39″ N 1,527 1,350 31.21 ± 0.98 24.00 ± 0.31
Values are mean values with standard errors.
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measured using an elemental analyzer (EA3000, EuroVector, Milan,

Italy) after removing the inorganic C with hydrochloric acid. Total

phosphorus was determined by a sodium hydroxide–molybdenum–

antimony reactance colorimetric method, while total potassium was

determined using flame spectrophotometry. Table 2 displays

information on the soil characteristics.
2.4 Calculation and statistical analyses

The N uptake rate (NUR, in micrograms N per gram of root dry

weight per hour) was calculated as in the following equations (Liu

et al., 2020):

NUR =
N content( mg

g )� APE

time(h)� atom%15
⬚ N tracer

(1)

APE = (15N atom%  excess) = AL − ACK (2)

The atom% 15N values of the tracer were 10.18% for nitrate,

10.12% for ammonium, and 99.12% for glycine. AL denotes the

atom% 15N of labeled roots, while ACK is the atom% 15N of

unlabeled roots. The N uptake contribution was calculated as the

uptake rate of one N form divided by the sum of three N forms.

The normal distribution of the data was verified by a non-

parametric Shapiro–Wilk test in SPSS 20 (SPSS Inc., Chicago, IL,

USA). Differences in the root traits among tree ages were analyzed

using one-way analysis of variance (ANOVA), followed by a least

significant difference (LSD) test using SPSS 20. Differences were

considered significant at p< 0.05. Principal component analysis (PCA)

of the root traits across tree ages was conducted in R v.4.0.3 (OriginLab

Software Inc., Northampton, MA, USA). Table 3 presents the

abbreviations and descriptions of the root morphological, architectural,

mycorrhizal, chemical, and physiological traits and soil characteristics.
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3 Results

3.1 Soil characteristics with tree ages

The soil pH and total phosphorus of young (i.e., 18, 27, and 37

years old) L. principis-rupprechtii trees were significantly higher

than those of older trees (46 and 57 years old). The organic C and

total N contents in the soil of young trees were significantly lower

than those of older trees (Table 2). The NH4
+–N content in the soils

of the 18- and 27-year-old trees was significantly lower, while the

nitrate content was higher than that in the soils of the 37-, 46-, and

57-year-old trees (Table 2). The soil water content of the 18-year-

old trees was the lowest, and the glycine content in the soil of 57-

year-old trees was the lowest (Table 2).
3.2 Changes in the N uptake rate and
preference with tree age

Tree age affected uptake rates (calculated by Equations 1, 2) for the

three N sources. The ammonium uptake rate of L. principis-rupprechtii

roots significantly decreased (aged 18–37 years) and then increased

(aged 46–57 years) with increasing tree age (Figure 1A). The glycine

uptake rate significantly increased (aged 18–27 years) and then

decreased (aged 27–57 years) with increasing tree age (Figure 1A).

The uptake rates of nitrate and total N significantly decreased with

increasing tree age (aged 18–57 years).

Within the same age group, the uptake rates for the three N forms

showed a significant difference. The ammonium and glycine uptake

rates of young L. principis-rupprechtii showed no significant differences,

being 4–14 times higher than the nitrate uptake rate (Figure 1A). The

uptake rate of the 46-year-old trees was in the order of ammonium >

glycine > nitrate (Figure 1A). The glycine and nitrate uptake rates of the
TABLE 2 Soil characteristics of Larix principis-rupprechtii plantations.

Age
(years)

pH
Water
content

(%)

Organic
carbon
(g kg−1)

Total
nitrogen
(g kg−1)

N–NH4
+

content
(mg kg−1)

N–NO3
−

content
(mg kg−1)

N-glycine
content
(mg kg−1)

Total phos-
phorus
(g kg−1)

Total
potassium
(g kg−1)

18
6.63
±

0.02a

14.17
± 0.16b

19.19 ± 0.78d 1.58 ± 0.07d 15.20 ± 0.55b 17.27 ± 1.41a 0.05 ± 0.00a
0.14 ± 0.01ab 13.88 ± 0.58b

27
6.07
±

0.02c

22.11
± 0.93a

24.08 ± 0.58c 2.07 ± 0.05c 14.22 ± 1.68b 18.00 ± 0.55a 0.06 ± 0.01a
0.14 ± 0.02ab 15.81 ± 0.54a

37
6.31
±

0.02b

20.19
± 1.33a

20.07 ± 0.65d
1.69

± 0.23cd
29.35 ± 1.74a 13.34 ± 1.83b 0.07 ± 0.00a

0.15 ± 0.02a 12.69 ± 0.18b

46
5.83
±

0.01e

20.79
± 0.48a

30.57 ± 1.49b 2.94 ± 0.14b 29.97 ± 0.52a 10.54 ± 1.50b 0.06 ± 0.01a
0.11 ± 0.01b 16.02 ± 0.21a

57
5.99
±

0.01d

21.52
± 1.73a

36.88 ± 0.54a 3.50 ± 0.07a 33.15 ± 2.15a 12.06 ± 0.70b 0.03 ± 0.00b
0.11 ± 0.01b 16.26 ± 1.01a
Values are mean values with standard errors. Different letters represent statistical significance across tree ages (p< 0.05).
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57-year-old trees showed no differences and were 22 times lower than

the ammonium uptake rate (Figure 1A).

Across all tree ages, L. principis-rupprechtii preferred to absorb

ammonium, followed by glycine, with the smallest proportion being

nitrate (Figure 1B). The contribution of ammonium uptake (45%–

90%) increased, while that of glycine uptake (40%–5%) decreased

with increasing tree age (Figure 1B). The contribution of nitrate

uptake decreased initially and then increased with increasing tree

age, but the overall proportion was small, ranging from 4% to

11% (Figure 1B).
3.3 Root morphological, architectural,
mycorrhizal, and chemical traits with
tree ages

The diameter, RTD, and ECM of the roots of L. principis-

rupprechtii increased significantly with the increase in tree age
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(Figures 2A, B, G). The SRL, SRA, BR, and BI decreased

significantly with increasing tree age (Figures 2C–F). The root

carbon content (RC) of the 57-year-old trees was significantly

higher than those of the other four ages, and the root nitrogen

(RN) content of young trees was significantly higher than that of

older trees (Figures 2H, I).
3.4 Relationships among root traits and
soil characteristics

The glycine, nitrate, and total N uptake rates were positively

correlated with the soil glycine and nitrate contents but negatively

associated with the soil organic C, total N, and ammonium contents

(Figure 3). The glycine, nitrate, and total N uptake rates were positively

correlated with SRL, SRA, BR, BI, and RN but negatively correlated

with the AD, RTD, ECM, and RC of roots. The ammonium uptake rate

was weakly correlated with the soil properties and root traits (Figure 3).
TABLE 3 Abbreviations and descriptions of the root morphological, architectural, mycorrhizal, chemical, and physiological traits and
soil characteristics.

Parameters Abbreviation Units Description

Root
morphological traits

Root diameter AD mm Average root diameter

Root tissue density RTD g cm−3 The ratio of root dry mass to root volume

Specific root length SRL m g−1 The ratio of root length to root dry mass

Specific root area SRA cm2 g−1 The ratio of root surface area to root dry mass

Root architectural traits Branching ratio BR none The ratio of the first-order root number to the second-order
root number

Branching intensity BI cm−1 The ratio of the first-order root number to the second-order root length

Mycorrhizal traits Mycorrhizal
colonization rate

ECM % Ectomycorrhizal colonization rate

Root chemical traits Root carbon content RC % Root carbon content

Root nitrogen content RN % Root nitrogen content

Root physiological traits Ammonium uptake rate UAM μg
g−1 h−1

Ammonium nitrogen uptake rate

Nitrate uptake rate UNT μg
g−1 h−1

Nitrate nitrogen uptake rate

Glycine uptake rate UGLY μg
g−1 h−1

Glycine nitrogen uptake rate

Total nitrogen uptake rate UTN μg
g−1 h−1

Total nitrogen uptake rate

Soil characteristics Soil water content SWC % Soil water content

Soil total nitrogen STN g kg−1 Soil total nitrogen

Soil total organic carbon SOC g kg−1 Soil total organic carbon

Soil ammonium content SAM mg kg−1 Soil ammonium content

Soil nitrate content SNT mg kg−1 Soil nitrate content

Soil glycine content SGLY mg kg−1 Soil glycine content

Soil total
phosphorus content

STP g kg−1 Soil total phosphorus content

Soil total potassium content STK g kg−1 Soil total potassium content
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Soil pH was positively correlated with root traits such as SRL,

SRA, BR, and RN (p< 0.05), but negatively associated with the AD,

RTD, and ECM of roots (p< 0.05) (Figure 3). The soil water content

and the organic C, total N, and ammonium contents displayed

significant positive correlations with the AD, RTD, and ECM of

roots but were negatively correlated with the SRL, SRA, BR, BI, and

RN of roots (Figure 3). The soil nitrate content exhibited significant

positive relationships with SRL, SRA, and BR but was negatively

correlated with the root diameter (AD), RTD, and ECM (p< 0.05) of

roots (Figure 3).

The PCA of the correlations of 13 root traits revealed that 72.4%

of the total variation across tree age was reflected in the first two

axes, of which 56.0% was attributed to the first axis (Dim1)

(Figure 4). Dim1 was positively dominated by the total N, glycine,

and nitrate uptake rates and the SRL, SRA, and BR, but negatively

dominated by AD, RTD, and the ECM. Dim2 explained 16.4% of

the variation and was positively associated with the ammonium

uptake rate and root carbon but negatively correlated with RN and
Frontiers in Plant Science 06
BI (Figure 4). The first axis was positively correlated with soil pH

and the nitrate and total phosphorus contents, but negatively

associated with the soil water content and the organic C, total N,

and ammonium contents. The second axis was negatively correlated

with soil glycine (Figure 5).
4 Discussion

In the long-term evolutionary process, plants have formed

absorption mechanisms for different forms of nitrogen, generally

showing a preference for a specific N form (Bueno et al., 2019). In

this study, L. principis-rupprechtii preferred to absorb ammonium

and glycine, and the contribution of ammonium increased while

that of glycine decreased with tree age. Our study showed that the

preference for ammonium uptake did not change with age,

supporting our first hypothesis. This is consistent with previous

studies demonstrating that trees (e.g., C. lanceolata, H. brasiliensis,
B

A

FIGURE 1

(A) N uptake rates. (B) Contributions of ammonium (NH4
+), nitrate (NO3

−), and glycine of Larix principis-rupprechtii at different tree ages. Values are
presented as mean and standard error. Different capital letters indicate significant differences between ammonium, nitrate, and glycine uptake rates,
while different lowercase letters indicate significant differences between tree ages (p< 0.05).
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FIGURE 2

Morphological [average diameter (A), root tissue density (B), specific root length (C), and specific root area (D)], architectural [root branching ratio (E)
and branching intensity (F)], mycorrhizal colonization (G), and chemical [root carbon (H) and root nitrogen (I)] traits of roots at different tree ages.
Different small letters indicate significant differences between tree ages at p< 0.05.
FIGURE 3

Pearson’s correlation analysis between root traits and soil characteristics. Asterisks indicate significance at *p< 0.05, **p< 0.01, and ***p< 0.001
levels. Abbreviations and descriptions are listed in Table 3.
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and P. koraiensis) of different ages showed a preference for

ammonium (Li et al., 2016; Liu et al., 2018; Ren et al., 2021).

Firstly, the nitrate in plants needs to be converted into ammonium,

then glutamate, and then further utilized by plants (Wang and

Macko, 2011). Therefore, the energy required for plants to utilize

ammonium is less than that for nitrate; this may be one of the

reasons for plants preferring ammonium. Another reason could be

that ammonium is abundant in soils, and the content of ammonium

increased with increasing forest age in this study (Table 2). Other

studies have found that tree species prefer to absorb ammonium,

consistent with the predominance of ammonium in soils (Finzi and

Berthrong, 2005; Liu et al., 2017; Zhou et al., 2019). Moreover,

Zhang et al. (2018) found that the N uptake preference of P.

asperata in the Tibetan Plateau changed from nitrate to

ammonium nitrogen with increasing age and speculated that this

was related to the change in the dominant N form in the soil.

The ammonium uptake rate of L. principis-rupprechtii roots

significantly decreased and then increased, while the glycine and

nitrate uptake rates decreased with increasing tree age, partly

supporting our first hypothesis. This is in contrast to previous

studies. Liu et al. (2018) found that the ammonium uptake rate ofH.

brasiliensis increased initially and then decreased sharply, while the
FIGURE 4

Principal component analysis (PCA) for root traits across tree ages.
The colors of the lines represent the total contribution of each
variable to the first and second principal components.
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FIGURE 5

Linear relationships of the axes in the principal component analysis and soil factors. SWC, soil water content; SOC, soil organic carbon; STN, soil
total nitrogen; SAM, soil ammonium content; SNT, soil nitrate content; SGLY, soil glycine content; STP, soil total phosphorus content; STK, soil total
potassium content.
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glycine uptake decreased initially and then increased sharply with

age. The ammonium uptake rate of P. koraiensis decreased with tree

age (Ren et al., 2021), while that of F. sylvatica did not differ (Simon

et al., 2021) with tree age. The reason for the contradictory findings

of nitrogen absorption with age may be related to the differences in

tree species and the availability of soil nitrogen. In this study, the

nitrate and glycine uptake rates were positively linearly correlated

with the nitrate and glycine contents in soils across the age gradient.

Another reason for the changes in N uptake by plants with age may

be related to the root traits of the species. The contribution of

ammonium to the N uptake increased with tree age as a result of the

decreased nitrate and glycine uptake in older L. principis-

rupprechtii. Compared to nitrate, the diffusion rate of ammonium

ions in the soil is much lower (Barber, 1995), suggesting that, in the

case of ammonium, the roots should grow closer (and show

increased branching) to the N source for more efficient uptake.

Moreover, localized ammonium increases lateral root branching,

while nitrate induces lateral root elongation (Remans et al., 2006;

Lima et al., 2010). In our study, with the increase in forest age, the

decrease in soil nitrate content was accompanied by a decrease in

SRA. The decreased nitrate uptake in older trees could be caused by

the ECM increasing with tree age (Figure 2), with the ability of the

colonized root tips to take up nutrients directly disappearing as

a result.

In this study, the total N uptake rate decreased significantly with

increasing tree age, indicating that the nitrogen demand of older

trees was relatively reduced compared to that of younger trees. This

is consistent with previous studies showing that the root total N

uptake rate of rubber trees and Korean pine decreased gradually

with the increase in tree age (Liu et al., 2018; Ren et al., 2021). One

possible reason is that younger trees grow at a faster rate and have

higher nutrient requirements for adding biomass than older trees

(Borchert, 1975; Ryan et al., 1997). As trees age, their growth rates

gradually reach a maximum, and the available N in the soil tends to

decrease (Gower et al., 1996; Tang et al., 2014). A second reason for

the decrease in the N uptake rate of roots with increasing tree age

may be related to leaf N resorption. Significant positive correlations

between leaf N resorption efficiency and tree age have been

observed in L. principis-rupprechtii plantations (Sun et al., 2016).

As a mature forest tree, the older larch is a stronger N reservoir and

has a greater N retention capacity than the younger tree (Simon

et al., 2011; Sun et al., 2016); therefore, its growth may depend more

on the nutrient recovery of its own organs than on the available

nutrients in the soil. Although the soil types and stand conditions of

our five age plots were similar, we still cannot rule out the effect of

original soil differences on the N uptake rate.

The SRL and specific root surface area of L. principis-rupprechtii

decreased with the increase in tree age as a result of increased root

diameter and tissue density, similar to previous results. For

example, Rosenvald et al. (2013) confirmed that the diameter and

RTD of the first-order roots of Betula pendula gradually increased,
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while the SRL and SRA gradually decreased with the increase in

forest age, ranging from 3 to 60 years. Moreover, for fine roots less

than 2 mm in diameter, younger trees having higher values of SRL

and SRA than older trees were reported in Cryptomeria japonica

(Fujimaki et al., 2007), P. sylvestris (Jagodzinski and Kalucka, 2010),

B. pendula (Kalliokoski et al., 2010), F. sylvatica, Quercus robur,

Alnus glutinosa (Jagodzinski et al., 2016), Fraxinus velutina (Li

et al., 2020), and Fraxinus mandshurica (Li et al., 2021).

Considering the lower RC in younger L. principis-rupprechtii, the

higher values of SRA at a young age indicate rapid growth and low

construction costs, constituting a cost-saving method for acquiring

soil resources. Compared to older trees, younger trees may need to

develop more effective root systems to cope with survival pressures

such as limited sunlight and soil resources. In this study, the root BR

(the ratio of the tips of first-order roots to second-order roots) and

BI (tips of first-order roots per length of second-order roots) were

higher in young larch than in older larch. Previous studies have

found that the root branching frequency (measured as tips per root

dry mass) was higher in younger trees (Rosenvald et al., 2013).

However, Børja et al. (2008) found that stand age had no effect on

the root branching frequency of Norway spruce plantations.

Normally, roots with higher SRL, SRA, and branches, but lower

RTD and diameter, indicate a greater absorption capacity for soil

resources (Wang et al., 2016; Weemstra et al., 2016). In our study,

roots with lower diameter and RTD and higher SRL, SRA, BR, and

BI exhibited higher nitrate, glycine, and total N uptake rates.

Therefore, younger trees tended to develop roots with more

morphologically and physiologically efficient nutrient uptake

capacity to compensate for the smaller size of the root system.

Mycorrhizae and the physiological N uptake rates are important

factors in root resource acquisition, but they have seldom been

investigated from the standpoint of the theory of root economic

space under intraspecies changes across tree ages. The PCA showed

that the root functional traits (i.e., morphology, architecture,

chemistry, mycorrhizal symbioses, and physiology) loaded onto

two predominant axes comprising “collaboration” and

“conservation” gradients in belowground resource acquisition in

the L. principis-rupprechtii chronosequence (Figures 4, 6). This

result supported our second hypothesis that trees with different

ages show different N strategies, appearing to shift from an

acquisitive strategy to a conservative strategy associated with

increasing tree age. Along the collaboration gradient, younger L.

principis-rupprechtii tended to invest more carbon to develop the

root system itself for resource exploration—a “do-it-yourself”

strategy (Bergmann et al., 2020) that involved features such as

increased SRL and SRA, decreased RTD and diameter

(morphology), and increased uptake rates of nitrate and glycine

(physiology). Conversely, older L. principis-rupprechtii invested

more carbon in acquir ing mycorrhiza l partners—an

“outsourcing” strategy (Bergmann et al., 2020). This variation in

root functional traits with age on the “collaboration” axis is
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consistent with the study of Ren et al. (2023) confirming a

“collaboration” gradient of root economic space identified for P.

koraiensis, Picea koraiensis, and Abies nephrolepis in three age

classes. In contrast, the “conservative” axis of root chemical and

architectural traits was orthogonal to the “collaboration” axis,

indicating the multidimensional aspect of root economic space.

The conservative–acquisitive gradient represents the fast–slow

trade-offs between traits associated with high metabolic activity

(e.g., root nitrogen and respiration rate) and root construction costs

(e.g., root carbon and RTD) (McCormack et al., 2015; Roumet et al.,

2016; Freschet and Roumet, 2017). The relatively efficient roots

associated with higher N content and BI and lower C content of

younger L. principis-rupprechtii indicated a fast, resource-

acquisitive strategy. Older trees with thicker roots exhibited a

slower, resource-conserving strategy.
5 Conclusion

The uptake rates of nitrate, glycine, and total N of L. principis-

rupprechtii decreased with increasing tree age, while the uptake

rates of ammonium decreased initially and then increased with tree

age. Across all tree ages, L. principis-rupprechtii preferred to absorb

ammonium (45%–90%), followed by glycine (5%–40%) and nitrate

(4%–11%). The glycine and nitrate uptake rates were positively

correlated with the soil glycine and nitrate contents. The AD, tissue

density, and ECM of the roots increased, while the SRL, SRA, BR,

and BI decreased with increasing tree age in L. principis-rupprechtii

plantations. We found that the strategies of resource acquisition

along the age gradient of the same tree species showed a two-

dimensional root economic space, and the root functional traits

varied along the conservation and collaboration gradients. In L.
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principis-rupprechtii plantations, the root resource acquisition strategy

appears to shift from an acquisitive strategy to a conservative strategy

associated with increasing tree age. Along the collaboration gradient,

younger trees relied more on their own root morphology and

physiology to acquire soil resources—a “do-it-yourself” strategy, as

reflected by the increased SRL and SRA and the increased uptake rate.

Conversely, older L. principis-rupprechtii depended more on

mycorrhizal partners—an “outsourcing” strategy.
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FIGURE 6

Root nitrogen acquisition strategies with tree age based on root
economic space. SWC, soil water content; SOC, soil organic carbon;
STN, soil total nitrogen; SAM, soil ammonium content; SNT, soil
nitrate content; STP, soil total phosphorus content; SRL, specific
root length; SRA, specific root area.
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