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Spatial effects analysis of
natural forest canopy cover
based on spaceborne
LiDAR and geostatistics
Jinge Yu1, Li Xu1, Qingtai Shu1*, Shaolong Luo1 and Lei Xi2

1College of Forestry, Southwest Forestry University, Kunming, China, 2Institute of Ecological
Protection and Restoration, Chinese Academy of Forestry, Beijing, China
Because of the high cost of manual surveys, the analysis of spatial change of

forest structure at the regional scale faces a difficult challenge. Spaceborne

LiDAR can provide global scale sampling and observation. Taking this

opportunity, dense natural forest canopy cover (NFCC) observations obtained

by combining spaceborne LiDAR data, plot survey, and machine learning

algorithm were used as spatial attributes to analyze the spatial effects of NFCC.

Specifically, based on ATL08 (Land and Vegetation Height) product generated

from Ice, Cloud and land Elevation Satellite-2/Advanced Topographic Laser

Altimeter System (ICESat-2/ATLAS) data and 80 measured plots, the NFCC

values located at the LiDAR’s footprint locations were predicted by the ML

model. Based on the predicted NFCC, the spatial effects of NFCC were

analyzed by Moran’s I and semi-variogram. The results showed that (1) the

Random Forest (RF) model had the strongest predicted performance among

the built ML models (R2=0.75, RMSE=0.09); (2) the NFCC had a positive spatial

correlation (Moran’s I = 0.36), that is, the CC of adjacent natural forest footprints

had similar trends or values, belonged to the spatial agglomeration distribution;

the spatial variation was described by the exponential model (C0 = 0.12×10-2, C =

0.77×10-2, A0 = 10200 m); (3) topographic factors had significant effects on

NFCC, among which elevation was the largest, slope was the second, and aspect

was the least; (4) the NFCC spatial distribution obtained by SGCS was in great

agreement with the footprint NFCC (R2 = 0.59). The predictions generated from

the RF model constructed using ATL08 data offer a dependable data source for

the spatial effects analysis.
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1 Introduction

Canopy cover (CC), as a significant forest structure parameter,

represents the ratio of vertical canopy projection area to forest area

(Lauri et al., 2006), and can reflect the growth and development

characteristics of trees and the degree of utilization of growth space.

In the process of forest growth, restoration, and secondary

succession, the forest is not only restricted by its site conditions,

but also affected by the spatial relationship between the overall

structure and other patches in the surrounding areas and these

regional characteristics, which leads to a certain spatial effect of the

forest (Guo and Zhang, 2002). Neglecting the spatial effects may

lead to deviation or error in analyzing and estimating the change

pattern of the forest parameters (Anselin and Griffith, 1988; Zhang

and Shi, 2004; Stojanova et al., 2013). Spatial effects are commonly

described by spatial autocorrelation and heterogeneity (Anselin,

1988; Chen, 2013). Spatial autocorrelation analysis is a widely

utilized method in spatial analysis (Legendre, 1993; Cressie and

Moores, 2022). It can be classified into two types: global and local

spatial autocorrelation (Kashlak and Yuan, 2022; Posa and De Iaco,

2022). Global spatial autocorrelation focuses on analyzing the

spatial distribution state and pattern of attribute values of spatial

objects in the whole region, and commonly used statistics include

the Moran index (Moran, 1950), Getis'G statistics (Getis and Ord,

1992), and Geary’s C index (Geary, 1954). Local spatial

autocorrelation can capture local spatial elements' clustering and

difference characteristics (Zhang et al., 2023). The main indexes for

analyzing local spatial autocorrelation include the local Moran

index, local indicators of spatial association (LISA), and Getis' G

statistic (Anselin, 1995; Dalposso et al., 2013). These indexes have

been extensively employed to enhance the comprehension of forest

distribution and accuracy estimation of forest information in

forestry (Shi and Zhang, 2003; Chas-Amil et al., 2015; Yin

et al., 2018).

Spatial heterogeneity was a critical theoretical issue in ecological

research in the 1990s (Tilman et al., 1994), as a common attribute of

geographical phenomena, which refers to the uneven distribution of

various geospatial attributes in a certain geographical area (Fischer

and Getis, 2010; Wang et al., 2016). Spatial heterogeneity analysis

has been widely applied to spatiotemporal problems in ecology,

geology, public health, economy, environment, and other fields

(Song et al., 2020). Its goals usually include: exploring the spatial

aggregation of regions defined as high or low spatial values

(Anselin, 1995); analyzing the potential factors leading to the

uneven spatial distribution (Brunsdon et al., 1996; Fotheringham

et al., 2003); spatiotemporal prediction and decision-making based

on spatial heterogeneity (Wang et al., 2014). Gaining a complete

comprehension and utilization of spatial heterogeneity can enhance

our understanding of forest vegetation growth and the evolution of

forest ecosystems (Hewitt et al., 2007; Gossner et al., 2013; Detto

et al., 2015; Getzin et al., 2017).

Currently, spatial attributes obtained through remote sensing

has become more accessible, facilitating the spatial effects analysis at

the regional level. However, in many RS technologies, optical

remote sensing does not provide forest vertical structure

information and is susceptible to weather and saturation effects
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(Chopping et al., 2008; Peduzzi et al., 2012; Wang et al., 2019a).

Microwave remote sensing can acquire forest information

regardless of weather conditions, but it is vulnerable to terrain

and saturation issues (Vatandas ̧lar and Abdikan, 2022).

Encouragingly, Spaceborne LiDAR technology can penetrate the

canopy to obtain three-dimensional information of vegetations, and

has incomparable advantages in large-scale forest structure

observation research due to its large-area, multi-scale, and multi-

space-time monitoring capabilities and low cost of data acquisition

for user (Disney, 2019; Pitkänen et al., 2019; Wang et al., 2019b).

NASA launched the Ice, Cloud, and land Elevation Satellite-2

(ICESat-2) in 2018 as a successor to the Ice, Cloud, and land

Elevation Satellite (ICESat). Equipped with the Advanced

Topographic Laser Altimeter System (ATLAS), ICESat-2 utilizes

multi-beam, micropulse, and photon-counting lidar technology

(Magruder and Brunt, 2018). It uses a single photon detector that

is more sensitive, has a higher pulse repetition rate, and can obtain

observations with more minor spots and higher density. The data

have been successfully used to characterize canopy cover. For

example, Narine et al (Narine et al., 2022). have tried to estimate

the CC by combining the ICESat-2 data, passive optical image, the

National Land Cover Database (NLCD) cover product estimates. In

comparison to CC derived from airborne LiDAR, The RF models

demonstrated R2 values ranging from 0.50 to 0.61, with

corresponding RMSEs between 0.16 and 0.20. Although these

studies demonstrated the power of ICESat-2 to estimate CC, the

spatial effects of CC were not further explored.

Remote sensing modeling plays a crucial role in estimating CC

and explaining the correlation between remote sensing variables

and CC (Chopping et al., 2012; Khokthong et al., 2019; Eskandari

et al., 2020; Huang et al., 2021; Miranda et al., 2021). Machine

learning approaches provide more general categories, such as

decision trees (CART, RF), k-NN, Neural Networks, SVM etc. for

CC estimation (Joshi et al., 2006; Ahmed et al., 2015b, Ahmed et al.,

2015a; Zhao et al., 2018; Nasiri et al., 2022b). However, it is difficult

for an ML algorithm to perform optimally in every study object or

area. For example, Zhang et al (Zhang et al., 2022). compared the

performance of 6 ML models (k-NN, Gradient Boosting Regression

Tree (GBDT), XGBoost, CatBoost, SVR, and RF) in mapping forest

heights using multi-source RS data, the optimal performance model

is CatBoost. Nasiri et al (Nasiri et al., 2022a). compared the

performance of 4 ML algorithms [RF, SVM, ENet and extreme

gradient Boost (XGBoost)] in estimating the CC of mixed temperate

forests in northern Iran, and the results showed that RF is the best

prediction model among the ML algorithms. Pourshamsi et al

(Pourshamsi et al., 2021), based on polarimetric SAR and

airborne LiDAR data, used 4 ML models (RF, Rotation Forest

(RoF), Canonical Correlation Forest (CCF) and SVM) to estimate

the forest canopy height of Lope National Park in central Gabon,

the SVM performed slightly better. Shu et al (Shu et al., 2022).

found that the RF model had the highest R2 value (R2 = 0.85) among

the models of AGB estimation based on the optimal samples. In the

above research, researchers find a relatively optimal model by

comparing the machine learning. However, the CC estimation

still requires the addition of newer models on the basis of general

models for comparison to obtain the optimal model. In Addition,
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based on the advantages of spaceborne LiDAR mentioned earlier, a

regional scale spatial effects analysis framework that avoids the

shortcomings of optics and SAR is needed for scientific

management of forests.

This study provided an alternative for the large-scale spatial

effects analysis and a reference for the scientific management of

natural forests. Based on ICESat-2/ATLAS data and the four

machine learning algorithms, combined with the measured NFCC

data, the machine learning models of NFCC were established and

evaluated, and then the NFCC values within footprints were

predicted by the model with best-predicted performance. Finally,

based on the predicted NFCC values, the spatial effects were

analyzed. Therefore, this study aimed to: (1) evaluate the

performance of different machine learning algorithms in

predicting footprint NFCC; (2) describe the spatial heterogeneity

and autocorrelation of NFCC at the regional scale; (3) evaluate the

influences of elevation, slope, and aspect on the spatial

heterogeneity of NFCC; (4) explore suitable interpolation method

based on the NFCC values within the footprints.
2 Materials and methods

2.1 Study area

The research area is Shangri-La City (Figure 1), Diqing

Tibetan Autonomous Prefecture, Yunnan Province, China

(Latitude: 26°52′~28°52′N, Longitude: 99°20′~100°19′E). The
area has significant changes in altitude and is a key forest area,
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ecological protection area, and tourist area. The dominant tree

species include Spruce (Picea asperata), Fir (Abies fabri), Oak

(Quercus semecarpifolia), Pinus (Pinus yunnanensis), etc

(Xu et al., 2021).
2.2 Methodological framework

In this study, four ML algorithms were used to build the

estimation model of NFCC based on light spot footprints, and

then the NFCC of all light spot footprints was predicted and used as

a spatial attribute of spatial heterogeneity analysis. Our framework

approach comprises three main components (Figure 2): (1) the

process of preparing and preprocessing data, including data

preprocessing for ATL08, resampling of terrain factors and

extraction of slope and aspect; (2) NFCC model construction

and evaluation based on four ML models (k-NN, SVM, RF,

GBRT), and (3) NFCC spatial effects based on semi-variogram

function and terrain impact analysis based on Pearson correlation.
2.3 Data source and preprocessing

2.3.1 Field data
Circular plots were established in the study area in November

2021 (Figure 1C). Given that ATLAS generates footprints with an

approximate diameter of 17 m on the ground (Neumann et al.,

2019), the plot was set as a circle with a radius of 8.5m (Figure 1E).

CC was measured by systematically setting N observation points in
A

B

D

E

C

FIGURE 1

Overview of the study area: (A) location of Shangri-La in China, (B) location of Shangri-La in Yunnan Province, (C) location of LiDAR footprint and
ground-truth sample, (D) the magnified view of an area, and (E) diagram of sample plot design.
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the sample site to determine whether each observation point was

covered by vertical canopy projection. Sight tubes with leveling

bubbles were used to reduce measurement bias for non-vertical

aiming. The layout of observation points in the circular plot is

shown in Figure 1E. The formula [Equation (1)] for calculating the

CC in the sample plot is as follows (Jennings et al., 1999), and the

measurement results of all sample plots are shown in Table 1.

Cc =
m
M

(1)

where: Cc is the value of the CC; M is the number of sample

points; m is the number of sample points covered by canopy.
2.3.2 ICESat-2/ATL08 product and preprocessing
ATL03, as the basic data for generating other products, provides

geospatial information such as the time, ellipsoid height, longitude,

and latitude of each photon event (Huang et al., 2020). The ATL08

(Land and Vegetation Height) product, as the primary data source

of this study, is officially released by NASA on the basis of ATL03

(Global Geolocated Photons) product after pretreatment, which

provides information on terrain and forest canopy height in the

track direction.
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This study used ATL08 data products within one year after June

1, 2020. There are 11,060 footprints in the natural forest land of

study area. Ultimately, 1106 footprints (Figure 1C) obtained

through systematic sampling (sampling interval = 10) were used

as selected footprints for follow-up research.

The ATL08 data presents a spatially discrete footprint resulting

in discontinuity of its data. In order to obtain the continuous

coverage of ATL08 data on the sample site, based on the parameters

of the ATL08 products, normality test was carried out first.

Parameters, either initially normal or normalized through data

transformation, were subjected to Kriging interpolation and

subsequently output as raster layers with a 17 m spatial

resolution. Ultimately, the continuous rasterization layers of the

normal parameters of ATL08 product are shown in the Figure 3.

2.3.3 Topographic data
The DEM data (12.5 m) was obtained by the PALSAR sensor of

the Advanced Land Observing Satellite-1 (ALOS) Satellite. With the

help of ArcMap 10.8, the DEM data was resampled to a spatial

resolution of 17 m to match the ground footprint size, then the

aspect and slope were calculated using the 3D analysis toolbox, as

shown in Figure 4.
TABLE 1 Descriptive statistics of the measured NFCC of the plot.

Item
Sample
number

Max. Min. Mean
Standard
Deviation

Acquisition
time

NFCC 80 0.85 0.20 0.52 0.16 Nov. 2021
FIGURE 2

Flowchart for NFCC spatial effects analysis combining the ICESat-2/ATL08 data, field data, and ML modeling.
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A B C

FIGURE 4

Overview map of topographic factors in the study area: (A) slope, (B) aspect, and (C) elevation.
A B D E F
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FIGURE 3

ATL08 continuous rasterization: (A) asr, (B) h_canopy_abs, (C) h_mean_canopy, (D) h_median_canopy, (E) h_median_canopy_abs,
(F) toc_roughness, (G) h_te_interp, (H) h_te_bestfit, (I) n_toc_photon, (J) h_min_canopy_abs, (K) n_ca_photon, (L) photon_rate_can,
(M) landsat_perc, and (N) h_canopy.
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2.3.4 National Forest Management Inventory data
The National Forest Management Inventory (FMI) data

provides abundant information such as land class, forest species,

ownership, forest protection grade, origin, dominant tree species,

CC, average stock, etc. The footprints in the natural forest area were

extracted using the survey data of the study area in 2016. The

natural forests were identified based on their origin, and forests

evolution usually take a long time. More importantly, China

launched the Natural Forest Conservation Project in 1999 and

National Ecological Vulnerable Area Protection Plan in 2008.

Therefore, although there is a time lag, the scope of natural

forests remains basically unchanged, and still is applicable in

this study.
2.4 Correlation analysis

In statistics, the Pearson correlation coefficient measures the

linear correlation between two variables, with its value ranging

from -1 to 1. The closer the coefficient’s absolute value is to 0, the

weaker the linear correlation between the two variables. Conversely,

an absolute value closer to 1 indicates a stronger linear correlation.

The basic principle of Pearson correlation can be seen in the article of

Yang et al (Yang et al., 2021). In this study, the correlation analysis

was used to screen model independent variables and explain the effect

of terrain factors on NFCC.
2.5 Machine learning methods

k-nearest neighbor (k-NN), a simple and efficient non-

parametric method, effectively circumvents the issue of

collinearity among independent variables. This algorithm is

applicable to the parameter estimation of remote sensing data

characterized by non-normal distributions and unknown density

functions, and is extensively utilized in forestry investigations

globally (Chirici et al., 2008, 2016). The fundamental concept of

this algorithm involves using a point in the feature space as the

reference object, capturing the attribute values of the k nearest

sample points relative to this point, and determining the predicted

value of this object by calculating the average of its inverse

distance weights.

Support vector machine (SVM) algorithm originates from the

VC dimension theory and the structural risk minimization principle

(Chirici et al., 2008, 2016). The fundamental principle of SVM

involves mapping training data features to a high-dimensional

space through a defined kernel function, and identifying an

optimal linear regression hyperplane in this space that best fits

the eigenvalues.

RF proposed by Breiman (Breiman, 2001), is a method that

combines weak classifiers to create strong classifiers. Its

fundamental concept lies in the ability of the ensemble to

compensate for incorrect predictions made by individual weak

classifiers. Originally developed as an extension of classification

and regression trees (CART), RF enhances predictive models by

generating aggregate predictors (Breiman, 1996).
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Gradient Boost Regression Tree (GBRT), as an ensemble

learning method, builds a strong learning model by sequentially

aggregating a set of weak CART regression tree submodels (Opitz

and Maclin, 1999; Friedman, 2001). The key concept of GBRT is

that each new regression tree submodel is built in the gradient

direction of residuals reduction to reduce residuals from previous

models (Liu et al., 2020).

In our research, we randomly divided the plot data into two sets:

training dataset (70%) and validation dataset (30%). The training

set served to train and develop the models, whereas the validation

set, not participating in the model-building process, was used to

evaluate model performance. Root mean square error [RMSE;

Equation (2)] and coefficient of determination [(R2; Equation

(3)], as two commonly used evaluation indexes, were used to

evaluate the prediction performance of regression models. A

higher R2 value indicates greater model accuracy, while a lower

RMSE value signifies enhanced accuracy of the regression model.

The calculation formulas for each indicator are as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)

n − 1

r
(2)

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y1)

2 (3)

where n is the number of samples, ŷ iis the predicted by the ML

models, yi is the observed FCC from the ground measurements, �yis

the arithmetic mean of observed values.
2.6 Spatial autocorrelation analysis

Moran’s I can effectively capture differences and correlations in

the spatial distribution of observations, as well as reflecting the

overall clustering pattern of objects in the study area (Zhang et al.,

2023). The value interval of Moran’s I is [-1, 1]. When the value is

less than 0, spatial objects have a negative correlation; when the

value is equal or close to 0, spatial autocorrelation does not exist.

When the value is greater than 0, it indicates that there is spatial

autocorrelation, and spatial objects show a clustered distribution

(Moran, 1950). Moran’s I formula [Equation (4)] is as follows:

Moran0s   I = n

on
p=1on

q=1
wpq(d)

� �
  o

n
p=1on

q=1
wpq(d)(xp−�x)(xq−�x)

on
p=1

(xi−�x)
2 (4)

where nis the number of observed values; �X is the average of the

variable X; xp and xq refer to the observation values at plot p and

plot q, respectively; wpq(d) is the spatial weight matrix value

between plot p and plot q.

After calculating the Moran’s I value, the significance of

Moran’s I can be tested by a Z-score. A positive Z-score points to

a cluster of high values, whereas a negative Z-score suggests clusters

of low values. The degree of clustering is greater (or lesser) with a

higher Z-score. Conversely, if the Z-score is close to zero, it

indicates the absence of significant clustering in the area.

Equation (5) was used to calculate the Z-score.
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Z(S) = S−E(S)ffiffiffiffiffiffiffiffiffiffi
Var(S)

p ,   E(S) = −1
m−1 (5)

where Z(S) represents an index that measures the intensity of a

spatial agglomeration pattern; E(S) denotes the expected value of

the index value I, while Var(S) represents its variance.

Furthermore, local spatial autocorrelation can elucidate the level of

spatial correlation existing between a research object and its neighboring

units. Equation (6) was used to calculate the local Moran"s I.

Il =
m2

om
p om

q
wpq

(xp−�x)om
q
wpq(xq−�x)

om
p (xp−�x)

2 (6)

where mis the number of plots; xp and xq are the observation

values at plot p and plot q, �x is the average of all NFCC values;

wpq  (d) is the weight matrix value. The local Moran’s I differs from

the global Moran’s I in terms of value range. Unlike the global

Moran’s I, the local Moran’s I is not limited to the range of (-1, 1). If

the Ilvalue is positive, it indicates a positive correlation in the

location of the plot and reflects the aggregation of similar values.

Conversely, if the Il is negative, it signifies a negative correlation in

the location of the plot and reflects the aggregation of

different values.
2.7 Semi-variogram analysis

Semi-variogram is often used to describe spatial heterogeneity

(Wang et al., 2000). In the semi-variogram function parameter,

nugget (C0) reflects the possible degree of randomness within the

regionalized variable, and explains the discontinuous variation of the

regional variable at a small scale, which is due to the measurement

error and random variation of the sampling scale. Sill (C0+C) was

used to measure the degree of spatial heterogeneity and reflected the

maximum degree of variation of the variable. Range (a) refers to the

average maximum distance of spatial autocorrelation between

variables (Chiles and Delfiner, 2012). The semi-variogram formula

[Equation (7)] (Chiles and Delfiner, 2012) is as follows:

r(h) =
1

2N(h) o
N(h)

i−1
Z(xi) − Z(xi + h)ð Þ2 (7)

where r(h) is the semi-variogram of NFCC; N(h) is the total

logarithm of sample points spaced h in one direction; Z(xi) is the

measured NFCC at spatial position xi; Z(xi + h) is the NFCC value

at h distance from point xi.

The relationship between the semi-variogram value and the

distance usually requires a mathematical model to fit. The common

mathematical models include spherical model, exponential model,

Gaussian model, and linear model. According to the principle that

the R2 is large and the RSS is tiny, it is found that the exponential

model is more suitable for revealing the spatial heterogeneity of the

NFCC. The expression of the exponential model [Equation (8)] is as

follows:

g (h) =
0 , h = 0

C0 + C   1 − e−
h
a

� �
, h > 0

8<
: (8)
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where g (h) is the semi-variogram of NFCC; ais the range; C is

the partial sill value; C0 is nugget value; his distance.

Spatial heterogeneity is not only related to scale, but also to

direction (Li and Reynolds, 1995), and the spatial distribution of

NFCC is also different depending on the direction. Anisotropic

semi-variogram was used to analyze the direct change of spatial

heterogeneity of NFCC (Habin et al., 1998). In general, the

anisotropy ratio [K(h)] between the semi-variogram functions in

different directions is used to describe the anisotropic structural

characteristics, and the formula [Equation (9)] is as follows:

K(h) = l(h,  q1)
l(h,  q2)

(9)

where l(h, q1) and l(h,   q2) are the semi-variogram functions

in the directions q1 and q2, respectively. If K(h) is equal to or close

to 1, the spatial heterogeneity is isotropic, otherwise it is anisotropic.
2.8 Spatial interpolation method

Ordinary Kriging (OK), its essence is to infer the regionalized

spatial distribution of variables by the variable in the spatial

regionalization of a finite number of sample points. Based on the

information of several measured points in the search field where the

point to be estimated is the center of the circle, it uses the semi-

variogram function as a tool to calculate the weighted value of the

measured points around the point to be estimated, and finally

makes the optimal and unbiased estimation of the estimated points

(Christakos, 2000). The formula [Equation (10)] is as follows:

Z#
e (x0) =o

m

i=1
liZ(xi) (10)

where Z#
e (x0) represents the predictive NFCC at the point to be

predicted; Z(xi) stands for the observed NFCC at the point to be

predicted; li represents the weight of each known parameter value,

and m represents the number of spot footprints.

Sequential Gaussian Conditional Simulation (SGCS) is a spatial

stochastic simulation method that constructs a Gaussian function

based on known data and treats each value of the regionalized

random variable Z(x) as a random realization of the Gaussian

function (i.e. the normal distribution function) F(x). It is mainly

used to generate spatial explicit estimates of interest variables based

on regionalized variable theory and spatial autocorrelation theory

measured by the semi-variogram functions. More information and

detailed processes about the SGCS can be found in the articles by

Luo et al (Luo et al., 2023), and Zhao et al (Zhao et al., 2010).

Zhao et al (Zhao et al., 2010). derived the connection between

the OK and the SGCS, and compared the statistical parameters of

both computational results and the original data. The results

showed that the values from SGCS actually consist of two parts:

one is the result of Kriging interpolation, and the other is a random

deviation with a mathematical expectation of 0 and a variance equal

to the Kriging error variance S (Xm). The difference lies in that

Kriging interpolation solely uses the original known point data as a

basis for estimating unknown points, whereas in SGCS, each
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simulated value for a location not only applies known point data but

also previous simulation data. In this section, two interpolation

methods, Kriging and SGCS, are applied. The motive is to find a

suitable interpolation method for the footprint NFCC obtained

by inversion.

In the evaluation of interpolation results, we randomly divided

the footprint NFCC predicted by the optimal model into two sets:

interpolation dataset (80%) and validation dataset (20%). The

interpolation dataset is used for spatial interpolation, and the

validation dataset is used to evaluate the interpolation results.
2.9 Software environment

With the help of SPSS 27.0, Pearson correlation analysis was

used to evaluate the correlation between ATL08 parameters and

NFCC, and the ATL08 parameters were selected as independent

variables of the model according to the value and significance of the

correlation coefficients.

Based on Python 3.7 environment, the four machine learning

algorithms (k-NN, SVM, RF, GBRT) in this study were

implemented using the scikit-learn package in the Python library.

Global and local Moran’s Iwere calculated in the spatial analysis

toolbox of ArcGIS 10.8.

GS+ 9.0 (GeoStatistics for the Environmental Sciences, version

9.0), a comprehensive geostatistics program, provides all geostatistics

components, from variogram analysis through Kriging and mapping,

in a single integrated program that is widely praised for its flexibility

and user-friendly interface. The semi-variogram analysis and the
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corresponding parameters (C0, C0+C, a) were obtained in this

software. To further know the spatial distribution of NFCC within

the study area, based on the NFCC of ATLAS footprints and the fitted

semi-variogram function, GS+ 9.0 and ArcGIS 10.8 were used to

achieve the OK interpolation and SGCS for NFCC (Figures 5A, B).

The number of SGCS simulations was set to 50 times

(Luo et al., 2023).
3 Results

3.1 Selected ATL08-derived features and
the ML modeling

The result of Pearson correlation analysis showed seven

parameters from the ATL08 product (asr, landsat_perc,

photon_rate_can, toc_roughness, n_toc_photons, h_canopy,

h_dif_canopy) were significantly correlated with NFCC at the

0.05 confidence level (Figure 6). Then the seven parameters were

selected as the independent variables (the description is shown in

Table 2), and the NFCC measurement serves as the dependent

variable for constructing the ML models.

Two statistical metrics (R2, RMSE) were applied to evaluate the

models constructed, utilizing the reserved 30% of field plot data

(Table 3). The predicted performance of the ML models was ranked

as follows (descending order): RF (R2 = 0.75, RMSE = 0.09), GBRT

(R2 = 0.60, RMSE = 0.12), SVM (R2 = 0.45, RMSE = 0.14), k-NN

(R2 = 0.43, RMSE = 0.15). Figure 7 showed the comparison of the

NFCC predicted values with the measured values in test set.
A B

D

C

FIGURE 5

Spatial distribution mapping and evaluation: (A) NFCC spatial interpolation based on OK, (B) NFCC spatial interpolation based on SGCS, (C) NFCC
scatter plot based on OK, and (D) NFCC scatter plot based on SGCS.
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3.2 Mapping of NFCC and descriptive
statistics within footprints

Due to its greater predicted performance, the RF model was

used to predict NFCC within the natural forest footprint, and then

the footprint NFCC was visualized in Figure 8. Most of the natural

forest footprint CC was above 0.5. The areas with high-values were

mainly distributed in the northwest, middle and south of Shangri-

La (Figure 8).
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Table 4 showed the footprint’s descriptive statistics of NFCC

and topographic factors within the footprint. The P-P Plot of NFCC

(Figure 9) showed a normal distribution, which meets the

requirements of structural analysis of semi-variogram.
3.3 Spatial autocorrelation of NFCC

Table 5 showed that Z-score = 6.47 and P value< 0.01,

indicating that Moran’s I passed the test with 99% confidence

level. Moran’s I of NFCC in the study area is positive (Moran’s

I = 0.36), indicating that the NFCC has a positive spatial correlation

and belongs to spatial agglomeration distribution.

Local spatial autocorrelation analysis can capture local spatial

elements’ clustering and difference characteristics. As a common index

of local spatial autocorrelation, the local Moran index was used to

continue exploring the NFCCs’ spatial relationships of each footprint.

As shown in Figure 10, NFCC located in the central and northern

parts of the study area showed significant HH clustering, while the

spatial clustering pattern of the NFCC situated on the west and east

sides of the study area showed HL outliers. LH outliers were mainly

concentrated in the middle of the study area. Besides, LL clusters were

primarily concentrated in the eastern part of the study area.
FIGURE 6

Correlation coefficient matrix between the ATL08 seven parameters and NFCC.
TABLE 2 The correlation coefficient and description of seven
ATL08 parameters.

Parameter Coefficient Description

asr 0.29 Surface reflectance.

landsat_perc 0.31
Landsat
canopy percentage.

photon_rate_can 0.38 Canopy photon ratio.

toc_roughness 0.27

The standard deviation
of the relative height of
all photons classified as
the top of the canopy
within the segment.

n_toc_photons 0.32
The number of photons
on top of the canopy.

h_canopy 0.34

98% height of all the
individual canopy
relative heights for the
segment above the
estimated
terrain surface.

h_dif_canopy 0.35
Difference between
crown height and
median crown height.
TABLE 3 Model evaluation parameters.

Regression
method

R2 RMSE

k-NN 0.43 0.15

SVM 0.45 0.14

RF 0.75 0.09

GBRT 0.60 0.12
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3.4 Spatial heterogeneity of NFCC

The fitting of the semi-variogram function in this study was

implemented in GS+ 9.0 software. The semi-variogram function

revealed the regional differences in the spatial structure of NFCC,

and the fitting results were shown in Figure 11. According to the

principle that the Residual Sum of Squares (RSS) is minimum and

the coefficient of determination (R2) is maximum, the exponential

model (R2 = 0.61, RSS = 1.96×106) is best fit to describe the

relationship between values and distances. The abutment value

(C0 + C) of the exponential model is 0.89×10-2, the partial sill value
Frontiers in Plant Science 10
(C) is 0.77×10-2, the variable range (A0) is 10200 m, the nugget

value (C0) is 0.12×10-2, and. The NSR of NFCC is 13.40%,

indicating that the variables have strong spatial autocorrelation

within the range. The expression of the exponential model

[Equation (11)] is as follows:

g (h) =
    0 , h = 0

0:12� 10−2 + 0:77� 10−2   1 − e−
h

10200

� �
, h > 0

8<
: (11)

The results of the anisotropic semi-variogram function showed

that the NFCC changes in all directions on the scale of 106 km

(Figure 12). The anisotropy of NFCC in the northwest-southeast

direction (q = 135°) was the most obvious, followed by the north-

south direction (90°). However, the anisotropy of NFCC in the east-

west (0°) direction was relatively low.
3.5 Relationship between NFCC and
topographic factors

To realize the influence degree of topography on NFCC,

Pearson correlation analysis was conducted between the NFCC

and the topographic factors (Table 6). Table 6 showed that the

NFCC in the study area is significantly correlated with elevation,

slope, and aspect at 0.01 level. The order according to the

correlation coefficient’s absolute value absolute value of the

correlation coefficient was as follows: elevation > slope > aspect.
3.6 Spatial continuous mapping of NFCC

The interpolation results showed that the spatial distribution

map of NFCC obtained by the OK method (Figure 5A) was roughly

similar to the SGCS interpolation map (Figure 5B). High values

were concentrated mainly in the study area’s northern, central, and

southern regions. As can be seen from Figure 5A, the spatial

distribution of NFCC obtained by the OK method is relatively

continuous and has obvious smoothing effect. In Figure 5B, the

overall distribution using the SGCS method is relatively discrete and

less affected by smoothing effect. In addition, the spatial predicted
A B DC

FIGURE 7

The NFCC models estimation results using the validation dataset: (A) k-NN, (B) SVM, (C) RF, and (D) GBRT.
FIGURE 8

Mapping of footprint NFCC in the study area.
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values obtained by SGCS were in good agreement with NFCC

footprint values (Figure 5D, R2 = 0.59). In contrast, the spatial

predicted values obtained by OK were less consistent with the

NFCC footprint values (Figure 5C, R2 = 0.43).
4 Discussion

4.1 Sample size problem for the estimation
of NFCC

The results of this study confirm that the combination of

ATLAS data, plot survey, ML algorithm, and geostatistical

method can provide a valuable framework for county-scale NFCC

spatial effects analysis. Before the spatial effects analysis, the NFCC

of 1106 footprints was estimate by the RF model. As the input of the

model, the measured sample plots play an important role in

the modeling. In general, the more samples used, the more

reliable the model. However, Shangri-la has many high-altitude

mountains and complex terrain, which makes it not easy to collect

samples based on LiDAR footprints. In addition, the existing

remote sensing estimation of forest parameters is based on the

traditional empirical sample size, that is, below 30 is a small sample

size, and above 50 is a large sample size (Shu et al., 2022). To

minimize the labor and time required, exploring the optimal sample

data is needed. Shu et al (Shu et al., 2022). solved the optimal sample

size by integrating the statistical variance function and value
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coefficient, which was reconstructed using the model accuracy

evaluation index RMSE and the model sample cost. Therefore,

the optimization of the sample size can be further performed in the

future to minimize costs.
4.2 Uncertainty analysis of the model

Although the number of sample plots is small, the prediction

accuracy of the estimation model based on the measured samples

was great. However, the phenomenon of high underestimation in

all models is relatively easy to find. From the scatter plot

(Figures 7A–D), when the NFCC is above 0.7, the predicted

value below the 1:1 line can be visually seen, which means that

the model is still underestimating at higher NFCC. Previous

studies (Xing et al., 2010; Xi et al., 2022) have shown that

incorporating distinct forest types into the modeling process can

enhance performance and decrease the model’s reliance on

training samples. However, because of the absence of sample

plot data, it was impossible to distinguish between forest types

or NFCC levels for modeling. In order to reduce uncertainties in

the modeling process, it is recommended that sufficient sample

plot data be collected in the future. Furthermore, the importance

of physical geography, bioclimate, and biology in estimating forest

parameters has been demonstrated (Su et al., 2016; Fayad et al.,

2021). Therefore, in future studies, it is suggested that remote

sensing data should be combined with a forest physiological

process model to enhance the generalization and accuracy of the

predictive model.
4.3 Spatial distribution characteristics
of NFCC

The spatial effect analysis of NFCC obtained by combining

machine learning algorithms, relatively new remote sensing data

sources, and measured samples is one of the innovations of this

study. Many spatial heterogeneity studies (Yao et al., 2015; Li

et al., 2017; Liu et al., 2018) can only be carried out on a small

scale due to labor costs, resulting in little difference in
TABLE 4 Descriptive statistics of NFCC and topographic factors within the footprint.

Item Number Max. Min. Mean Standard deviation

NFCC 1106 0.83 0.25 0.56 0.092

Elevation 1106 4646 1821 3453.88 571.88

Slope 1106 57.34 2.43 26.94 11.06

Aspect 1106 9 1 5.68 2.29
FIGURE 9

P-P Plot of NFCC within footprints.
TABLE 5 Moran’s I coefficient of NFCC.

Item Moran’s I Z score P value

NFCC 0.36 6.47 P ≈ 0.000 < 0.01
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FIGURE 10

Local spatial autocorrelation of footprint NFCC.
A B

DC

FIGURE 11

Different mathematical function fits: (A) linear model, (B) spherical model, (C) exponential model, and (D) Gaussian model.
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environmental factors. But the spatial heterogeneity of NFCC is

often the result of the interaction of topography, climate, soil,

stand, external disturbance, and other random factors. The

distribution of light, temperature, water, and other climatic

factors is determined by topographic differences. Analyzing the

influences of topographic factors on the spatial heterogeneity of

forest parameters can provide a better understanding of the

mechanism of climate-forest interaction, which is often

overlooked in current studies.

The results of this study showed that the canopy cover of

Shangri-la natural forest is moderately variable, indicating that it

is susceptible to structural and random factors. Spatial variation

is mainly divided into structural factor variation and random

factor variation (Zou et al., 2021). The NSR of NFCC is 0.13 in

section 3.4, showing strong spatial autocorrelation, indicating

that the influence of natural factors was dominant. Since 1999,

the China National Forestry and Grassland Administration has

implemented many large-scale forest conservation projects, such

as the Natural Forest Protection Project and Grain for Green

Project. Shangri-La is the key area for the implementation of

these projects. The natural forests are less disturbed by

human factors.

With the support of large-scale spaceborne LiDAR data, this

study found that the elevation itself has the most significant

influence on the spatial distribution of NFCC, followed by the

slope and aspect. However, this study lacks the relationship between

topography and climate factors and their joint influence on the

spatial distribution of NFCC, which needs further analysis in

the future.
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4.4 Spatial prediction problem based
on footprint

As shown in Figure 8, with the assistance of ATLAS, the ability

to estimate large-scale NFCC is obtained, which is limited to the

predetermined ground track footprint range. In view of the feature

of ATLAS discontinuous sampling, the discontinuous spatial

attributes (NFCC) were used to analyze spatial effects, and extend

to the extent of natural forest land throughout the study area by the

spatial statistical method. Because spatial interpolation uses known

spatial attributes for prediction, the limitations (e.g., climate effect,

saturation effect) associated with the using optical images are

significantly eliminated (Liu et al., 2022; Yu et al., 2023).

However, the spatial interpolation based on LiDAR spot

footprint still faces many problems, such as banding effect, and

smoothing effect. Compared with OK, the SGCS method overcomes

the shortcomings of Kriging’s smoothing effect (Luo et al., 2023).

However, since the spot footprints are distributed along the track,

the spatial interpolation results located around the track may have a

strong banding effect. Increasing the randomness of spot footprint

distribution often has a great effect on avoiding banding effect. In

this study, spatial interpolation based on the 1106 footprints

obtained through systematic sampling from 11,060 footprints

located within natural forests did not show a significant banding

effect. Therefore, the sampling of the footprint can be used as an

alternative scheme to increase the randomness of the footprint. In

addition, Liu et al (Liu et al., 2022). integrated ICESat-2 and GEDI

data to carry out spatial interpolation of forest canopy height, and

the interpolation results did not show obvious banding effect.

Therefore, adding other spaceborne LiDAR data sources can also

avoid banding effects.
4.5 Prospect of spatial effects analysis of
canopy cover based on spaceborne
LiDAR data

In this study, the research object only focuses on the NFCC in

Shangri-La. Still, the proposed method can be extended to other
TABLE 6 Correlation analysis between NFCC and topographic factors.

Variable NFCC Elevation Slope Aspect

NFCC 1

Elevation 0.27** 1

Slope 0.10** -0.18** 1

Aspect 0.08** 0.02 0.03 1
Signif. Codes: ‘**’0.01; ‘*’0.05. The same below.
FIGURE 12

Anisotropic semi-variogram of NFCC in four directions: east-west (0°), south-north (90°), northeast-southwest (45°), and northwest-southeast (135°)
in Shangri-La.
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areas or forest parameters after the same treatment. The Earth will

be observed further by ICESat-2/ATLAS, yielding additional high-

precision orbital observation data. In order to obtain more and

denser space observation footprints, another spaceborne LiDAR

named GEDI (Global Ecosystem Dynamics Investigation) can be

introduced in future research.
5 Conclusions
Fron
(1) Among the NFCC prediction models based on 4 ML

algorithms (KNN, SVM, GBRT, and RF), GBRT and k-

NN are the models with the best and worst prediction

performance. The ascending order of predictive

performance of the four models is as follows: k-NN (R2 =

0.43, RMSE = 0.15), SVM (R2 = 0.45, RMSE = 0.14), GBRT

(R2 = 0.60, RMSE = 0.12), RF (R2 = 0.75, RMSE = 0.09).

(2) The results of spatial autocorrelation analysis showed that

the NFCC in the study area had a positive spatial

correlation, which belonged to the spatial agglomeration

distribution. The results of semi-variogram analysis showed

that the exponential model is the most suitable to describe

the spatial variation characteristics of NFCC (R2 = 0.61,

RSS = 1.96×10-6). The spatial distribution of NFCC in the

range of 0~10200 m had a strong spatial correlation.

(3) The spatial heterogeneity of NFCC in the study area is

affected by topographic factors. In terms of influence

degree, the elevation was the largest, slope was the

second, and aspect was the least. In managing natural

forests, the function of topographic factors should be

considered to manage natural forest scientifically

and effectively.

(4) In the spatial distribution maps drawn by OK and SGCS,

the spatial distribution obtained by SGCS was in great

agreement with the footprint NFCC (R2 = 0.59), and was

less affected by the smoothing effect.
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