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The rise of artificial intelligence (AI) and in particular modern machine learning (ML)

algorithms during the last decade has been met with great interest in the

agricultural industry. While undisputedly powerful, their main drawback remains

the need for sufficient and diverse training data. The collection of real datasets and

their annotation are themain cost drivers ofML developments, andwhile promising

results on synthetically generated training data have been shown, their generation

is not without difficulties on their own. In this paper, we present a development

model for the iterative, cost-efficient generation of synthetic training data. Its

application is demonstrated by developing a low-cost early disease detector for

tomato plants (Solanum lycopersicum) using synthetic training data. A neural

classifier is trained by exclusively using synthetic images, whose generation

process is iteratively refined to obtain optimal performance. In contrast to other

approaches that rely on a human assessment of similarity between real and

synthetic data, we instead introduce a structured, quantitative approach. Our

evaluation shows superior generalization results when compared to using non-

task-specific real training data and a higher cost efficiency of development

compared to traditional synthetic training data. We believe that our approach will

help to reduce the cost of synthetic data generation in future applications.
KEYWORDS

artificial intelligence, data generation and annotation, disease detection, greenhouse
farming, machine learning, synthetic data, tomato plants
1 Introduction

Agriculture globally is more challenged now than ever before, needing to produce more

food for a growing human population in the context of accelerating climate change,

resource scarcity, and loss of biodiversity. These challenges will require smart, adaptable,

and cost-effective technologies, which can maximize yields with minimal resource inputs.
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To this end, farmers are replacing traditional management practices

with highly automated systems. High-tech greenhouses are gaining

popularity across the globe, enabling growers to have precise

control of crop growing conditions [Ruijs and Benninga (2020);

Chow (2021)]; likewise computerized combine harvesters are

becoming standard for large-scale open-field farming, removing

most of the manual effort required in the open field, significantly

increasing yields per labor input [Hassena et al. (2000); Hasan

et al. (2019)].

These advanced systems have made farmers increasingly reliant

on information and communication technology for management,

including wireless environmental monitoring and control systems,

remote sensing via unmanned aerial vehicles, and cloud-based farm

management software [Mocanu et al. (2015); Messina and Modica

(2020)]. The usage of these digital tools has produced large amounts

of data that must be efficiently processed, analyzed, and interpreted

by the farmer. To address this need, machine learning (ML) has

emerged as an essential but still underutilized tool in modern

agriculture. Indeed, the practical integration of smart systems

powered by ML will be essential to enable agriculture to be

maximally resource-use efficient [FAO (2022)].
1 For comparison, the 2013 movie Gravity would have required 7 000 years

of rendering time on a single personal computer available at that time; see

https://creativechair.org/chris-parks/.
1.1 Main challenges in machine learning

Successfully training a ML model requires three components:

(1) the right architecture (i.e., the right type of network for the task

and the right way to train it); (2) huge computational resources

(depending on the task, whole computer clusters running for several

days); and (3) an extensive amount of training data.

Thanks to the continuous research efforts and an active user

community, many problems (such as image classification or

segmentation) have established architectures that can be readily

used [Meta AI (2024)]. Although computational costs can be high

for certain projects, service providers exist that provide those with a

high flexibility. In practice the biggest remaining factor determining

the final performance is the availability of sufficient training data

[Mosqueira-Rey et al. (2023)].

Collecting training data from the real world is very costly

[Mahmood et al. (2022)]. Not only are many images required, they

also need to be diverse and should cover all the variance that the

network should learn. For example, if a network is trained on photos

taken outside in the summer, it may later perform very poorly on

pictures taken in the winter. If an additional use case is added in a later

stage, such as also operating during the night time, a large set of new

images have to be captured, making these adjustments very costly.

After collecting the training data, it has to be labeled with ground

truth information. For some tasks this may be cheap (e.g., assigning the

correct class out of a selection of limited choices to each image), but it can

still require the work of an expensive expert that can correctly determine

the class. For other tasks, such as when pixel-precise segmentationmasks

should be inferred, the labeling may get very expensive. For the popular

Cityscapes dataset widely used in autonomous driving, the labeling time

required for a single image by an expert ranges from 4minutes up to 1.5

hours, depending on the density of annotations [Cordts et al. (2016)]. In

some cases, data labeling can be outsourced to regions with less
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expensive labor costs and service providers like Zuru, Cogito Tech, or

iMerit, which offer a smooth integration of the process. However, for

more complicated labeling tasks such as distinguishing between different

kinds of diseases on plants, domain experts may be required for reliable

results and then outsourcing becomes infeasible. To some degree,

labeling can be sped up through specialized tools (e.g. LabelBox).

However, such tools can only mitigate the cost; even if costs can be

halved, this does not change their order of magnitude.

The most promising candidate for overcoming the excessive cost

of obtaining training data is the usage of synthetic training data,

which is actually expected to surpass real training data in relevance by

2030 [Gartner (2022)]. Instead of taking photos and labeling them

manually, a virtual scene is automatically generated by a computer

program and then rendered into a photo-realistic image. The correct

label is known from the generation process and requires no additional

work while being completely correct. In contrast, manually labeled

data almost always includes mistakes caused by human error and

generating the labels in the least amount of time using automated

strategies sacrifices accuracy [Cabrera et al. (2014)].

Here, the field of computer graphics (CG) comes into play, which

researched over the last decades the generation of synthetic renderings

including realistic interaction between light and objects [Hughes et al.

(2013)]. Using these algorithms, it is possible to generate images that

cannot be distinguished from real photographs by humans [Kolivand

et al. (2018)]. Using parameterized models, an infinite amount of

different images can be created by sampling random parameters, all

without additional human work [Kokai et al. (1999)].

Plant modeling has a long history in the CG community. The

recursive structure of plants often maps well to recursive algorithm

such as L(indenmayer)-systems [Prusinkiewicz et al. (2018)] and the

elegance of their implementation makes them a very common topic

in many introductory computer science lectures [Prusinkiewicz and

Lindenmayer (1990)]. Individual plants have been simulated with

biological precision to study different phenomena, such as the

influence of the canopy to light levels [Chen et al. (2014)]. On a

larger scale, the interaction between a large collection of plants and

the environment in which they grow has been addressed as well

[Marshall-Colon et al. (2017); Makowski et al. (2019)].

Creating powerful parametric models is an expensive task in

itself [MacDonald (2018)], but their true power is shown when a

scene is adjusted for different scenarios. For example, modeling four

different crops at day and night and in summer and winter requires

8 different models but allows for the generation of 16 different

combinations. Thus, the cost for increasing the diversity in the

training set grows only linearly rather than exponentially.

One way to increase the realism of synthetic renderings is to

compute full global light transport using ray tracing [Pharr et al.

(2016)]. However, this can immensely increase the computational

power required, which directly translates to added costs in hardware

and power. In practice, rendering farms can be rented which

support parallel rendering on thousands of computers.
1
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The distinction between real and synthetic training data is not a

sharp one. Real datasets usually contain some form synthetic

augmentation (e.g. [Abbas et al. (2021)]), and synthetic

renderings are often generated using real images. For example,

real photographs can be used as background textures as part of the

rendering process [Shorten and Khoshgoftaar (2019)].
1.2 Specific contribution

While using real data is hard and costly, using synthetic data

also comes with significant challenges. In order to get the most out

of synthetic data, the cost delta compared to using real data must be

maximized. This type of cost analysis for synthetic data is lacking in

the current research. Instead, models are developed without

specifying precise targets in performance or cost [Kałużny et al.

(2024)], which hinders the practical application and scale-up of this

powerful tool.

To address this gap, this study presents a new development

model in which synthetic data is generated through an iterative

process where each step is guided by a human expert. The task is to

estimate in each step what aspects of the renderings have to be

improved in order to meet a given target quality without wasting

resources on expensive but ineffective improvements. In other

words, the goal is to find synthetic datasets that meet the minimal

requirements to train successful deep neural network models, as this

is the most cost-effective solution.

Using this development model, the potential of synthetic data can

be leveraged and significant cost savings reached. After a formal

definition of our development model for the general case that

includes almost any AI related task, we demonstrate its application

and effectiveness addressing a practical use-case of training a neural

classifier to distinguish between healthy and diseased tomato plants

(Solanum lycopersicum) grown in a greenhouse as an example.
2 Related work

ML has demonstrated a wide range of applications in the

agricultural domain, including the management of crops,

livestock, soil, and water. A comprehensive literature review of

ML applications in agriculture shows that research has primarily

focused on crop management [Benos et al. (2021)]. Within this

domain, ML techniques have been applied extensively to yield

prediction [van Klompenburg et al. (2020)], crop recognition

[Horng et al. (2020)] and harvesting [Wouter Bac et al. (2017)],

as well as weed detection [Wang et al. (2019)].

A large body of ML research in crop management focuses on

disease detection in plants [Benos et al. (2021)]. This focus on disease

detection is well-justified, as pests and diseases are a major challenge

for agriculture and food security globally, causing an up to 40% loss in

yields each year [Savary et al. (2019)]. Early disease detection in

agricultural crops enables earlier interventions that can prevent

spread, saving substantial amounts of time and resources. Mitigation

measures are generally more effective if applied at the early stages of

disease, which also results in less pesticide used for management of the
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pathogen. Commercial agriculture currently relies on skilled human

scouts for disease detection. Ideally scouts do daily walk-throughs, but

due to costs and limited personnel, walk-throughs are typically much

less frequent in practice. Manual detection methods are neither quick

nor failsafe – detecting symptoms in crops requires careful attention,

especially in the early stages, and costly errors are sometimes made.

Considering these challenges in manual disease detection, much

attention in the past two decades has been directed to automated

methods of detection, which utilize optical sensors to survey the

crop and support in detection and diagnosis of plant diseases

[Mahlein (2016); Chin et al. (2023)]. Tools such as RGB, multi-

and hyper-spectral, thermographic, chlorophyll fluorescence, and

3D imaging sensors are able to measure changes in plant physiology

as the plant experiences biotic stress from disease. Common

symptoms of disease in plants include leaf malformation,

discoloration, and wilt. These can be detected via changes in

plant or leaf temperature, reflectance, and fluorescence.

Despite advances in sensing technologies in recent decades, there

are numerous challenges which limit the scope of automated disease

detection applications. A main challenge is the selection of the

appropriate image features (i.e. texture, color, and/or shape) which

have to account for the complexity of various symptoms as well as the

capturing modality that can be performed throughout the growing

area [Barbedo et al. (2016)]. Another challenge is the development of

accurate and efficient learning algorithms. Accurate classification of

diseased and healthy plants in real conditions with varying light

levels, shading, and complex surroundings can be extremely difficult

[Reddy et al. (2022)]. In addition, large image datasets in a diversity of

conditions are needed to train the algorithm. PlantVillage is the

largest and most widely studied repository of real images of diseased

and healthy leaves [Hughes and Salathe (2015)], but its usefulness is

limited by the fact that all of the images are segmented leaves with a

homogeneous dark background.

Gathering real images of diseased plants at different stages of

infection, but particularly at early stages of infection, is an often a

challenge because of lack of available data. This challenge was

demonstrated in in [Wspanialy and Moussa (2016)], where a

system for early detection of powdery mildew disease in

greenhouse tomato in a natural setting using a camera setup with

varying light settings is developed using Hough forests as the

detection algorithm. According to the authors, the study was

limited by the size of the dataset (60 images in total) that could

be used for training and testing the classifier model.

Synthetic data is a promising solution for the lack of sufficient

and high-quality, real training data for ML tools, and in recent years

has been explored for agricultural applications [Barth et al. (2018);

Cieslak et al. (2024)]. Augmentation (i.e. applying various geometry

and color transformation) of real images can be understood as a

‘proto-synthetic’ approach. For example, [Pearlstein et al. (2017)]

use an image dataset of grass with and without weed incidence to

train a neural network on weed detection. The authors apply a

custom software to augment real images of a lawn, which were

captured with a smartphone mounted on a robotic vehicle.

Generative adversarial networks (GANs) can be used as an even

stronger form of augmentation. [Chen and Wu (2023)] developed

an 3-stage deep-learning pipeline for detection of grape leaf disease
frontiersin.org
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by applying a deep-convolutional GAN to generate partial images of

lesions on leaves for training. In total the GAN generated a dataset

of 3390 augmented lesions based on 850 real and manually

augmented lesions, that could then be identified by a residual

neural network, achieving 88% accuracy on a random dataset of

100 real labeled images from the Internet. [Arsenovic et al. (2019)]

use a GAN to supplement traditional augmentation techniques to

create an image dataset called PlantDisease for leaf diseases in more

real-life conditions, as an alternative to the PlantVillage dataset.

[Abbas et al. (2021)] utilize a conditional GAN (C-GAN) for image

augmentation of diseased and healthy singular tomato leaves (also

called “leaflets”) from the PlantVillage dataset. Their model

achieved high accuracy (> 97% mean average precision), but

improving it further is made difficult by the limited amount of

available input data for the GAN.

Today’s generative AI has however severe limitations: While

neural style transfer can be used to give renderings a more

photorealistic look, they can only change colors and shading of

objects, not their shape. Image generation network on the other

hand can generate novel scene perspectives, but only if they are part

of their training data. For these reasons, [Kałużny et al. (2024)] use a

two-step approach: A procedural model creates the scenes including

objects, their shape, and camera perspective, after which a rendering of

this scene is improved through style transfer. The current limitations

of generative AI are thus overcome through procedural modeling.

Synthetic data often suffers from the so called domain gap, as

they are systematically different from real data (e.g. renderings

looking artificial rather than photo-realistic). Overcoming this

domain gap is an important step to enhance training results and

has been extensively studied in the past [Sankaranarayanan et al.

(2018); Tremblay et al. (2018)].

[Wouter Bac et al. (2017); Barth et al. (2018)] demonstrated for

the first time the use of fully synthetic training data in a computer

vision task in the agricultural domain when they created a synthetic

image dataset of sweet peppers in a greenhouse. The authors used a

few real images captured by a harvesting robot as a template to build

a model based on PlantFactory that generates randomized instances

of the plants, fruits, and backgrounds. These scenes are then

rendered using Blender, requiring about 10 minutes of rendering

time per scene on state-of-the-art hardware. With these images, it

was for the first time possible to train a neural network for the

segmentation of anatomical plant components without relying on

excessive real data. However, considering the high amount of

computational time necessary to generate the synthetic dataset,

the authors point out the need for a more optimized process.

Synthetic training data does not need to be limited to static

images. Physic simulations can generate video clips or time resolved

3D position data of moving plants, e.g. a harvest robot pulling off a

fruit. This data can then be used for training purposes, avoiding the

need to repeat countless real measurements [Deng et al. (2024)].
3 The synthetic data pipeline

Our method is described in Figure 1: We first define procedural

models that generate the geometry of plants and accompanying
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textures required for rendering. We then use procedural models to

generate scenes of tomato plants in a greenhouse setting and render

photorealistic images. Each image is associated with a label, that

defines whether or not a plant is diseased. A set of rendered images

along with their labels is then used as a dataset for training the

classification neural network. During training, data augmentation

via various image-based operators (e.g. brightness, contrast, etc.) is

applied to the input images to increase the variance of images in the

training dataset. After the classification network has been trained,

we validate its performance based on a dataset of real images. The

resulting performance is analyzed qualitatively and quantitatively

by a human expert to determine how to improve the procedural

models for the next training cycle. Overall, the generation process of

synthetic datasets is complex and goes along with the repeated

training of the network.
3.1 Network training

Since networks are mathematical objects, the input image has to

be encoded into a vector of real numbers first. This high-

dimensional vector is then processed by the network and

transformed into a low-dimensional output vector which can be

decoded into the classification. We call the vector space of encoded

input images I, and an individual input image i ∈ I. R ⊂ I is the

subspace of real input images, while S ⊂ I is the subset of

synthetically generated input images. L is the space of all possible

labels, e.g., L = {healthy, infected} in case of a binary classifier

distinguishing between healthy and infected plants. Such a classifier

is illustrated in Figure 2.

In a dataset D : = D(J)  =   (i,G(i))ji ∈ J)f g ⊂ D : = I � L, each

image i ∈ J ⊂ I is assigned a ground truth label G(i) via G : I → L.

While G maps any image (whether real or synthetic) to its correct

label, D consists only of a limited amount of images and their labels.

The number Jj j of images in J is typically in the range between a few

thousands and a multiple of ten thousand. A network Nw : I →

L,N(i) ↦ p, which is parameterized by its weights w, similarly maps

images to predictions p. If p = G(i), the prediction is correct.

The training is influenced by several parameters as well, called

the hyper parameters h ∈ H. Note, that h denotes a vector

containing all hyper parameters and accordingly H is the set of all

possible hyper parameter combinations. The hyper parameters

include the learning rate and batch size of the stochastic gradient

descent optimizer, and also data augmentation parameters (see

below) which have a significant impact on the learning success.

The training function T :H �D →  (I → L),T(h,D) ↦Nw

then maps a combination of dataset and hyper parameters to a

trained network Nw ∈  (I → L) with weights w ∈  R. The mapping

·, ·k k : L� L → R is a measure of similarity between two labels. We

can express T as:

T(h,D) = Nw,  where  w = arg  min
w0∈R

o
i∈D

Nw0 (i),G(i)k k : (1)

Overfitting is often the result of a lack of diversity in the training

data. This can either mean too few input images, or images that are

too similar to each other (e.g. showing different objects always from
frontiersin.org
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the exact same angle). A common strategy to mitigate overfitting is

data augmentation. During data augmentation, random alterations

are performed on the image, such as geometric transformations

(e.g., mirroring, rotating, zooming), color adjustments (brightness,

contrast, hue), or adding noise. More advanced augmentation

methods use neural networks to transform an input image into

an entirely new, but similar one [Abbas et al. (2021)]. A thorough

overview of augmentation strategies is found in the literature

[Shorten and Khoshgoftaar (2019)]. Since augmentation increases

the diversity, it can actually reduce the network performance on the

training dataset. This is however acceptable, since at the same time
Frontiers in Plant Science 05
the performance on new images is increased. In summary, two key

factors are important for a successful training: A training dataset

with a large variety and the correct hyperparameters for the

training. The framework presented in this paper optimizes both

of them.
3.2 Data generation

Synthetic dataset are created by means of CG methods. CG is an

extensive research field with a rich history [Hughes et al. (2013)]
FIGURE 2

Illustration of ML driven classification. The input image is encoded in an input vector (which can have a very large number of components and
represents the pixel color values) that is then can be processed by the different neural network layers, where the result of each layer is the input for
the next one. The last output vector is then decoded (e.g. from a negative log-likelihood encoding), resulting in a probability per class.
FIGURE 1

Illustration of our synthetic data pipeline. Left: Geometry and textures are generated, and used to render synthetic scenes. For each of them a
procedural model is developed that can create an arbitrary amount of instances sharing the same general appearance. The rendering is then
performed with any 3D rendering software. Right: A dataset of synthetic renderings is used to train a network. The standard loop of augmentation,
weight training and validation is performed, resulting in a trained neural network that classifies images. Based on the evaluation of this classifier, the
data generation is improved and the dataset regenerated for the next iteration.
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dealing with the modeling and rendering of virtual scenes. The three

main components that need to be modeled are geometry, materials,

and scene composition (object positions, lighting, camera).

Examples are shown in Figure 3.

All these components can either be created by an artist by hand

or automatically generated through a procedural model. Instead of

defining properties (such as the outline of a leaf or the branching

structure of a plant) by hand, procedural modeling defines rules that

depend on various parameters, and can be instantiated to create

geometry. An example of such a procedural model in the

agricultural context are L-systems for plant geometry and node-

based texture synthesis of materials [Pai (2019)]. By varying the

input parameter vector, and endless amount of images can be

created. However, this does not mean that the diversity is

sufficiently high. The instantiation of procedural parameters

essentially resembles an interpolation. If a larger portion of the

total image space I should be covered, additional parameters must

be added.
4 Using synthetic data at scale

The main bottleneck of the procedure described in the previous

section is the generation of a suitable training dataset S and the

finding of the correct hyperparameters h at minimal development

cost. The cost factor deserves special attention here since the main

argument for the use of synthetic training data is their cost

effectiveness. In order to use synthetic data at scale, i.e., being

able to apply the previously described procedure for a large number

of automation tasks in agriculture, we introduce a development

model that addresses this problem by taking a holistic approach.

Like the network training itself, finding S and h is formulated as an

iterative optimization scheme where in each step S and h are

gradually improved.

The first step is to determine a suitable target quality qmin. We

measure the performance q = ½N(R),G(R)� of a network N on a real

dataset R ⊂ I using a measure ½·, ·�  : LjR j � LjR j → R which is, e.g.,

defined as the F score or the P4 metric in case of binary classification

[Manning et al. (2009)]. Without loss of generality, we assume that
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larger values of q are better. Note, that the network is trained on

annotated synthetic dataD = D(S) but evaluated on real data R. Our

goal is then to find a pair (h, S)  ⊂ H � I such that

½T(h,D(S))(R),G(R)� = : q ≥ qmin:

Without consideration of any cost, h could be found by a brute-

force parameter sweep, while for S renderings with the highest

degree of photorealism and variability could be used. But if we

assume that the quality is proportional to the invested cost, the goal

becomes finding the worst pair (h, S) which still satisfies q ≥ qmin.

We address this iteratively. An iteration step

I k :H � D → H � D, (hk, Sk)↦ (hk+1, Sk+1)

refines the hyperparameters and the dataset (though it is not

required that both change in each iteration). Each iteration I k is

associated with a certain cost measured by the cost function C (I k).

The overall optimization problem is then to find the sequence (I 1,

…, In) of iterations with minimal cost that yields the desired quality:

arg min
(I 1,…,In)

o
n

k=1

C(I k),  subject to  q ≥ qmin : (2)

Here we see why a reasonable choice of qmin is important:

According to the Pareto principle, if qmin is too large, this results in

an excessive amount of iterations with exponentially growing costs.

Knowing what quality is acceptable is crucial to minimizing cost.

Solving Equation 2 cannot be performed automatically through

naive numerical optimization. Rather, every iteration step k requires

the guidance of a human expert. The solution is typically obtained

by maximize the quality gradually at every step.

Taking a closer look at Ck : = C(I k), shows that it consist of

several components:

Ck = CE
k + CM

k + CR
k + CT

k ,

where CE
k is the cost of evaluating the previous iteration

required for deciding on the next changes, CM
k is the modeling

cost to improve the generator for the synthetic images (performed

by an artist), CR
k is the required rendering costs for the new dataset

(often outsourced to a rendering farm and paid per core minute)

and CT
k is the cost of training a new network with the improved
FIGURE 3

Illustration of the main components of a synthetic scene. Left: Object geometry, represented as a triangle mesh. Middle: Materials, represented as a
set of textures (ambient, normal, reflectivity, etc.) Right: Scene composition, where geometry and materials are combined and lighting and camera
information are added.
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hyperparameters and dataset. The cost for changing the

hyperparameters is entirely contained in CE
k , since they are a

simple vector that requires no modeling time. For a brute force

search of the best hyperparameters the total cost is dominated by CT
k

since the dataset remains the same (CM
k = CR

k =  0) and CE
k is

minimal (as it only consist of a sampling strategy for h). Often

the most expensive step is to improve the dataset since CM
k and CR

k

are typically large. It can be beneficial to split such an iteration into

multiple sub-iterations, which introduces additional CT
k , but gives

an overall better understanding of the required changes.
5 Case study: early disease detection
for tomato plants

The previously described development model is now applied in

order to develop a neural classifier for early disease detection of

tomato plants (Solanum lycopersicum). This use-case is not only

suitable to demonstrate our development model but also addresses

an important practical problem. Especially in monocultures found

in greenhouses, diseases can spread rapidly and can quickly become

uncontrollable [Savary et al. (2019)]. Detecting them as early as

possible greatly decreases the chance of such a catastrophic crop

failure but requires constant and expensive monitoring. Any step

toward automatizing this process is therefore a great benefit.

We use a UAV patrolling through rows of the greenhouse

complex in order to capture images of the tomato plants as

illustrated in Figure 4. Since the tomato plants may grow to

lengths of 40 m over the course of a season, we prefer to use

UAVs instead of self-driving vehicles patrolling through rows. This

also comes with low hardware costs as the price of our DJI Mini 3

Pro is below USD 1000. This UAV is also sufficiently small in size to

fly through the rows of the greenhouse. For larger greenhouse

complexes, multiple UAVs can be used, e.g., a single drone per row.

Note, that this is an illustration to motivate our research topic. The

case study is focused on visual disease detection and not on drone

control, and the pictures shown throughout this paper were taken

manually. An overview of drone control techniques is given in

[Merkert and Bushell (2020)].

In this section, we focus on the binary classifier which groups

pictures of the leaves into two classes containing healthy and

infected leaves ( Lj j  =  2). Potential infections can then be
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reported to a human overseer who can confirm or reject them.

Reducing the need for manually checking the entire greenhouse

complex to checking only a few candidates greatly reduces cost even

if the detection rate is not perfect. Overall we aim for an accuracy of

qmin ≈  90%.

We implement our neural classifier in Keras using a state-of-the-

art image classification architecture [Géron (2019)]. On overview of

the network architecture is shown in Figure 5; the exact definition is

given in the Appendix 1.3. To measure the training loss ·, ·k k we use

the categorical cross-entropy loss function as implemented in Keras.

As a performance measure ½·, ·�, we divide the number of falsely

labeled images by the total number of images. We start with an initial

choice of h1 and a simple initial datasetD1 : = D(S1) and refine it over

the course of a total of n =  6 iterations generating D2 : = D(S2),…,

D6 : = D(S6) and hyperparameter h2,…, h6 to reach our target

accuracy. After each iteration, an extensive evaluation is required to

make an informed decision about the next changes in h andD (which

is the reason why this evaluation is included as the cost CE
k ). We

monitor the achieved performance on the synthetic training and

validation datasets as well as on a real dataset R. Moreover, we take a

closer look at the performance on individual images which helps us to

understand what additional features have to be modeled in the

synthetic images.
5.1 Iteration k = 1

The initial dataset is shown in Figure 6. To generate synthetic

plant geometry, we have implemented a node-based procedural

modeling system as commonly used L-systems for tomato plants

[Chen et al. (2014)] do not aim for the level of realism required for

our task. The model has a large number of parameters including the

number, size, and orientation of leaves, as well as bending and

length of the branch. The leaf textures are generated using Adobe

Substance 3D Designer, see also Appendix 1.1. We generate the

typical set of physically-based rendering (PBR) textures which

include layers such as a diffuse albedo map, a normal map, an

ambient occlusion map, and a height map [Hughes et al. (2013)].

With these layers, we do not only model the color of the leaves but

also the physical interaction of light with the leaf material, which

greatly enhances realism. The scene consists of a single branch with

leaves and a random high dynamic range (HDR) panorama photo
FIGURE 4

Illustration of the image collection process in the greenhouse complex hosting tomato plants (Solanum lycopersicum). Left: An autonomously flying
UAV patrols through each line, taking photos. Middle: Example of a healthy leaf. Right: Example of an infected leaf.
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captured in the greenhouse as background, see also Appendix 1.2.

This panorama also illuminates the scene, meaning that it is

illuminated by the same lighting conditions as the plants in the

greenhouse. Although the generated renderings look plausible and

detailed, they do not look completely photorealistic. A human may

initially be fooled to think they are real images, but in comparison

with actual photographs the differences become visible.

For the hyperparameter h1 we chose values typical for a binary

classification task: The input resolution is 256 × 256, the batch size

is 16 and the learning rate is 10−4. For the augmentation, we chose a

simple combination of zooming, brightness adjustment, flipping,

and rotation. Examples of augmented images are shown in Figure 7.

The initial dataset consists of S1j j =  3400 images, where half of

them show healthy and half of them show infected leaves. Around

10% of the images are used for the validation dataset. Monitoring

the performance on both synthetic datasets shows that the network

does not overfit as shown in Figure 8, bottom right. This means, that

the dataset is sufficiently large and by adding more images we likely

would not see an increase in quality. This information helps to cap

the cost CR
1 .

We also evaluate the performance on real data as shown in

Figure 8. We find that almost all images are classified as healthy

regardless of their actual class which means that we learn almost

nothing about the true class.
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5.2 Iteration k = 2

After reviewing the results we conclude that the size of the

dataset, the network architecture, and training hyperparameters are

fine (since the accuracy on the validation dataset is high), but that

the domain gap between real and synthetic images is too large and

the network cannot generalize to the real data. Since enhancing the

realism of the procedural model is a very time-consuming task, we

first try faster changes to shrink to domain gap. We add a second,

slightly defocused branch to the background of each image without

changing the branch generation itself. This is done to mimic the

cluttered environment of the greenhouse and to make the network

invariant to camera focus. In total, we render S2j j  =  2472 new

images. We also increase the augmentation in h2: Referring to

Figure 7, we add Gaussian blur, contrast adjustment, hue shifting,

and additive Gaussian noise, and retrain the network. This indeed

improves the detected of infected leaves, but not by an sufficient

amount as shown in Figure 8.
5.3 Iteration k = 3

Since increasing the augmentation is cheap and gave good

results in the previous iteration, we now increase it even further
FIGURE 6

Illustration of geometry and textures of the first iteration of synthetic data. Left: The geometry of the branches is procedurally generated and two
examples are shown. Middle: Textures for healthy and infected leaves are generated. The infected textures are generated from the healthy ones by
adding typical patterns of dead leaf cells. Right: A final rendering of a textured branch in the scene.
FIGURE 5

Simplified illustration of the layered architecture of our classification network. Each layers width corresponds to the cubic root of its dimensionality.
The input image (top row) is expanded into multiple parallel filters and throughout the network their size consecutively shrinks until a single value
denoting the classification remains. The total number of weight in this network is |w| = 2960514. The exact network definition is given in
Appendix 1.3.
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for h3. We continue to use the same operations but with a larger

variety of parameters. As seen in Figure 7, the look of the images is

quite drastically altered now. The dataset remains the same as in the

previous iteration, thus S3j j  =   S2j j. After retraining the network, we
find that the accuracy improves only marginally (Figure 8),

indicating that we have to proceed in a different direction.
5.4 Iteration k = 4

It is now clear, that our synthetic images are too different from

the real photos. However, many things could be improved about the

renderings: We could have more variety in the branch geometry,

increase texture details, or model more complex scenes (e.g.

creating geometry for the whole greenhouse and a large amount

of plants instead of a single branch in front of background
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panoramas). Implementing all of these improvements would be

prohibitively costly, so instead, we perform a detailed analysis on

which images are classified well. Since healthy plants are usually

classified as healthy, we focus on images of infected plants.

Figure 9 shows the accuracy for 19 different input images across

the iterations. We find that the distribution is extremely uneven:

Some images are repeatedly classified correctly while others are

almost never. Comparing the real input images with our renderings

(see Figure 10), we find that infection can alter the leaf textures in

many different ways. Infections resembling the type that we initially

modeled are then classified correctly, while other types of patterns are

not detected. We therefore improve our texture creation pipeline by

adding additional disease types. The new synthetic disease textures

are also shown in Figure 10. Since we have significantly increased the

variety of the dataset, we increase to total number of images to S4j j  =
 6400. The hyperparameters stay the same, thus h4 = h3.
FIGURE 7

Comparison of augmentation modes. First row: Five different synthetic renderings. Second to fourth row: The first image of the first row augmented
5 times for each of the 3 augmentation modes (weak, medium, and strong). Fifth row: A random selection of real and synthetic images augmented
with strong augmentation. Through the augmentation process, it becomes difficult to distinguish between real and synthetic images, thus the
domain gap between both sets is reduced.
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While training the network we find that the accuracy even on

synthetic data is very low. The increased diversity in the dataset

makes the training significantly harder.
5.5 Iteration k = 5

To make the training easier without reducing the diversity of

the dataset, we reduce the image augmentation in h5 again to the

previous level as in h2. The dataset stays the same as in the previous
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iteration, thus S5j j  =   S4j j. The training works and we get an overall

accuracy similar to iteration 3 (Figure 8). However, when looking at

the performance of individual images (Figure 9), we find that the

distribution is more even than for iteration 3. This means, that the

modeling of additional diseases has paid off.

5.6 Iteration k = 6

We attribute the remaining inaccuracies in the classification to

the different global look of the renderings and photos. This could be
FIGURE 9

Network accuracy on real images of infected plants for each iteration. The letters on the horizontal axis denote the individual images. The dotted
line shows the average accuracy across all images.
FIGURE 8

Development cost and performance of each iteration. Top row: Relative cost of the different cost types for each iteration. Middle row: Absolute

values of the cost in hours. CE
1 includes the initial development of the classifier framework. CE

6+1 include the statistical analysis described in Section
5.7. Bottom left: The accuracy q =  ½T(h,D(S))(R),G(R)� of the classifier plotted over its development time. The dots mark the individual iterations.
Bottom right: The training process of iteration 5 shows, that the accuracy on the validation dataset closely follows the accuracy on the training
dataset indicating that the network generalizes well. The lines show the average of the healthy and infected classes. Note, that the lowest accuracy
for a binary classification is 50% which corresponds to random guessing of the class.
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addressed by stronger augmentation, however in iteration 4 we saw

that a too difficult dataset makes the training harder. We therefore

change the training strategy in h6 and employ a mixed training

model, without changing the dataset ( S6j j  =   S5j j). During the first

half of the training, medium augmentation as in h2 is used. Once the

network works sufficiently well, we switch over the stronger

augmentation of h3. This results in an initial drop of the accuracy

(since the problem became harder), but eventually the half trained

network can adjust to the stronger augmentation and reach a high

accuracy on them.
5.7 Improving the classification results

After the network training, we now perform a deeper statistical

analysis of the results. During the training with synthetic

renderings, we used augmentation to increase the diversity and to

mimic artifacts found in real images but not the renderings

(blurring, noise, etc.). As seen in Figure 7, the augmentation can

be quite strong. Therefore, when using the trained network for

classification, the same augmentation as during the training should
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be applied before passing the images to the network. However, since

the photos already contain artifacts mimicked by the augmentation,

this would in some sense result in a double augmentation. To

decide, which augmentation mode should be applied for real

images, we perform an analysis, where each image is classified

multiple times (since the augmentation parameters are chosen at

random, every time). The results are shown in Figure 11.

We find, that there is no clear best performing augmentation

mode for real input images but that the results rather depend on the

input image. We further find, that healthy input images are

classified as healthy in over 80% of the cases, independent from

the augmentation mode. Furthermore, for 16 out of the 19 infected

images, at least one augmentation mode lies above the equivalent

threshold (20%). We conclude, that the network is biased towards

the healthy case. But by taking the estimated accuracy into account,

this bias can be corrected. If we consider for any input image a value

of below 80% healthy score (equivalent to an above 20% infected

score) as infected, then 26 out of 29 images are correctly classified.

We therefore reach an overall accuracy of 89.6%, which is roughly

equal to the initial qmin, ending our optimization. Without this

analysis, the naive threshold would be at 50%, leading to an
FIGURE 11

Network prediction performance by input image for different augmentation modes. For each mode, the input image was augmented 32 times with
random parameters according to the given augmentation mode. The number of correct classifications are added up. The vertical scale shows
normalized accuracy. Note, that since the none augmentation mode does not alter the image, either all or no instances of the image are correctly
classified since the network is deterministic.
FIGURE 10

Different types of diseases affecting the leaf texture of these tomato plants (Solanum lycopersicum). Top row: Synthetic images. Bottom
row: Photographs.
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accuracy of only 75%. In some sense, we apply a post-processing to

the network’s output to increase the accuracy – similar to the pre-

processing of the inputs in the augmentation step.
5.8 Further comments

A summary of the cost and performance of each iterations is

shown in Figure 8. It is important to note, that the cost types are

separated into two distinct categories. CE and CM directly relate to

working hours of an expert and are thus typically very expensive. In

contrast, CR and CT relate to computational time of computers. For

scenarios like our use-case, they can often run over night and thus

do not stall the general development if scheduled carefully.

However, for larger datasets and more complicated training CR

and CT can also become very expensive, for instance, the training

cost of the recently released Stable Diffusion network [Rombach

et al. (2022)] was about USD 600000.
2

In this use-case we trained a network to the desired accuracy in

only n = 6 iterations. Out of those, only one included a redesign of

the dataset. We can see several key points here: Firstly, the dataset is

not optimized for photorealism but rather for the distinction

between healthy and infected leaves. Secondly, this crucial

information became available through thorough evaluation. In

other words, increasing CE
k can over proportionally decrease CM

k ,

CR
k , and CT

k , leading to an overall lower cost C. And thirdly, a good

understanding of the behavior of the trained network can be used to

increase its performance.

Using the presented development model, total costs of about C =

125.5 h have been invested to develop our classifier comprising

approximately CE + CM =  64 h of human work and 61.5 h of

computation. For comparison, we estimate the total costs of human

work without applying the presented development model. Based on

our extensive previous work comprising plant modeling, simulation,
2 See https://x.com/emostaque/status/1563870674111832066.
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and rendering, we estimate the development time of a fully photo-

realistic plant generator to be at least three months for a single expert.

In this unguided approach, no continuous, quantitative feedback

based on the intermediate network performance would be provided

during the development and thus all visual features would be

addressed with equal importance. This lack of prioritization then

severely impacts the efficiency, driving up overall development cost.
5.9 Comparison to real training data

The baseline alternative for the creation of a synthetic dataset is

the use of the best available real dataset. Contrary to the specifically

designed synthetic data, these real image are photorealistic by

definition but may not fit the task domain as closely as a custom

dataset. The popular Plant Village dataset ([Hughes and Salathe

(2015)]) contains around 5500 pictures of healthy and infected

tomato leaves, albeit detached from the plant and lying on a gray

background. We therefore use a community extension of it that also

contains leaves in their natural environment3. Example images of

this dataset are shown in Figure 12.

We use this dataset to train the same network that was used for

the synthetic training data. We find that classification results on the

validation dataset are very accurate, indicating that the network was

properly trained (see Figure 12 for the training curves). However,

even after extensive training, classification results on our

greenhouse photos are barely better than random guessing,

indicating poor generalization.

The most promising steps for improving the performance are

directed towards overcoming the domain gap between training and

evaluation images - which in turn means collecting and labeling a

significant amount of additional photographs.
FIGURE 12

Training results for a real dataset. Left: Example images from the dataset. Right: Classification results during the training for images from the dataset
(orange) and our own images from the greenhouse (blue).
3 https://www.kaggle.com/datasets/cookiefinder/tomato-disease-

multiple-sources.
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6 Conclusion

In this paper, we have presented a development model for the

development of synthetic training data in order to efficiently

automatize agricultural tasks with ML, using tomato leaf disease

detection in a greenhouse as a case study. We demonstrated, that

hand-designed synthetic training data outperforms real training

data collected for a different task, justifying future development in

this direction. While it is to some extend straightforward to create

“good” training data, it is much more difficult to do so in a cost

efficient way. We have demonstrated that by using our development

model the desired goal can be achieved by a small amount of only

six iterations in our use-case. Importantly, we find that

photorealism (which is expensive to achieve) is not the main

quality driver of the trained network. Rather, most iteration steps

consist only of small changes that optimize the data for the

distinction between the different classes, rather than overall

realism. Naturally, our development model is driven by a human

expert. It is therefore less of a plug-and-play solution but rather a

development philosophy enabling the efficient and effective use of

synthetic data. In future work, we aim to further automatize

different steps within the development process to boost efficiency

and reduce the time spent by the human in the loop.

Based on our development model, a neural classifier could be

efficiently developed for the early detection of infections in our

greenhouse complex growing tomato plants (Solanum lycopersicum).

Total costs of about 125.5 h have been sufficient to develop the classifier

within our development model which only includes approximately 64

h of human work (evaluation plus modeling costs) and 61.5 h of

computation (rendering plus training costs). Note, that these costs are

only a very small fraction of the effort of the research project presented

here as – next to the formalization of the development model which

emerged from the experience with different use cases – we developed

the corresponding technical routines to allow for an efficient workflow.

Also not included is the training time of the developer who has to

become familiar with these routines and working within the presented

development model. Our classifier performs with an accuracy of about

90% significantly reducing the need for manual checking of the entire

greenhouse complex. Using UAVs, our final early disease detection

method for tomato plants can be implemented in greenhouse

complexes at low costs. However, our classifier comes with

limitations as infected leaf textures have been generated from healthy

ones by adding typical patterns of dead leaf cells. If, e.g., a disease is

mainly visible at an early stage by looking at the branches instead of the

leaves, it is not sufficient to only focus on leaf textures, but instead more

investments have to be made to model the implications on the

branches. This could require the modeling of wilting effects

influencing the whole plant geometry and not only the leaves’
Frontiers in Plant Science 13
textures. This is why, among others, we aim for an efficient

simulator of plant wilting in future work addressing geometrical

features of plant diseases in addition to those which could already be

modeled by modifying leaf textures.
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1 Appendix

1.1 Texture generation

All textures are generated using Adobe Substance 3D Designer, a

node-based procedural modeling tool. Our node graph, shown in

Figure A1 consists of a total of 155 nodes that first model the

biological structure (bumps, veins, infected parts, etc.) and then

derive the various textures (basecolor map, normal map, occlusion

map height map, and alpha map) from it.

Many node types rely on input noise. To generate different

textures, we use a Python script that randomly changes the initial

seed of the noise generation as well as randomly enabling/disabling

various disease types.

The file is available on our project website or upon contacting

the authors.
1.2 Geometry generation and rendering

Our 3D scenes are modeled inside Blender, using the generated

textures from the previous step. Leaves are modeled as rectangular

spline surfaces that is overlayed with the alpha texture to create the

accurate leaf outline. A spline with randomly altered control points

models the branch to which the leaves are then attached. Depending

on the generated class, either healthy or infected textures are used

for the leaf materials. In some scenes, additional branches with
Frontiers in Plant Science 15
random classes are put into the background to increase scene depth.

Using appropriate depth of field parameters, these appear blurred

and the network learns to ignore them. For the background images,

we use random panorama photographs collected inside a

greenhouse. The node setup inside Blender is shown in Figure A2.

Scene generation takes around 1 second, while rendering takes

around 3 seconds. Although both numbers could likely be

optimized, we found the overall generation time sufficiently fast

and did not feel that time spend optimizing this would pay off in the

long run.

The project file is available on our project website or upon

contacting the authors.
1.3 Network architecture

Our classifier is implemented in Python using the tensorflow

and keras frameworks as well as imgaug for augmentation. The

network architecture is defined in the framework through the

following commands:
model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Conv2D(64, (3, 3),

input_shape=(256, 256, 3)))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Activation(‘relu’))
FIGURE A1

A screenshot from Adobe Substance 3D Designer, showing a highlevel overview of the structure and complexity of our node setup for
texture generation.
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model.add(tf.keras.layers.MaxPooling2D(pool_size=

(2, 2)))

model.add(tf.keras.layers.Conv2D(64, (3, 3)))

model.add(tf.keras.layers.Activation(‘relu’))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.MaxPooling2D(pool_size=

(2, 2)))

model.add(tf.keras.layers.Conv2D(128, (3, 3)))

model.add(tf.keras.layers.Activation(‘relu’))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.MaxPooling2D(pool_size=

(2, 2)))

model.add(tf.keras.layers.Conv2D(128, (3, 3)))

model.add(tf.keras.layers.Activation(‘relu’))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.MaxPooling2D(pool_size=

(2, 2)))

model.add(tf.keras.layers.Conv2D(256, (3, 3)))

model.add(tf.keras.layers.Activation(‘relu’))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.MaxPooling2D(pool_size=

(2, 2)))

model.add(tf.keras.layers.Flatten())

model.add(tf.keras.layers.Dense(256))

model.add(tf.keras.layers.Activation(‘relu’))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dense(128))

model.add(tf.keras.layers.Activation(‘relu’))

model.add(tf.keras.layers.BatchNormalization())

m o d e l . a d d ( t f . k e r a s . l a y e r s . D e n s e

(64, name=“feature_layer”))

model.add(tf.keras.layers.Activation(‘relu’))

model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dense(2))

model.add(tf.keras.layers.Activation(‘softmax’))
.

A graphical representation of this is shown in Figure 5.
FIGURE A2

A screenshot from Blender, showing a highlevel overview of the structure and complexity of our node setup for tomato branch generation.
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