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Plant growth and development are characterized by systematic and continuous

processes, each involving intricate metabolic coordination mechanisms.

Mathematical models are essential tools for investigating plant growth and

development, metabolic regulation networks, and growth patterns across

different stages. These models offer insights into secondary metabolism

patterns in plants and the roles of metabolites. The proliferation of data related

to plant genomics, transcriptomics, proteomics, and metabolomics in the last

decade has underscored the growing importance of mathematical modeling in

this field. This review aims to elucidate the principles and types of metabolic

models employed in studying plant secondary metabolism, their strengths, and

limitations. Furthermore, the application of mathematical models in various plant

systems biology subfields will be discussed. Lastly, the review will outline how

mathematical models can be harnessed to address research questions in

this context.
KEYWORDS
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1 Introduction

As plants are immobile organisms, they must possess the ability to conform to ever-

changing surroundings in order to survive, thrive, and complete their life cycles, utilizing

intricate physiological processes. Plant-derived compounds hold substantial potential for

sustainable advancement. Over the last decade, plant genomics research has progressed

rapidly, integrating methodologies such as whole-genome sequencing, comprehensive

transcriptome analysis, single-cell sequencing, spatial transcriptomics, spatial
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metabolomics, and comparative genomics sequencing (Daloso and

Williams, 2023). Decreased data generation and analysis costs have

led to a significant rise in the production and scrutiny of multiomics

data within a brief duration (Roy et al., 2021). Consequently,

adjustments to the construction techniques of mathematical

models are essential to fulfill heightened application prerequisites

(Wang et al., 2019a).

Amidst the persistent expansion of the global populace,

contemporary agricultural practices are compelled to ensure the

stability and security of food resources (Li et al., 2019; Reynolds

et al., 2021). The fusion of genomics, transcriptomics, and

metabolomics presents significant potential for enriching our

comprehension of intricate crop characteristics and elucidating

the genetic pathways governing essential phenotypes (Reynolds

et al., 2021; Moreira et al., 2020). The utilization of mathematical

models to delineate the genetic makeup of plants, their metabolites,

and the diversity of observable traits is of paramount significance.

Metabolic modeling has emerged as a pivotal tool for steering

metabolic engineering endeavors (Morgan et al., 2002; Moreira

et al., 2019; Shaw and Cheung, 2021), particularly in the

optimization of chemical production in microbial organisms.

Furthermore, it facilitates the direct and sustainable extraction of

numerous bioactive compounds from plants (Nakamasu et al.,

2019). The plant science community is increasingly recognizing

the benefits of metabolic modeling for metabolic engineering and

systems biology (Smithers et al., 2019; Shaw and Cheung, 2021).

Metabolic models have been widely applied in microorganism

metabolic engineering for the production of biofuels, amino acids, and

other bioproducts, as well as in medical research to investigate cancer

metabolism, antimicrobial target identification, and personalized drug

therapy (Guijas et al., 2018). Due to the limited knowledge and intricate

nature of plant metabolism, it is still challenging to understand plant

metabolic networks and apply those understandings to plant metabolic

engineering (Chalmandrier et al., 2021). The integration of metabolic

models and multi-omics data can facilitate a systematic, continuous,

and precise analysis of diverse plant processes, encompassing dynamic

growth, environmental impacts, and coordination of secondary

metabolism, among others (Figure 1). In this review, we mainly

focus on recent the development of constraint-based modeling and

kinetic modeling for plant researches. Methods of multi-omics data

integration into metabolic models are emphasized, whereas the

dilemmas and challenges are discuss in this review.
2 Types of mathematical models
for plants

Among various modeling approaches, metabolic pathway

analysis has the capability to delineate the fundamental functional

modes of different core metabolism subsections, such as

photorespiration (Jendoubi et al., 2020). Furthermore, it can

unveil the interconnected functionality observed in classical

metabolic pathway definitions (Moreira et al., 2019; Lacchini and

Goossens, 2020). Currently, a wide array of mathematical tools are

available for analyzing biological processes in plants, encompassing
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large-scale genomes and metabolic networks, and have been

extensively utilized in studies employing constraint modeling.

The mathematical model employed in plant metabolic research

include: constraint-based models (CBMs) (also called flux balance

analysis (FBA) models, with subtypes of genome-scale metabolic

(GEMs) models and proteome-constrained (PCMs) models) and

enzyme kinetic (EKMs) models. These systems biology tools are

utilized to investigate the intricacies of biological metabolic

networks (Nagegowda et al., 2020). Notably, FBA is the most

extensively applied constraint-based approach, leveraging linear

programming to forecast the distribution of metabolic fluxes

throughout the network. In contrast to enzyme kinetic models

that require extensive kinetic parameter data to capture the

dynamic behavior of metabolic processes, constraint-based

models focus on the overall network characteristics without

necessitating precise kinetic information. FBA typically assumes a

steady-state condition with no metabolite accumulation, and

optimizes an objective function, such as maximizing growth rate

(Shaw et al., 2021). Genome-scale metabolic models are

comprehensive computational representations of the metabolic

capabilities of an organism, constructed based on the organism's

genomic information (Antonakoudis et al., 2020). These models

typically encompass hundreds to thousands of metabolic reactions,

enabling the application of FBA to study the metabolic
FIGURE 1

Application pattern diagram of plant systems biology research and
the combination of metabolic models and multiomics data. The
foundational concept delineated in this framework underscores the
extensive utilization of transcriptome, phenome, proteome and
metabolome datasets within the realm of plant biology
investigation.The amalgamation of multi-omics data through the
employment of mathematical models, machine learning, and other
bioinformatics methodologies can elucidate the evolutionary and
adaptive processes of plants within distinct ecological niches.
Factors such as genomic structural variance, gene-protein
interactions, gene functionality scrutiny, cellular signal transduction
cascades, and system biology insights pertaining to growth and
metabolic control are vital elements of this genetic information
landscape, serving as crucial guidelines for the advancement of
plant metabolic engineering and the enhancement of crop
breeding strategies.
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characteristics of the entire organism (Moreira et al., 2019). In

contrast, enzyme kinetic models focus on describing the dynamic

behavior of individual enzymatic reactions, such as through the

utilization of the michaelis-menten equation, to capture the kinetics

of specific metabolic pathways (Leow et al., 2019). Genome-scale

metabolic models provide the foundational framework for

constraint-based modeling approaches, while proteome-

constrained models represent an extension of GEMs that

incorporate proteomic constraints (Noshita et al., 2020). This

allows PCMs to more accurately capture the impact of protein

allocation on metabolic fluxes, providing a deeper understanding of

the interplay between an organism's proteome and its metabolic

network. The progression from enzyme kinetic models to genome-

scale metabolic models, and then to proteome-constrained models

reflects an increasing level of integration, moving from the

modeling of individual enzymatic reactions to the comprehensive

representation of the entire metabolic network, and further

incorporating proteomic constraints to enhance the accuracy and

predictive power of metabolic simulations. In this summary, we will

systematically review these models.
2.1 Constraint-based model

A Constraint-Based Model (CBM) functions as an analytical

construct integrating diverse constraints to demarcate the

operational boundaries of a designated system. These constraints

originate from various origins such as established physical

principles, empirical evidence, and theoretical constructs. Serving

as a prognostic instrument, the CBM anticipates the system's

behaviors and adjustments under varied circumstances, while

maintaining adherence to the stipulated constraints (Shaw et al.,

2021). Through resolving these constraint conditions, CBM is

capable of pinpointing an optimal solution or a range of feasible

solutions that satisfy all the constraints (Antoniewicz et al., 2015;

Colombié et al., 2017; Groot et al., 2020).

CBMs have been utilized in investigating and modulating the

metabolic pathways related to plant growth, development, and

response to environmental stresses. Through the application of

CBMs, researchers can pinpoint crucial metabolic reactions and

potential genetic targets for enhancement of crop yield, stress

tolerance, and nutritional quality (Varshney et al., 2018; Groot et

al., 2020). Additionally, CBMs have been employed to optimize

metabolic pathways for biofuel production from plants. By

simulating and scrutinizing plant metabolic networks, researchers

can pinpoint potential targets for genetic manipulation aimed at

improving the production of biofuel precursors, such as sugars,

lipids, and biobased chemicals (Rong et al., 2021). Furthermore,

CBMs have been utilized in the study of biosynthesis pathways of

phytochemicals, which have pharmaceutical or nutritional

significance as secondary metabolites in plants. Through the

analysis of metabolic networks, researchers can identify potential

genetic targets or optimal culture conditions to enhance the

production of specific compounds.

Despite its usefulness in plant metabolism research, CBM

models have a number of drawbacks. One such limitation is the
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substantial requirement of computational resources and time,

particularly when dealing with large-scale metabolic networks

found within intricate plant cells. Moreover, CBM heavily relies

on precise parameters, such as metabolic reaction rates and

metabolite concentrations, which can be challenging to measure

or estimate accurately (Martin et al., 2016; Heirendt et al., 2019).

Additionally, CBM assumes that chemical reactions in the

metabolic network have reached a steady state, consequently

neglecting nonequilibrium conditions and dynamic changes that

may occur. In conclusion, although CBM enables systematic

analysis and prediction of plant metabolism, it is accompanied by

computational complexities and limitations in parameterization.
2.2 Enzyme kinetic models

Enzyme kinetic models serve as valuable tools in guiding

enzyme engineering endeavors directed towards enhancing

catalytic efficiency, substrate specificity, and enzyme stability.

These models play a pivotal role in formulating rational

mutations and strategies for directed evolution to boost enzyme

functionality (Martins et al., 2016; Nagegowda et al., 2020).

Research has utilized kinetic models to investigate the

biosynthesis of B2 in rice, with predictions indicating that

OsRibA serves as a rate-limiting enzyme in this pathway.

Subsequent experiments have shown that overexpression of the

OsRibA gene leads to a significant increase in riboflavin production.

The kinetic model, while advantageous, presents limitations in plant

metabolism research. This encompasses the complexity resulting

from the comprehensive modeling of the entire plant metabolic

system which involves numerous metabolic pathways and reactions

(Tenenboim et al., 2016). Moreover, the establishment of accurate

dynamic models necessitates a substantial amount of experimental

data for the evaluation of metabolic pathway parameters,

consuming significant time and resources (Chalmandrier et al.,

2021). Additionally, the model's accuracy may be influenced by

diverse environmental factors and conditions affecting plant

metabolic processes, particularly within complex growth

environments (Colombiéet al., 2017; Dale et al., 2021). Although

the kinetic model offers advantages in plant metabolism research,

challenges arise regarding modeling complexity and parameter

estimation, requiring a comprehensive examination of these

factors to fully harness its potential.

Enzyme kinetic models are extensively utilized in plant science

to investigate the dynamics of enzyme-catalyzed reactions and to

gain insights into the control of plant metabolism. They have been

applied to analyze the kinetics of pivotal enzymes within

photosynthetic pathways, such as RuBisCO and ATP synthase.

Such models facilitate comprehension of the determinants

affecting photosynthetic efficacy and pinpointing potential

avenues for enhancing crop yield (Chen et al., 2022). Enzyme

kinetic models serve as valuable tools in guiding enzyme

engineering endeavors directed towards enhancing catalytic

efficiency, substrate specificity, and enzyme stability. These

models play a pivotal role in formulating rational mutations and

strategies for directed evolution to boost enzyme functionality
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(Martins et al., 2016; Nagegowda et al., 2020). Research has utilized

kinetic models to investigate the biosynthesis of B2 in rice, with

predictions indicating that OsRibA serves as a rate-limiting enzyme

in this pathway. Subsequent experiments have shown that

overexpression of the OsRibA gene leads to a significant increase

in riboflavin production. The kinetic model, while advantageous,

presents limitations in plant metabolism research. This

encompasses the complexity resulting from the comprehensive

modeling of the entire plant metabolic system which involves

numerous metabolic pathways and reactions (Tenenboim et al.,

2016). Moreover, the establishment of accurate dynamic models

necessitates a substantial amount of experimental data for the

evaluation of metabolic pathway parameters, consuming

significant time and resources (Chalmandrier et al., 2021).

Additionally, the model's accuracy may be influenced by diverse

environmental factors and conditions affecting plant metabolic

processes, particularly within complex growth environments

(Colombiéet al., 2017; Dale et al., 2021). Although the kinetic

model offers advantages in plant metabolism research, challenges

arise regarding modeling complexity and parameter estimation,

requiring a comprehensive examination of these factors to fully

harness its potential.
2.3 Genome-scale metabolic models

Genome-Scale Metabolic Models (GEMs) are comprehensive

computational frameworks that encompass the entirety of an

organism's metabolic network, derived from its genomic

information. These models are meticulously constructed using the

genetic information encoded in an organism's DNA, offering a

detailed representation of the complex metabolic pathways and

reactions that support cellular processes. GEMs are constraint-

based models that function as computational depictions of an

organism's metabolism, integrating genomic sequences, biochemical

pathways, and experimental data to predict its metabolic capabilities

(Aurich et al., 2016; Antonakoudis et al., 2020). Generation of GEMs

predominantly relies on genome annotation data for gene

identification and functional categorization within an organism’s

genetic makeup. Once established, GEMs can be leveraged for

simulating diverse metabolic phenomena such as growth rates,

nutrient assimilation, and metabolite synthesis (Chen et al., 2020).

GEMs are typically conceptualized as constraint-based models

comprising a complex system of mathematical equations, defining

the stoichiometry, thermodynamics, and regulatory constraints of the

metabolic network. Employing mathematical optimization

algorithms enables GEMs to project optimal flux distributions,

serving to maximize specific objectives, such as biomass production

or ATP yield. Recently, there has been significant development in

GEMs that integrate genomic, transcriptomic, proteomic, and

thermodynamic data (Botero et al., 2018; Clark and Donoghue,

2018; Bogaert and Myers, 2019; Noshita et al., 2022). Several

software programs, such as CarveMe, Path2Models, ModelSEED,

AGORA, REVEN 2.0, and SuBliMi NALToolbox, have been

developed to facilitate the reconstruction of genome-scale metabolic
Frontiers in Plant Science 04
models (GEMs). These tools are capable of automating tasks such as

genome annotation, gene-protein-reaction (GPR) association

generation, and predicting reaction reversibility (Seaver et al., 2014;

Villegas et al., 2017; Arya et al., 2020).

GEMs require genome scale enzyme annotation data from

Pathway/Genome database such as PlantCyc and KEGG

(Schläpfer et al., 2017; Zhan et al., 2022). Several software

programs, such as COBRA toolbox, CarveMe, Path2Models,

ModelSEED, AGORA, REVEN2.0, and SuBliMi naLToolbox, have

been developed to facilitate the reconstruction of genome-scale

metabolic models (GEMs). These tools are capable of automating

tasks such as genome annotation, gene-protein-reaction (GPR)

association generation, and predicting reaction reversibility

(Seaver et al., 2014; Villegas et al., 2017; Heirendt et al., 2019;

Nagegowda et al., 2020).

Despite their advantages, GEMs also present certain limitations.

The accurate establishment of GEMs necessitates the acquisition of

complete sequence information regarding the plant genome,

extensive data integration, and meticulous model construction,

posing challenges for genotypes that are incomplete or atypical.

Furthermore, the validation of GEMs’ predictive outcomes through

experimental verification can be intricate and time-consuming.

Additionally, precise experimental data on model parameters

such as metabolic rea ction rates and metabolite concentrations

are essential for GEM development. GEMs commonly assume

steady-state conditions in metabolic networks, although plant

metabolism can exhibit dynamic behavior across various growth

stages, environmental settings, and stress conditions, thereby

limiting the broad applicability of GEMs.
2.4 Proteome-constrained models

The proteome-constrained model represents a computational

framework that incorporates constraints derived from the

proteome, encompassing the entire complement of proteins

synthesized by a genome under specified conditions. This model

employs constraints informed by experimental data, including

protein concentrations, enzyme kinetics, and protein-protein

interactions. It serves as a valuable tool for analyzing and

predicting the dynamics of cellular systems concerning protein

expression and functionality. Proteome-constrained models play a

pivotal role in the systems-level investigation of cellular processes

(Bellasio et al., 2018; Lu et al., 2022), enhancing our comprehension

of intricate biological systems, and facilitating the development of

therapeutic interventions (Courdavault et al., 2021). The proteome-

constrained modeling approach leverages knowledge of an

organism's proteome to integrate genetic information,

encompassing genes and proteins, into mathematical frameworks

for simulating and studying cellular metabolism. In this modeling

paradigm, the metabolic network is represented as a set of

interconnected biochemical reactions governed by metabolite

fluxes. Each reaction is associated with the proteins that facilitate

catalysis, and their quantitative levels or expression profiles serve as

regulatory constraints. These essential data are typically derived
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from experimental methodologies such as mass spectrometry or

RNA sequencing (Chen et al., 2021; Lu et al., 2022).

Protein-constrained models that incorporate proteomics data

provide more accurate predictions of cellular functionality

compared to conventional metabolic models based solely on

genome-scale metabolic reconstruction. This is due to the fact

that proteomics data provides information on protein expression

levels, post-translational modifications, and protein-protein

interactions, which are essential for understanding cellular

function. By integrating these data, protein-constrained models

can provide a more comprehensive description of cellular

metabolism, leading to more accurate predictions (Wang et al.,

2019b). These models facilitate the anticipation of metabolic flux

patterns, detection of metabolic limitations, and examination of

relationships among genes, proteins, and reactions. Consequently,

methodologies like flux balance analysis (FBA) or its modifications

have been utilized to scrutinize the model and prognosticate cellular

behavior under diverse circumstances.

The metabolic flux in networks is influenced by various

additional constraints (Janasch and Asplund-Samuelsson, 2018).

The stoichiometric aspect of GEM metabolic networks has

limitations, including regulation through gene expression,

posttranslational modifications, and enzyme characteristics

determined by protein structure (Chen and Nielsen, 2019; Dong

et al., 2022). By integrating cellular processes and protein structure

information into the model, comprehensive multiomics data

analysis can be performed (Jendoubi and Ebbels, 2020). This will

allow the model to achieve a deeper understanding of the

fundamental principles that govern complex cellular metabolic

regulation and evolution. Therefore, large-scale multiscale whole-

cell models are urgently needed.
3 Mathematical models have emerged
as invaluable tools in plant research

Mathematical models have become essential instruments in the

domain of plant investigation, providing significant insights and

prognostications. By employing mathematical equations,

investigators can depict and measure various phenomena

pertaining to plants (Tokuda et al., 2022). These models,

furnishing indispensable tools and insights, occupy a central

position in the progression of plant research (Pouvreau et al.,

2018; Shafiee-Gol et al., 2021).

Plant genomics, transcriptomics, proteomics, metabolomics,

single-cell transcriptome and other omics technologies have rapidly

developed in the past decade, leading to an explosion of sequenced

genomes, as observed by plant biologists (Lu et al., 2022). Genome

sequences serve as fundamental units for constructing functional

plants. Consequently, molecular plant biologists encounter the

challenge of comprehending the combined functionality of tens of

thousands of genes encoded in each genome (Wang et al., 2019a).

The intricate regulatory networks established by these genes

contribute to consistent growth and developmental patterns under

different environmental conditions (Varshney et al., 2018; Bogaert et
Frontiers in Plant Science 05
al., 2019; Zhan et al., 2022). The effective integration of multiomics

data for analyzing genome-scale metabolic models in the era of big

data is crucial. Achieving a comprehensive understanding and

accurate prediction of how omics data and gene/metabolite

networks ultimately regulate growth and development is an

immense challenge, if not impossible (Razzaque et al., 2019; Dong

et al., 2022).
3.1 Plant growth and development

To achieve a comprehensive understanding of the molecular

mechanisms underlying all aspects of plant biology, it is necessary to

employ a comprehensive set of models. Each model should have the

ability to assess at least one aspect of plant life. Wang (2016) integrated

a genome-scale metabolic flux model with transcriptomic data to

investigate the metabolic reactions of Arabidopsis thaliana under

both low and high CO2 conditions. However, the utilization of

transcriptomic data alone often fails to produce the anticipated

enhancement in model prediction. Benes (2020) demonstrated with

their multiscale model that the increased leaf production rate in

transgenic Arabidopsis with aberrant developmental regulation is

large enough to account for the smaller leaf phenotype in this

genetically modified plant. The output of the clock submodule is

utilized to regulate tissue elongation and starch metabolism. With

these updates, Arabidopsis FMv2 is capable of predicting the

phenotypic response to changesin circadian rhythm caused by clock

mutations in plants. Heirendt (2019) introduced an updated version

of the COBRA Toolbox, specifically the COBRA Toolbox v3.0.

This version incorporates novel techniques for quality control

reconstruction, modeling, topological analysis, strain and

experimental design, and network visualization. Additionally, it

enables the integration of chemical informatics, metabolomics,

transcriptomics, proteomics, and other data types into networks.

Plant photosynthetic metabolism The distribution of photosynthetic

products in plants is a complex process influenced by a variety of

factors, including environmentalelements such as light, water, and

temperature, as well as the plant's own genetic characteristics and

growth development. Research on plant photosyntheticmetabolism

models is a complex and ever-evolving field that can deepen our

understanding of how plants convert light energy into chemical energy

through photosynthesis. To support studies of photosynthetic nitrogen

assimilation and its complex interaction withphotosynthetic carbon

metabolism for crop improvement, we developed a dynamic systems

model of plant primary metabolism, which includes the Calvin-Benson

cycle, the photorespiration pathway, starch synthesis, glycolysis-

gluconeogenesis, the tricarboxylicacid cycle, and chloroplastic

nitrogen assimilation. This model successfully captures responses of

net photosynthetic CO2 uptake rate (A), respiration rate, and nitrogen

assimilation rate to different irradiance and CO2 levels. Examines how

photosynthesis in Arabidopsis thaliana acclimates to cold

temperatures,The study suggests that the ability to acclimate

photosynthesis to environmental changes, including cold, is

important for plant fitness and seed yield, which could have

implications for crop breeding and agricultural practices.The research
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employs metabolic models to show how the relative export of triose

phosphate and 3-phosphoglycerate from the chloroplast could provide

a signal of the chloroplast redox state, potentially underlying the

photosynthetic acclimation to cold. Integrates relative gene

expression levels from multiple transcriptomic and proteomic

datasets into flux balance analysis(FBA) predictions for a multi-tissue

model of Arabidopsis thaliana's central metabolism.Plant-microbe

interactionsPlant-microbe-environment interaction modeling is an

important branch at the intersection of ecology, microbiology, and

botany, focusing on the interplay between plants, microbes, and their

environment. These interaction models help us understand how plants

adapt to environmental changes, improve nutrient absorption

efficiency, enhance disease resistance, and influence thefunctioning of

ecosystems through their interactions with microbes. Sun (2022)

explores the metabolic interactions between the inoculant bacterium

bacillus velezensis SQR9. Metabolic modeling and profiling were

used to demonstrate metabolic facilitation between the bacterial

strains, suggesting a form of cross-feeding that enhances

communityperformance. Found a strong phylogenetic signature in

the carbon source utilization profiles of the strains. The genome-scale

models provided further insight,correctly predicting positive outcomes

and emphasizing the role of carbon metabolism in community

assembly. The present plant models discussed in this study signify an

advancement in our endeavor to investigate and understand the

various plant forms and functions. Nevertheless, there are enduring

challenges in the domains of comprehensive growth models,

integration of large-scale models, maintaining equilibrium between

growth and metabolism, and the precision of model forecasts. The

ongoing progression of innovative technologies in molecular biology

and bioinformatics is already facilitating the creation of the upcoming

plant models.Metabolic phenotypes are primarily defined bythe levels

of metabolites, which are established by a complex network of

interrelated biochemical reactions in genome-scale metabolic

networks. To better understand these systems, several genome-scale

metabolic reconstructions have recentlybeen published for plant

species (Seaver et al., 2014). The methods employed to study these

metabolic models, such as flux balance analysis (FBA), considerall

reactions in the model when attempting to predict a biological

phenotype, such as plant growth. Here, we summarize the currently

available design software and R packages used in genome-scale

metabolic networks (Table 1).

4 Challenges and dilemmas faced by
mathematical models in
plant research

High-throughput experiments that analyze genomes,

transcriptomes, proteomes, and metabolomes generate a large

quantity of concurrently measured molecular entities (Tenenboim

and Brotman, 2016). In current biological research, a combination

of experimental high-throughput techniques is often used to

investigate a broad range of complex research questions (Seaver

et al., 2014; Zhou et al., 2021). High-throughput sequencing (HTS)

technologies have revolutionized genetics and genomics at the

genome level, providing comprehensive information on the
Frontiers in Plant Science 06
TABLE 1 Bioinformatics tools for plant metabolomics workflow.

Tool Weblink
Major

Function

MetaboAnalyst www.metaboanalyst.ca/
Statistical
analysis

MeltDB 2.0 https://meltdb.cebitec.uni-bielefeld.de Data processing

MetaP-server
http://metabolomics.helmholtz-
muenchen.de/metap2/

Data analysis

MetExplore http://metexplore.toulouse.inra.fr Pathway analysis

Metabox
https://github.com/
kwanjeeraw/metabox

Analysis
workflow

METLIN https://metlin.scripps.edu/
Metabolite
annotation

MetAlign www.metalign.nl
Workflow
analysis

MetaboAnalystR
https://github.com/
xialab/MetaboAnalystR

R package

Lilikoi https://github.com/lanagarmire/lilikoi R package

MetFrag http://c-ruttkies.github.io/MetFrag
Metabolite
annotation

MetaGeneAlyse
http://
metagenealyse.mpimp-golm.mpg.de/

Metabolite
data analysis

Metacrop 2.0 http://metacrop.ipk-gatersleben.de Data annotation

MetAssign http://mzmatch.sourceforge.net/ Data annotation

MET-COFEA
http://bioinfo.noble.org/manuscript-
support/met-cofea/

Data processing

MetPA http://metpa.metabolomics.ca Pathway analysis

iMet-Q
http://ms.iis.sinica.edu.tw/comics/
Software_iMet-Q.html

Data processing

Babelomics 5.0 http://www.babelomics.org/
Statistical
analysis

XCMS https://xcmsonline.scripps.edu Data processing

MZedDB
http://maltese.dbs.aber.ac.uk:8888/
hrmet/index.html

Data annotation

MassBank http://www.massbank.jp/
Metabolite
annotation

MaxQuant https://www.maxquant.org/
Data annotation
& processing

MetFusion http://mgerlich.github.io/MetFusion/
Integrated
compound
detection

MAVEN https://maven.apache.org/ Data processing

MZmine2 http://mzmine.github.io/ Data processing

MSEA http://www.metaboanalyst.ca/ Pathway analysis

MS-Dial
http://prime.psc.riken.jp/
Metabolomics_Software/MS-DIAL/

Data processing

MarVis http://marvis.gobics.de/
Metabolite
annotation

Mummichog http://mummichog.org Pathway analysis

(Continued)
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genomes of numerous species through sequencing projects (Arya

et al., 2020; Moreira et al., 2020; Sun et al., 2021).

However, the integration of big data encounters numerous

challenges, including issues related to data quality and

consistency, the management of large and intricate data sets, data

compatibility concerns, the enhancement of complexity and

precision in large-scale modeling, and the optimization of

algorithms and computational capabilities.
4.1 Multiomics data quality and
format consistency

Computational biology research often involves complex

datasets that exhibit multiple characteristics of ‘big data’. The

term ‘big data’ encompasses four main properties that pose

significant challenges for visualization: the large volume of data;

the diversity of formats, data structures, and variable types; the high

velocity of data retrieval, analysis, and representation; and the need

to determine data validity (Rong et al., 2021; Qian et al., 2022).

Data quality and format consistency pose a significant challenge in

the integration of multi-omics data due to variations stemming from

diverse sources, including laboratories, platforms, and technologies.

The inconsistencies can be attributed to disparities in data processing

methods, experimental designs, and data acquisition and measurement

approaches. Differences in genome sequencing methods, proteomics,

and metabolomics measurement techniques contribute to data

inconsistency, introducing measurement errors and technical

variations. Instances of missing values and incomplete data further

hinder data integration and analysis, potentially distorting results.

Addressing these issues requires the implementation of various

methods and strategies, such as data quality control, standardization,

and appropriate statistical approaches (Lacchini et al., 2020).

Integrating high-throughput ‘omics’ data and multiscale modeling

can reveal interactions within and between molecular scales, revealing

emergent properties that cannot be solely ascribed to growth,

development, reproduction, or aging at any single level in the system

(Tong et al., 2020). To enable meaningful analysis, the integration of

these disparate data types necessitates the meticulous implementation

of data preprocessing, normalization, and integration techniques. Data

visualization is essential for achieving a comprehensive understanding

of metabolic networks and pathways at the systems level (Mochida et

al., 2018; Watanabe et al., 2019). In response to these needs, the
TABLE 1 Continued

Tool Weblink
Major

Function

MMCD http://mmcd.nmrfam.wisc.edu/
Metabolite
annotation

COVAIN
http://www.univie.ac.at/
mosys/software.html

Statistical
analysis

CAMERA
https://bioconductor.org/packages/
release/bioc/html/CAMERA.html

Data annotation

CFM-ID http://cfmid.wishartlab.com
Metabolite

identification

ADAP http://www.du-lab.org/software.htm/ Data processing

KEGG http://www.genome.jp/kegg/
Metabolic
models

GenePattern
http://software.broadinstitute.org/
cancer/software/genepattern/

Statistical
analysis

Galaxy-M
https://github.com/Viant-
Metabolomics/Galaxy-M

Workflow
analysis

RetSynth
https://github.com/
sandialabs/RetSynth

Workflow
analysis

CNApy https://github.com/cnapy-org
Workflow
analysis

OptFlux http://www.optflux.org
Workflow
analysis

COBRA Toolbox
(https://github.com/
opencobra/cobratoolbox

Workflow
analysis

FastMM
https://github.com/
GonghuaLi/FastMM

Workflow
analysis

Medusa
https://github.com/
opencobra/Medusa

Workflow
analysis

Ssbio http://github.com/SBRG/ssbio
Workflow
analysis

Mackinac
https://github.com/
mmundy42/mackinac

Workflow
analysis

Pybel https://github.com/pybel
Workflow
analysis

COBRApy http://opencobra.sourceforge.net
Workflow
analysis

PyscesToolbox
https://github.com/
PySCeS/PyscesToolbox

Workflow
analysis

MEMOTE https://memote.io
Workflow
analysis

DORMAN
http://
ciceklab.cs.bilkent.edu.tr/dorman

Workflow
analysis

GPRuler https://github.com/qLSLab/GPRuler
Workflow
analysis

Diurnal.plant.tools http://diurnal.plant.tools
Workflow
analysis

Plant seed http://plantseed.theseed.org
Workflow
analysis

(Continued)
TABLE 1 Continued

Tool Weblink
Major

Function

BiGG Models http://bigg.ucsd.edu
Workflow
analysis

MetaNetX http://www.metanetx.org
Workflow
analysis

Model SEED http://modelseed.org
Workflow
analysis
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scientific community has focused on data visualization as a way to

enhance the use of biological data for maximum effectiveness.

Validating predictions made using integrated multiomics data is

challenging due to the limited availability of standard datasets.

Reproducibility is also a challenge when different studies employ

diverse data preprocessing or integration approaches (Dale et al.,

2023). Establishing robust validation strategies, promoting data

sharing, and implementing standardized analysis protocols are

critical to building trust and ensuring reproducible results (Sun

et al., 2022). Addressing these challenges necessitates the close

collaboration of experts from various disciplines, such as biology,

statistics, computer science, and bioinformatics. Progress in

algorithm development, computational power, and data sharing

initiatives will be instrumental in surmounting these challenges and

facilitating precise predictions with integrated multiomics data

(Zhou et al., 2021; Ribeiro et al., 2022; Zhan et al., 2022).
4.2 Reasonable use of different metabolic
models and data matching challenges

The advancement of computer technology and data analysis

methods has led to the application of various metabolic models in

systems biology. However, these models were developed based on

different plants, organ tissues, metabolites (Chalmandrier et al.,

2021). Nonetheless, different models have limitations in their use.

The effective use of these models and the incorporation of current

large-scale multiomics data into these models pose several

challenges for computational biologists and systems biologists.

The integration of big data presents challenges to mathematical

models and prediction accuracy. Large data sets necessitate complex,

high-dimensional mathematical models for analysis and prediction,

leading to increased computational resource demands and the need for

more efficient algorithms. The presence of noise, bias, or outliers in

large-scale data can negatively impact the accuracy and robustness of

predictive models, necessitating appropriate data cleaning and

processing techniques. Moreover, the integration of diverse,

structured, and unstructured data from multiple sources complicates

model construction and prediction. Overcoming these challenges

requires the implementation of measures during the process.

Metabolic models inherently encompass uncertainties due to

the complexity of biological systems and limitations of available

data. Sensitivity analysis, Monte Carlo simulations, or flux

variability analysis can aid in quantifying and comprehending the

uncertainties associated with model predictions (Cañas et al., 2017;

Wang et al., 2019b). Genome-scale models (GEMs), kinetic models,

and flux balance analysis (FBA) models have strengths and

limitations. The most appropriate model depends on the specific

research question and the available data. Researchers should

thoroughly assess the assumptions, computational requirements,

and compatibility of the model with the existing data. Precise

parameterization of metabolic models is critical for accurate

predictions (Tong et al., 2020; Sun et al., 2022).

Continuous improvement in integrating models and describing

the metabolic processes underlying biological phenomena is essential.

Urgent integration of multiscale mathematical models is necessary to
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guide future crop breeding and engineering, comprehend the impact

of molecular-level findings on overall plant behavior, and enhance the

predictive capabilities of plant and ecosystem responses in the

environment. We propose employing metabolic models and

machine learning techniques to predict plant production risks and

offer targeted guidance for crop breeding through the effective

integration of multiple omics data and the utilization of multiscale

models. Plant growth biology models can be integrated with various

omics data (such as genomic, transcriptomic, metabolomic,

proteomic, etc.) to gain a deeper understanding of the molecular

and biological mechanisms involved in plant growth processes. The

following figure illustrates the schematic process of biological

modeling and simulation, integrating plant growth metabolism

under multiple environmental conditions with multiomics

data (Figure 2).
4.3 Limitations of mathematical models in
practical application

Experimental data, such as growth rates, nutrient uptake rates,

and enzyme kinetics, should be utilized to calibrate the model.

Validation against independent datasets is critical to confirm the

model’s predictive capabilities and reliability. Even careful scientists

may encounter problems during analysis. If an experiment is not

well planned or executed, computational analyses, especially using

toolboxes or software, often yield unreliable results (Chen et al.,

2020). Although mechanistic metabolic models are rarely treated as

black boxes, they can still be misused in various ways (Küken et al.,

2019). The development of flexible and robust mechanisms for

connecting independently developed models operating at diverse

spatial and temporal scales has substantial implications for plant

sciences and other fields. Biological structures display notable

variations due to environmental factors and plant genetics (Spicer

et al., 2017; Chalmandrier et al., 2021).

Nevertheless, the absence of mechanistic models that elucidate

how a specific genotype reacts in a given environment impedes the

ability to predict plant responses in untested settings. Integrative,

multiscale models provide simulations that allow for the rapid

examination of new scenarios, enabling the testing of the system of

interest’s response to perturbations. Additionally, they aid in

formulating hypotheses to guide experimental design and adopting

novel technologies to obtain measurements that enhance the future

applicability of plant science research (Chen et al., 2022). The

complexity of plant genomes, compartmentalization of metabolic

reactions, and multilevel regulation necessitate the use of dynamic

metabolic models and network structure analysis through whole-

genome network reconstruction to gain mechanistic insights into

plant metabolic regulation (Dale et al., 2021). The time has come for a

paradigm shift in plant modeling, transitional from relatively isolated

research efforts to a connected community that can effectively utilize

high-performance computing and a mechanistic understanding of

plant processes (Smithers et al., 2021; Lu et al., 2022).

It is essential to evaluate the reliability and stability of

mathematical models through validation datasets. Evaluating and

forecasting the effectiveness of current breeding practices is crucial for
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adjusting breeding strategies to agroecological goals. Breeding efforts

in recent decades, focused on optimizing individual performance,

may still contribute to the performance of the focal species in mixed

stands (Hu et al., 2022).

However, finding large-scale appropriate validation datasets while

preventing model overfitting to training data remains challenging in

agricultural production (Luca et al., 2020). Despite its advantages,

constraint-based modeling still has limitations, including the

requirement of a significant number of in vivo enzyme kinetic

parameters that are currently missing for implementing enzyme

constraints with the IOMA and GECKO methods (de Groot et al.,

2020; Ribeiro et al., 2022). While it is possible to obtain the missing

parameters from experiments or estimate them through literature

searches, the process of implementing these parameters is not

convenient (Noshita et al., 2022).

Plant growth and development are influenced by multiple

uncertain factors and variations among individuals. Incorporating

these factors into mathematical models presents a challenge because

the complexity of uncertainty and diversity often surpasses the capacity

of the models. Mathematical models often require adequate complexity

to capture the intricacy of plant growth and development. However,

this complexity can decrease the interpretability of the models, making

it difficult to understand and explain the model results, thereby

restricting their practical application.
5 Future perspective and conclusion

Over the past decade, we have observed rapid advancements in

omics detection technology and the accumulation of vast amounts

of biological data encompassing phenotype screening, gene
Frontiers in Plant Science 09
sequencing, proteomics, transcriptomics, metabolomics, etc.

Additionally, we have gained significant insights from metabolic

models that describe life processes.

Mathematical and computational methods are becoming

increasingly prevalent in the field of plant biology due to

improved access to computational resources and advancements in

education (Carlson and Zeng, 2023). Plant computational biology is

a field that addresses this demand by bringing together experts in

applied metabolic biology and computational biology who possess

expertise in both metabolic and computational tools as well as their

applications in plant biology (Wang et al., 2019b). We strongly

encourage plant biologists who are interested in enhancing their

research through computational modeling to address these

challenges, recognize the scientific and specialized nature of

modeling, and initiate collaborative discussions with patients.

Mathematical models play an important role in studying plant

growth and development processes (Tokuda et al., 2019). The latest

trend is to construct more accurate and detailed growth models to

predict the growth of plants under different environmental

conditions, such as the influence of factors such as light,

temperature, and soil moisture on plant growth. The latest trends

in mathematical modeling in plant research encompass growth

models, genetic models, simulation models, and spatial models.

These trends contribute to the advancement of plant science and

provide foundational support for plant breeding, genetic

improvement, and ecological conservation. With the advancement

of technology and scientific development, mathematical modeling

constantly encounters new opportunities and challenges.

Consequently, our understanding of biological systems science

and the underlying mechanisms behind life is continually

updated, enabling us to apply this knowledge to manipulate nature.
FIGURE 2

The initial assumptions of the plant production model within the framework of big data are illustrated. Plants exhibit sessile growth, rendering them
vulnerable to various environmental stresses. Over extensive periods of adaptive evolution, plants have evolved specific metabolic regulatory
mechanisms to sustain normal growth. Integration of artificial intelligence and big data techniques facilitates efficient extraction, analysis, and
application of multi-omics data. Coupled with mathematical models for simulation and forecasting, this approach aids in optimizing agricultural
practices. By utilizing models to predict plant growth under different environmental conditions, adjustments can be made to fertilization, irrigation,
and plant protection strategies, tailoring them to the specific requirements of plants in particular settings. Such precision offers enhanced guidance
and early detection for fostering healthy crop growth, thereby unlocking novel prospects for agricultural production and plant biology research.
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