
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Maliheh Eftekhari,
Tarbiat Modares University, Iran

REVIEWED BY

Zitong Li,
Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Australia
Yong Jiang,
Leibniz Institute of Plant Genetics and Crop
Plant Research (IPK), Germany
Haipeng Yu,
University of Florida, United States
Just Jensen,
Aarhus University, Denmark

*CORRESPONDENCE

Hiroyoshi Iwata

hiroiwata@g.ecc.u-tokyo.ac.jp

†
PRESENT ADDRESS

Kosuke Hamazaki,
Molecular Informatics Team, RIKEN Center
for Advanced Intelligence Project (AIP),
RIKEN, Chiba, Japan

RECEIVED 27 December 2023

ACCEPTED 06 March 2024
PUBLISHED 28 March 2024

CITATION

Hamazaki K and Iwata H (2024) AI-assisted
selection of mating pairs through simulation-
based optimized progeny allocation strategies
in plant breeding.
Front. Plant Sci. 15:1361894.
doi: 10.3389/fpls.2024.1361894

COPYRIGHT

© 2024 Hamazaki and Iwata. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 28 March 2024

DOI 10.3389/fpls.2024.1361894
AI-assisted selection of mating
pairs through simulation-based
optimized progeny allocation
strategies in plant breeding
Kosuke Hamazaki † and Hiroyoshi Iwata*

Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology,
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
Emerging technologies such as genomic selection have been applied to modern

plant and animal breeding to increase the speed and efficiency of variety release.

However, breeding requires decisions regarding parent selection and mating

pairs, which significantly impact the ultimate genetic gain of a breeding scheme.

The selection of appropriate parents and mating pairs to increase genetic gain

while maintaining genetic diversity is still an urgent need that breeders are facing.

This study aimed to determine the best progeny allocation strategies by

combining future-oriented simulations and numerical black-box optimization

for an improved selection of parents and mating pairs. In this study, we focused

on optimizing the allocation of progenies, and the breeding process was

regarded as a black-box function whose input is a set of parameters related to

the progeny allocation strategies and whose output is the ultimate genetic gain

of breeding schemes. The allocation of progenies to each mating pair was

parameterized according to a softmax function, whose input is a weighted

sum of multiple features for the allocation, including expected genetic

variance of progenies and selection criteria such as different types of breeding

values, to balance genetic gains and genetic diversity optimally. The weighting

parameters were then optimized by the black-box optimization algorithm called

StoSOO via future-oriented breeding simulations. Simulation studies to evaluate

the potential of our novel method revealed that the breeding strategy based on

optimized weights attained almost 10% higher genetic gain than that with an

equal allocation of progenies to all mating pairs within just four generations.

Among the optimized strategies, those considering the expected genetic

variance of progenies could maintain the genetic diversity throughout the

breeding process, leading to a higher ultimate genetic gain than those without

considering it. These results suggest that our novel method can significantly

improve the speed and efficiency of variety development through optimized

decisions regarding the selection of parents and mating pairs. In addition, by

changing simulation settings, our future-oriented optimization framework for

progeny allocation strategies can be easily implemented into general breeding

schemes, contributing to accelerated plant and animal breeding with

high efficiency.
KEYWORDS

breeding scheme, optimization, progeny allocation, forward simulation, mating pairs,
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1 Introduction

To meet the increasing demand for agricultural products caused

by the population explosion, developing new cultivars with desired

agronomic characteristics, such as high yield, good quality, and

efficient nutrient use, is urgently needed (Capper, 2011). However,

in plant breeding, for instance, conventional breeding methods

require several years or longer to produce new cultivars, even in

annual crops, which makes it challenging to meet the increasing

food demand in the near future (Eggen, 2012). Genomic selection

(GS) is expected to be a critical methodology for accelerating the

evaluation and selection of superior genotypes that can be

implemented in conventional breeding (Meuwissen et al., 2001;

Jannink et al., 2010). In GS, genotypic values of target traits are

predicted using genomic prediction (GP) models based on genome-

wide marker data, and the predicted values are used for selection in

breeding schemes (Meuwissen et al., 2001). GS enables individual-

based and crossing-based selection according to the genotypic

values predicted by the models with fewer field evaluations of

target traits, which leads to highly efficient and rapid breeding

(Zhong and Jannink, 2007; Jannink et al., 2010; Crossa et al., 2017;

Lehermeier et al., 2017). The superiority of GS over selections based

on either phenotypic data or pedigree-derived prediction (pedigree

BLUP) has been reported in many simulations and empirical

studies (Goddard, 2009; Hayes et al., 2009; Jannink et al., 2010;

Goddard et al., 2011; Crossa et al., 2013; Hickey et al., 2014; Garcıá-

Ruiz et al., 2016; Rabier et al., 2016). However, even though GS has

contributed to speeding up breeding during selections, the GS itself

does not aim to optimize decisions in breeding. Thus, the ultimate

decisions regarding parent selection and choosing mating pairs as

the beginning step of the breeding scheme still largely rely on

breeders’ experiences because many data-based approaches have

not been fully utilized by breeders due to target traits’ complexity,

limited resources, or implementation difficulty. In other words, the

advent of GS has not yet entirely led to optimized decisions in

breeding programs.

To solve the above problems and optimize the decisions

regarding (1) selection, (2) mating, and (3) progeny allocation,

there has been much discussion on improving the strategies in

breeding schemes. First, as for the selection strategy, different

selection criteria have been used to increase the efficiency of GS.

While various GP models have been developed to improve the

accuracy of GS (Meuwissen et al., 2001; Gianola and van Kaam,

2008; VanRaden, 2008; de los Campos et al., 2009; Jannink et al.,

2010; Habier et al., 2011; de Los Campos et al., 2013; González-

Camacho et al., 2016), genomic estimated breeding value (GEBV),

the total sum of estimated additive marker effects, has been

generally utilized for GS as a selection criterion (Meuwissen et al.,

2001). Although GEBV is usually used for a short breeding period

with a few cycles of selection and crossing, it does not guarantee an

increased genetic gain in a long-term breeding process (Sonesson

et al., 2012; Lin et al., 2017; Akdemir et al., 2019). Because genetic

variance is greatly reduced due to the Bulmer effect (Bulmer, 1971;

Van Grevenhof et al., 2012) and genetic diversity is also reduced by

inbreeding and random drift under truncation selection (Falconer

and Mackay, 1996; Li et al., 2008), the genetic gain rapidly reaches a
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local, rather than global, optimum, i.e., a plateau, in GEBV-based

GS cycles (Moeinizade et al., 2019; Zhang and Wang, 2022). Other

selection criteria have been proposed to solve the issue of GEBV-

based GS by maintaining the genetic diversity and further

increasing the genetic gain expected in the long-term breeding

program. Weighted genomic estimated breeding value (WGEBV) is

a criterion that utilizes marker allele frequencies to emphasize the

marker effects of rare alleles (Goddard, 2009; Jannink, 2010).

Compared to GEBV, WGEBV can maintain genetic diversity in

breeding populations over the long term by suppressing the Bulmer

effect (Goddard, 2009; Jannink, 2010). Other selection criteria, such

as optimal haploid value (Daetwyler et al., 2015), with an expected

maximum haploid breeding value (Müller et al., 2018), and optimal

population value (Goiffon et al., 2017), have been introduced to

maintain genetic diversity by including haplotype information and

have indeed improved the final genetic gains at the end of the

breeding scheme in long-term breeding programs compared to

those from GEBV-based GS. Although these selection criteria are

helpful in selecting parental candidates, they do not directly enable

the automatic optimization of decisions regarding the selection of

parents. Therefore, breeders must make ultimate decisions based on

these criteria by themselves. Also, an optimal contribution selection

method, which aims to optimize decisions regarding parent

selection, was proposed to help breeders decide on more

appropriate breeding strategies rather than just use selection

criteria (Meuwissen, 1997; Grundy et al., 1998). The optimal

contribution selection aims to optimize the expected contribution

vector, i.e., the number of times each individual is used as a parent

for the next generation, by maximizing the genetic gains while

constraining the inbreeding in the next generation. However, the

optimal contribution selection still cannot assist in identifying

optimal mating pairs even for the next generation. Second, as for

the problems regarding the selection of appropriate mating pairs,

i.e., the mating design problem, many studies in animal breeding

have long been conducted to select optimal pairs while considering

mating constraints (Jansen and Wilton, 1985; Kinghorn, 2011), but

they mostly lacked a long-term perspective. An optimal cross-

selection (OCS), an extension of the optimal contribution

selection, aims to select suitable mating pairs by establishing a

connection between the mating pairs and the expected contribution

vector (Gorjanc et al., 2018; Allier et al., 2019). Although the OCS

considers genetic diversity in breeding populations by constraining

inbreeding, as in the optimal contribution selection, it does not

directly optimize the long-term response. Then, a look-ahead

selection (LAS) approach has been proposed as a method for

simultaneously optimizing decisions regarding the selection of

appropriate parents and mating pairs in plant breeding

(Moeinizade et al., 2019). LAS can optimize whether each pair of

individuals should be mated to maximize the final genetic gain via

look-ahead simulations under two simplified assumptions: one

progeny is obtained from each mating pair, and random mating

occurs after the first selection and mating cycle. Although this

approach achieved higher genetic gains than the previous selection

criteria in the final generation by considering optimal mating pairs,

the assumptions were too simple to estimate the final genetic gain in

practical breeding programs, and LAS could not optimize the
frontiersin.org
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number of progenies allocated to each mating pair, i.e., progeny

allocation strategy.

Thirdly, as for the progeny allocation strategy, only one study

has attempted to optimize the allocation strategy (Hunter and

McClosky, 2016) although it is known to have a significant

impact on the ultimate genetic gain (Wang et al., 2018). In their

study, the number of progenies allocated to each pair was optimized

by searching for the Pareto surface in the plane formed by the mean

and variance of progenies in the next generation (Hunter and

McClosky, 2016), utilizing the multi-objective optimal computing

budget allocation method (Lee et al., 2010). However, this method

lacks the future-oriented perspectives required for the mid-term/

long-term breeding process. Moreover, there is no study on the

allocation optimization of progenies for the final genetic gain under

multiple selection and crossing cycles, although a couple of previous

studies tried to optimize breeding program decisions from other

viewpoints (Amini et al., 2021; Diot and Iwata, 2022; Moeinizade

et al., 2022).

As described so far, regardless of the duration of breeding

schemes, i.e., short-term or long-term, how decisions are made

significantly impacts the ultimate outcome of the schemes when

parent selection and mating are repeated multiple times. Thus, if the

optimization framework regarding the selection of parents and

mating pairs is achieved, it can be widely applied to various types

of breeding programs, i.e., small-scale and large-scale breeding

programs. As for small-scale breeding programs with limited

resources, particularly in plant breeding, since many minor crops,

including neglected and underutilized species (NUS), have attracted

much attention as breeding targets, there is increasing demand for

realizing more efficient breeding in small-scale programs for minor

crops (Padulosi et al., 2013; Kamenya et al., 2021). Even if NUS has

attracted little attention and has been entirely ignored by plant

breeders so far, it is now expected to have the potential to diversify

agriculture and address climate change. Another example of small-

scale breeding is breeding schemes promoted by small and medium

enterprises (Zambon et al., 2019). Since there are many agricultural

small and medium enterprises in Asian countries, optimizing

decision-making in small-scale breeding will lead to increased

profits in the agricultural market. From these viewpoints, our

study, which helps breeders’ decisions on hybridization, is

essential to improve breeding efficiency not only in large-scale but

also small-scale breeding programs.

The overall objective of the study was to go beyond the

conventional selection criterion-based GS by optimizing a

progeny allocation strategy to maximize the ultimate genetic gains

after multiple cycles of selection of parents and mating pairs. There

are two significant issues in this optimization. The first issue is that

it is challenging to describe the breeding process explicitly because

the future state of a breeding population is unknown. The second

issue is that breeding is a stochastic rather than deterministic

process since progenies are randomly produced in each

generation through meiosis. Therefore, the specific objectives of

this study were (1) to evaluate the final genetic gain via future-

oriented breeding simulations and (2) to achieve an optimal mating

pair selection via a numerical optimization approach conducted by

an artificial intelligence (AI) breeder while addressing the two issues
Frontiers in Plant Science 03
above. First, GS combined with future-oriented breeding

simulations enables us to evaluate the final genetic gain in a

breeding scheme with multiple cycles, leading to a solution to the

first issue. Second, the AI breeder in this study referred to a virtual

breeder in our computer who can optimize the decisions regarding

the progeny allocation strategy by using both the breeding

simulations and some optimization algorithm. In this study, to

design this AI breeder, we applied black-box optimization by

considering the breeding process achieved by the above

simulations as a black-box function whose input is a set of

parameters for the allocation strategy and whose output is the

ultimate genetic gain. We employed a black-box optimization

algorithm, StoSOO (Valko et al., 2013), which can also optimize a

stochastic black-box function, such as a breeding process,

presenting a solution to the second issue. Multiple features

representing some goodness of mating pairs are used to allocate

progenies, and the optimized progeny allocation can automatically

determine the optimal combination of features and weights to be

used in the allocation. Further, the optimized progeny allocation

can help breeders select the appropriate mating pairs because the AI

breeder can offer information on which cross combination is

prospective by showing the optimized number of progenies in

continuous values. In this study, we mainly focus on optimizing

the progeny allocation strategy as a proof of concept. Still, by

changing the simulation settings and the parameters to be

optimized, we can easily extend our framework to assist breeders

in making decisions in different types of hybridization, such as

parental selection in bi-parental/multi-parental populations.
2 Materials and methods

2.1 System design and overview of
the methods

We assumed that breeders proceed with a breeding scheme

according to the progeny allocation strategy proposed by an “AI

breeder”, a novel decision-making system in this study (Figure 1).

The breeders can obtain a set of the optimal weighting parameters,

ĥ
(t)

n o
t=0,1,2,3

(t ∈ 0, 1, 2, 3f g is a current generation number in

simulations), which is related to the allocation of progenies as in

Figure 2, by passing the information on a parent panel, i.e., marker

genotype, genetic marker effects, and recombination rates between

genetic markers, to the AI breeder. Here, we briefly describe the

overview of the framework in which the AI breeder optimizes the

strategy for the resource allocation of progenies.

After receiving the parent panel information, the AI breeder

attempts to simulate breeding schemes by defining the allocation

strategy (Figure 1). At each generation t in the simulated schemes,

the breeder first computes the weighted breeding values (WBV) to

select the parent candidates from the current generation. Then, after

determining mating pairs by the diallel crossing between the parent

candidates, given the parameter h(t), the breeder automatically

determines the number of progenies allocated to each pair b(t).

This step is realized by utilizing the matrix W(t) consisting of

features representing some goodness of mating pairs, such as
frontiersin.org
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breeding values (BV), WBV, and expected genetic variance of

progenies (GVP), which are computed from the marker genotype

and effects (Figure 2). In other words, we assumed that b(t) is

determined by applying the softmax function to the weighted

features for the allocation, W(t)   h(t), as shown in Equation 1.

b(t) =⌊N(pop)(t+1)  �  
exp(W(t)   h(t))  

oN(pair)(t)

i=1 exp(W(t)   h(t))i
⌋, (1)

where is the population size in the next generation t + 1, and x

is the floor function of an arbitrary numeric x (i.e., the maximum

integer that is equal to or lower than x). The softmax function is

used to determine the number of progenies allocated to each mating

pair in proportion to probabilities reflecting the weighted sum of the

multiple features. Here, h(t) can be interpreted as the weighting

parameters that correspond to the importance of each feature. More

detailed notations will be provided in the Progenies allocation

strategies subsection. After determining b(t), the AI breeder can

simulate the next generation based on the principle of meiosis.

Then, by repeating the parent selection and mating steps toward the

final generation of the breeding scheme, the AI breeder evaluates

the performance of the allocation strategy with h(t). Thus, the goal

of the AI breeder is to estimate h(t)
� �

t=0,1,2,3 that maximizes the

final genetic gain via simulations of the breeding process. To

optimize the weighting parameters, a black-box optimization

algorithm called StoSOO (Valko et al., 2013) was used in this

study (Figure 1). The StoSOO algorithm is an extension of the SOO

algorithm (Munos, 2011; Preux et al., 2014), which performs global

optimization of deterministic black-box functions based on a tree-

based search and can be applied to stochastic black-box functions.

Using the StoSOO algorithm with a finite number of function

evaluations can provide a global quasi-optimal solution of an
FIGURE 1

The framework to optimize decision-making in the breeding
scheme. In our framework, the breeders can obtain a set of
parameters representing the optimal allocation strategy,

ĥ
(t )

n o
t=0,1,2,3

, by passing the information on a parent panel W(0) to

the AI breeder. After receiving the parent panel information, the AI
breeder attempts to simulate breeding schemes by defining the

allocation strategy parameterized by the parameter h(t)

(t ∈ 0, 1, 2, 3f g). Breeding simulator is regarded as a black-box
function whose input is a set of allocation-related parameters

h(t)� �
t=0,1,2,3 and output is an evaluated genetic gain in the final

generation g(T) . After optimizing h(t ) by black-box optimization
algorithm called StoSOO (Valko et al., 2013), the real breeders
proceed with the breeding schemes based on the number of

progenies allocated to each mating pair b̂
(t)

n o
t=0,1,2,3

.

FIGURE 2

The resource allocation strategy of progenies developed in this study. After determining mating pairs by the diallel crossing between the parent

candidates, given the parameter h(t ) , the breeder automatically determines the number of progenies allocated to each pair b(t ) . This step is realized
by utilizing the matrix W(t) consisting of features representing some goodness of mating pairs, such as BV, WBV, and expected GVP. In other words,

we assumed that b(t ) is determined by applying the softmax function to the weighted sum of the multiple features, as shown in Equation 1.
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implicit stochastic function within the number of evaluations. To

apply StoSOO to our problem, the AI breeder performs 50 breeding

simulations with one set of h(t)
� �

t=0,1,2,3, and the empirical mean of

the 50 final genetic gains is regarded as the objective function for

StoSOO. The function evaluations are repeated 20,000 times in

StoSOO, and a set of optimized parameters ĥ (t)
n o

t=0,1,2,3
is passed

from the AI breeder to the real breeders.

In this study, we evaluated this novel optimization framework by

conducting simulation studies as a proof of concept. We prepared six

versions of the optimized allocation strategy according to the

components of W(t) as follows: (a) only BV, (b) WBV, (c) both

selection criteria (i.e., BV and WBV), (d) expected GVP in addition

to BV, (e) expected GVP in addition to WBV, and (f) expected GVP in

addition to (c) (Figure 2).We compared these six optimized strategies to

(g) the equal allocation strategy that equally allocates progenies to each

pair, that is, h(t) = 0, by conducting 10,000 breeding simulations using

the optimized ĥ
(t)

n o
t=0,1,2,3

(Figure 1). In the following results, we

abbreviate the above strategies as (a) BV, (b)WBV, (c) TBV (Two BVs),

(d) BVGVP, (e) WBVGVP, (f) TBVGVP, and (g) EQ. Here, for the BV

andWBV strategies, we only used one criterion for allocating progenies.

For simplicity, we also assumed true marker effects to compute all the

features for the allocation strategy. In other words, true QTL positions

and effects were known throughout the study. The problem of using the

true marker effects will be discussed in the Discussion section.

In this simulation study, we first simulated genome-wide

QTLs for the parent panel and the corresponding QTL effects

(Supplementary Figure S1). The selection of parent candidates,

determination of mating pairs, and allocation of progenies to each

mating pair were then repeated in sequence to move forward with a

breeding scheme until the final generation. Selection and mating

processes were carried out based on two selection criteria: BV and

WBV, and the expected GVP. We compared two breeding strategies

regarding the allocation of progenies: equal allocation and

allocation optimized by a black-box optimization algorithm,

StoSOO, as described above. These strategies were evaluated by

simulating 10,000 breeding schemes based on each strategy.

Each element of the simulation study is described in the following

subsections. First, the two selection criteria, BV andWBV, are described,

followed by the simulation of genome-wide QTLs, the selection and

mating processes in breeding schemes, and the evaluation of breeding

schemes. Because optimized allocation requires the simulation and

evaluation of breeding schemes, the method of evaluating breeding

schemes is explained before describing the optimized allocation strategy.

The calculation of the GVP required for optimized allocation is

presented at the end of this section.

Note that, in this paper, t ∈ 0, 1, 2, 3f g is a current generation

number in simulations conducted by the AI breeder, whereas t ∈
0, 1, 2, 3f g appeared in the subsequent subsections is a current

generation number in breeding schemes proceeded by real breeders.
2.2 Selection criteria

We used two selection criteria, BV (Meuwissen et al., 2001) and

WBV (Goddard, 2009; Jannink, 2010), to select parent candidates

and allocate progenies in breeding schemes since these are the two
Frontiers in Plant Science 05
typical breeding values (Supplementary Figure S1 (1)). Here, we

only used WBV for the selection step to maintain the diversity, but

we used both criteria for the allocation step.

The first criterion, BV, can be expressed as in Equation 2:

u(BV)(t) = o
M

m=1
w(t)

m am (2)

where M is the number of markers, N (pop)(t) is the number of

genotypes for a population with generation t in a breeding scheme,

u(BV)(t) is an N(pop)(t) � 1 vector of BV for generation t, w(t)
m is an

N(pop)(t) � 1 vector of marker genotype atm -th marker with scores of

− 1, 0, or 1 for generation t, and am is a true marker effect at them -th

marker. In this study, we assumed that the true marker effect am was

known, i.e., markers were identical to QTLs segregating in the

population here. BV is a criterion for expressing additive genotypic

values directly transmitted to the next generation and is often used in

conventional breeding schemes with GS (Meuwissen et al., 2001).

The second selection criterion, WBV, can be expressed as in

Equation 3:

u(WBV)(t) = o
M

m=1
w(t)

m amp
(t)
m −

1
2

(3)

where u(WBV)(t) is an N(pop)(t) � 1 vector of WBV for generation

t, p(t)m is the allele frequency at them -th marker/QTL for generation

t, and the other terms are defined in Equation 2. Emphasizing the

effects of rare alleles in each QTL, as in Equation 3, leads to the

successful maintenance of genetic diversity, thus WBV can benefit

the genetic gain in long-term breeding programs compared to BV

(Goddard, 2009; Jannink, 2010).
2.3 Simulation of the parent panel and
genome structure

Genome-wide QTLs for founder haplotypes were generated using

the coalescent simulator GENOME (Liang et al., 2007) (Supplementary

Figure S1 (2)). We assumed a diploid with the number of

chromosomes ten (2n = 20), and that there were 500 loci, including

both markers and QTLs, on each chromosome. At first, 4,000 founder

haplotypes for each chromosome were independently generated using

GENOME with the following parameters: “-pop 1 4000 -N 4000 -c 1

-pieces 100000 -rec 0.0001 -s 4000 -maf 0.01 -tree 0 -mut 0.00000001”.

Among the 4,000 loci, 500 loci whose minor allele frequency (MAF)

was equal to or larger than 0.01 were randomly selected. Subsequently,

2,000 founders were generated by sampling two haplotypes from all

founder haplotypes with replacement. These founders were randomly

mated for one generation to simulate the pre-breeding materials of the

2,000 genotypes. These procedures for simulating the genetic resources

are similar to those in the R package “BreedingSchemeLanguage” by

Yabe et al (Yabe et al., 2017). From these simulated genetic resources,

N(pop)(0) = 250 genotypes were selected for the parent panel of a

breeding scheme so that these 250 genotypes represented the

simulated genetic resources in terms of genetic diversity. We applied

the k-medoids method to the marker genotypes of the pre-breeding

material using the “pam” function of the R package “cluster” version
frontiersin.org
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2.1.2 (Maechler et al., 2021). In the k-medoids method, after clustering

the pre-breeding materials into 250 groups, we selected the medoids as

the representative genotypes from each group. This parent panel was

regarded as generation t = 0 in a breeding scheme. Here, the parent

panel consisted of a relatively small number of genotypes and was also

genetically close to founders compared to usual breeding populations

used in programs for major crops. These simulation settings, including

the assumption for the parent panel, are a little apart from situations in

large-scale breeding for major crops but can be justified when we

assume the breeding schemes for the NUS whose breeding has not

been promoted in the past.
2.4 Simulation of QTLs and
genotypic values

In simulating QTLs and phenotypes, we assumed quantitative traits

with a simple genetic architecture as target traits, as described below

(Supplementary Figure S1 (3)). First, among the 500 loci simulated in

the previous subsection, 2 loci per chromosome were randomly selected

as QTLs (i.e., a total ofM(QTL) = 20 QTLs). This number of QTLs was

determined assuming the situation where quantitative traits controlled

by the relatively small number of QTLs still remain as target traits in

small-scale breeding for the NUS. QTL effects were then sampled from

the normal distribution, as shown in Equation 4.

p(a(QTL)) ∼ MVN 0,
1

M(QTL) IM(QTL)

� �
(4)

where a(QTL) is an M(QTL) � 1 vector of QTL effects and IM(QTL)

is an M(QTL) �M(QTL) identity matrix. Here, QTL effects were

assumed to be additive for simplicity. The true additive genotypic

values u(TGV)(0) for the parent panel were then simulated using

Equation 2, where each marker was replaced by each QTL

(M = M(QTL),   wm = w(QTL)(0)
m ,  am = a (QTL)

m ; w(QTL)(0)
m is an N(pop)(0)

�1 vector of genotype scores at m -th QTL for the parent panel).

Thus, u(TGV)(0) = u(BV)(0) when the true marker effect am is known

as the setting in this study. Since we used the true marker effects, a

heritability was assumed to be 1 throughout the study.
2.5 AI-assisted breeding scheme

The breeding scheme in this study was carried out according to

the following steps (Supplementary Figure S1 (4)). Here, we

assumed small-scale plant breeding programs with recurrent

selection in mind for NUS for simplicity and due to the

computational limitations. Also, we did not produce inbred lines

as usually done in breeding schemes for major autogamous crops.

However, if the crop is vegetatively propagated, there is no need

to develop inbred lines, and even for autogamous crops with

seed propagation, the scheme below can be considered as a

hybridization phase, and fixation can be proceeded afterwards. In

any case, changing the settings of the following breeding scheme

will lead to the extension of our framework for various types of

breeding programs.
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1. Select parent candidates (Supplementary Figure S1 (4-1))

Based on the order of increasing WBV computed using the true

marker (QTL) effects a(QTL) for the current generation t   (t ∈
0,   1,   2,   3f g), the top N (sel)(t) genotypes were selected as parent

candidates for the next generation. In this study, we assumed

N(sel)(t) was constant over generations, i.e., N (sel)(t) = N (sel) = 15. We

used only WBV for the selection step in this study because selecting

parents based on BV often failed to maintain the genetic diversity of

the population when we chose a high selection intensity in the

optimized allocation strategy.

2. Determine mating pairs for the next generation (Supplementary

Figure S1 (4-2))

From the selected N(sel)(t) parent candidates, diallel crossing,

including selfing, was assumed to determine the mating pairs for the

next generation, that is, N(pair)(t) = N(sel)(t)(N(sel)(t)+1)
2 = 120 pairs were

prepared for crossing.

3. Allocate progenies to each mating pair (Supplementary

Figure S1 (4-3))

The following two strategies were used to allocate progenies to

each mating pair determined in Step 2, and then a crossing table was

created. Both strategies generated N (pop)(t+1) progenies for the next

generation. In this study, we assumed N(pop)(t+1) was also constant

over generations, i.e., N(pop)(t+1) = N (pop) = 250.

a. The optimized allocation method

One strategy was the optimized allocation method developed in

this study, which applied the softmax function to the weighted sum

of the multiple features for the allocation. For more details, please

refer to the Progenies allocation strategies subsection.

b. Equal allocation method

We also prepared an equal allocation method that allocated

N(pop)(t+1) progenies equally to theN (pair)(t) mating pairs. Thus, three

progenies were allocated to each of the 10 mating pairs with the

highest expected WBV of progeny, and two progenies were

allocated to each of the remaining 110 mating pairs.

4. Generate progenies for the next generation (Supplementary

Figure S1 (4-4))

According to the crossing table created in Step 3, two gametes

were generated for each mating pair, considering the recombination

between markers. Recombination rates between markers were

computed using the Kosambi map function (Kosambi, 1943;

Zhao and Speed, 1996) based on the linkage map generated by

GENOME. These two gametes were then combined to create one

new progeny, resulting in a new population (with generation t + 1)

of N(pop)(t+1) progenies.

5. Repeat the parent selection and mating process

Steps 1-4 were repeated four times until the population reached the

final generation, i.e., t = T − 1 where T is the final generation number.

Finally, the results for each strategy were evaluated using the

true additive genotypic values u(TGV)(T) for the latest population

with generation T . Here, the final generation was set as T = 4 in this

study, which was determined assuming the situation where we

needed to quickly achieve high genetic gains in small-scale breeding

schemes as one example. Achieving improvements in a short-term

breeding scheme holds substantial importance when considering

the rapid improvement required in NUS breeding.
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2.6 Evaluation of the outcome of
breeding schemes

In one breeding scheme, the true additive genotypic value u(TGV)(t)

was computed for each generation. (Supplementary Figure S1 (5)).

Then, the top N(top)(t) = 5 genotypes were chosen in the order of

increasing u(TGV)(t), and the empirical mean of the u(TGV)(t) for these

N(top)(t) genotypes, u(top)(t), was computed to evaluate the population

maximum for the breeding strategy. Here, we chose N(top)(t) = 5

genotypes for the evaluation to represent the top individuals for

developing a new variety and to control the stochastic variation

between simulations to some extent. For a given simulation dataset

of the parent panel, we conducted 10,000 different breeding schemes

for each strategy and evaluated the empirical mean of the u(top)(t) using

these 10,000 simulation results. The simulation and its evaluation were

repeated for 10 replicates of the phenotype simulation with different

QTL positions and effects.
2.7 Progenies allocation strategies

In this study, we developed a novel breeding strategy to quasi-

optimize each feature regarding the allocation of progenies

(Supplementary Figure S1 (6) and Figure 2). In other words, we

determined the number of progenies allocated to each mating pair at

generation t , b(t), by applying the softmax function to the weighted

sum of the multiple features instead of the equal allocation strategy

described above, as in Equation 1. Again, b(t) is anN (pair)(t) � 1 vector

representing the number of progenies allocated to each mating pair at

generation t , W(t) is an N(pair)(t) � Q matrix of Q different multiple

features for an average progeny of each mating pair (e.g., BV, WBV, or

the genetic variance of progenies in a subsequent generation (GVP) for

each pair), and x is the floor function (i.e., the maximum integer that is

equal to or lower than x). In the softmax function, we can convert a

vector of some weighted goodness for each mating pair,W(t)   h(t), to a

vector of probabilities reflecting the relative value of each element by

allocating more progenies to better pairs. Here, h(t) is a Q� 1 vector

required for determining b(t), which corresponds to how much

importance is given to each feature. Since the final genetic gain, g(T),

can be represented as the output of the black-box function f whose

input is a set of h(t), i.e., g(T) = f ( h(t)
� �

t=0,1,2,3), the main goal of this

strategy is to estimate h(t) that maximizes g(T) via breeding simulations

and the black-box optimization algorithm. When h(t) = 0, the softmax

allocation strategy based on Equation 1 is the same as the equal

allocation strategy. The final genetic gain was defined as the

improvement in the true genotypic values of the top N (top)(t) = 5

genotypes of the final population compared with those of the parent

panel, that is, g(T) = u(top)(T) − u(top)(0).
2.8 Optimization of h(t) to maximize the
final genetic gain

In this study, we used the StoSOO algorithm (Valko et al., 2013)

to optimize the parameter vector h(t) (Supplementary Figure S1
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(7)). The StoSOO algorithm is an extension of the SOO algorithm

(Munos, 2011; Preux et al., 2014), which performs global

optimization of deterministic black-box functions based on a tree-

based search and can be applied to stochastic black-box functions.

The StoSOO algorithm with a finite number of function evaluations

can provide a global quasi-optimal solution of an implicit stochastic

function within the number of evaluations. To apply StoSOO in our

study, we performed 50 simulations using one set of h(t)
� �

t=0,  1,2,3,

and the empirical mean of the final genetic gains g(T) for these 50

simulations was used as the objective function for StoSOO. Here, we

defined the domain of definition as ½0,   2� and set 1 as an initial

parameter for each element of h(t)
� �

t=0,  1,2,3. The function

evaluations were repeated 20,000 times, giving us quasi-optimal

solutions, ĥ
(t)

n o
t=0,  1,2,3

, for this optimization problem. We then

performed 10,000 simulations based on the estimated ĥ
(t)

n o
t=0,  1,2,3

to evaluate each optimized strategy developed in this study, as

described in the Evaluation of the outcome of breeding

schemes subsection.
2.9 Selection criteria and genetic diversity
of progenies as the candidates for W(t)

As the candidates for W(t) to compute b(t), we used the two

selection criteria, BV and WBV, and the expected GVP for each

mating pair (Supplementary Figure S1 (8)). The BVs and WBVs of

the parent candidates were computed using Equations 2 and 3, and

the mean of the selection criteria of the two parents for each mating

pair was used as one column vector of W(t). This vector,

representing BV or WBV for each mating pair, was the same as

that for the average progeny of each mating pair in this study

because we only assumed additive QTL effects. To compute the

GVP, we used Equation 5, based on the idea proposed by Lynch and

Walsh (Lynch and Walsh, 1998; Zhong and Jannink, 2007;

Lehermeier et al., 2017):

v(t)n =
1
4

aTC(nM)a + aTC(nP)a
n o

(5)

where v(t)n is an expected GVP for mating pair n with generation

t , a is a vector of the true marker effects, C(nM) and C(nP) areM �M

covariance matrices caused by the segregation of maternal parent

nM and paternal parent nP of mating pair n, respectively. A diagonal

(m,m) element of C(nM), C(nM)
mm , is 0 if an m -th marker of nM is

homozygote, and 1 if otherwise (i.e., heterozygote), and a non-

diagonal (m1,m2) element of C(nM) , C(nM)
m1m2 , is 0 if the m1 -th or m2

-th marker of nM is homozygote, 1 − 2rm1m2
if both m1 -th and m2

-th markers are heterozygote without recombination, and. if

otherwise (i.e., heterozygote with recombination). Here, rm1m2
is

the recombination rate between the m1 -th and m2 -th markers. In

this study, after computing the expected GVP for all mating pairs,

v(t) was used as one column vector of W(t).

We prepared six different strategies for the components of W(t)

and compared them to the non-optimized strategy as written in the

System Design subsection, i.e., (a) BV, (b) WBV, (c) TBV, (d)

BVGVP, (e) WBVGVP, (f) TBVGVP, and (g) EQ. Even when we

used only one criterion for the allocation of progenies in BV and
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WBV strategies, we optimized the weighting parameter

h(t)
� �

t=0,  1,2,3 by focusing on the optimization of the gradient of

the number of progenies allocated to each pair against the relative

value of that criterion.
3 Results

3.1 Evaluation of convergence conditions
of the StoSOO algorithm

For the optimization of the allocation strategy to work, it was

necessary to confirm that the solution obtained from the algorithm

used for optimization, the StoSOO algorithm, converged stably.

Thus, we first evaluated the convergence of the solution using the

StoSOO algorithm for each strategy. As described above, the AI

breeder conducted 50 simulations of the breeding scheme for one

function evaluation and repeated 20,000 function evaluations to

obtain parameter sets that were quasi-optimized by the StoSOO

algorithm. We recorded the quasi-optimized parameter sets for

each evaluation step of the objective function and evaluated the

corresponding function values. For each of the six optimized

allocation strategies, the change in the function values was plotted

and compared with the function value based on the equal allocation

strategy (Supplementary Figure S2).

For all strategies on the components of W(t), the function value

increased almost monotonically and reached the quasi-optimized

function value after the 20,000 evaluations, which was much larger

than that under the equal allocation strategy (Supplementary Figure

S2). These results indicated that StoSOO successfully improved the

expected final genetic gain evaluated by the simulations and optimized

the parameter set h(t)
� �

t=0,1,2,3, resulting in the superiority of the

optimized allocation strategy over the equal allocation strategy.
3.2 Genetic gains over four generations

For all strategies on the components of W(t), we compared the

optimized and equal allocation strategies by plotting the change in the

genetic gain for each generation (Figure 3A). We then defined genetic

gain in each generation as the difference between the empirical means

of the true genotypic values of the top N (top)(t) = 5 genotypes in the

current generation (generation t) and the parent panel (generation 0).

Using the optimized allocation strategies obtained after 20,000 function

evaluations, we evaluated the expected genetic gains of the seven

strategies, including the six optimized and the equal allocation

strategies, based on 10,000 breeding simulation results using one

replication for the quantitative phenotype simulation.

In the final generation, t = 4, all the strategies with optimized

allocations showed higher genetic gains than the equal allocation

strategy (Figure 3A). Strategies that considered GVP outperformed

those without GVP in the final generation, while the strategies that

only considered the selection criteria BV and WBV showed little

difference in genetic gains.

In the first generation, t = 1, the strategies that considered GVP

showed lower genetic gains than those without GVP (Figure 3A).
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After the second generation, t = 2, strategies with GVP overtook

those without GVP, increasing their advantage over the other

strategies through the final generation.
3.3 Genetic gains across different
simulation repetitions

To assess the characteristics of each strategy in more detail, we

computed the cumulative distribution functions (CDFs) of genetic
A

B

C

D

FIGURE 3

Comparison of the seven strategies (six optimized and one non-
optimized) in four ways. (A) Change in the expected genetic gains
over four generations. (B) Genetic gains across different simulation
repetitions. (C) Genetic gains in the final generation using ten
replications for the phenotype simulation. (D) Change in the genetic
variances over four generations. In all Figures, we compared the
seven strategies: EQ: equal allocation (ABD: black solid, C: grey), BV:
optimized allocation based on BV (ABD: orange dashed, C: yellow),
WBV: optimized allocation based on WBV (ABD: blue dashed, C:
light blue), TBV: optimized allocation based on BV and WBV (ABD:
red dashed, C: light pink), BVGVP: optimized allocation based on BV
and GVP (ABD: orange solid, C: yellow), WBVGVP: optimized
allocation based on WBV and GVP (ABD: blue solid, C: light blue),
and TBVGVP: optimized allocation based on BV, WBV, and GVP
(ABD: red solid, C: light pink). In (A-D), generations 0 and 4
correspond to the populations in the initial and final generations,
respectively. In addition, generations 1–3 correspond to populations
in the middle of the breeding scheme. In Figure (B), the horizontal
axis shows the final genetic gain of an individual, whereas the
vertical axis represents the percentile of the simulation repetitions.
As shown in (C), for each optimized strategy, the weighting
parameter was optimized based on 4,000 function evaluations.
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gain in the final generation, t = 4, for each strategy based on 10,000

simulation repetitions. In Figure 3B, the horizontal axis represents

the final genetic gain of an individual, whereas the vertical axis

represents the percentile of simulation repetitions. Because the 1st

and 99th percentiles correspond to the worst and best performances

within the 10,000 simulation repetitions, respectively, the more a

CDF curve of a strategy moves toward the right and downward in

the graph, the better the performance of the strategy is.

Again, the optimized strategies outperformed the equal

allocation strategy; among the optimized strategies, those with

GVP showed better performance than those without GVP in

terms of the CDFs (Figure 3B). The CDF curves for the

optimized strategies were parallel to the vertical axis at the

location where the genetic gain was approximately 1.15,

suggesting a local optimum within the simulation repetitions. In

the optimized strategies with GVP, about 50% of the breeding

simulations achieved genetic gains above this local optimum

(BVGVP, 55.1%, WBVGVP, 47.6%, TBVGVP, 49.4%), which

were much higher than those in the equal allocation strategy (EQ,

1.85%) and strategies without GVP (BV, 16.0%, WBV, 16.4%,

TBV, 30.1%).
3.4 Genetic gains in the final generation
using ten replications of the
phenotype simulation

We also evaluated the genetic gains in the final generation, t = 4

, using ten replications of the phenotype simulation to confirm that

the optimized strategies showed better results than the equal

allocation strategy for the traits with different quantitative trait

loci (QTL) positions and effects (Figure 3C). When simulating

phenotypes for different traits, we changed QTL positions and their

effects, but the number of QTLs and distribution of QTL effects

were fixed. Also, the heritabilities were assumed to be 1 for all ten

replications since the true marker effects were utilized for

the optimization.

To reduce the computational time for the optimization in

evaluating ten replications of the phenotype simulation,

optimized (or quasi-optimized) allocation strategies were

determined after 4,000 function evaluations. The number of

function evaluations was determined to ensure that the function

value reached a certain level, although it did not converge, and to

reduce the computation time based on the results in the subsection

that evaluated the convergence conditions of the StoSOO. Here, the

StoSOO algorithm does not necessarily have to be converged since

the evaluation for the ten replicates of phenotype simulation

was conducted to prove that the optimization algorithm could

improve the genetic gain to some extent compared to the non-

optimized strategy.

Even when the QTL positions and effects of the target trait were

changed, the optimized strategies consistently outperformed the

equal allocation strategy, and the strategies with GVP outperformed

those without GVP (Figure 3C). When we evaluated the

improvement rate in the final genetic gain of each optimized

strategy compared to the equal allocation strategy using ten
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replications of the phenotype simulation, a similar trend was

observed between the strategies with and without GVP (Table 1).

In addition, the optimized strategies at least improved the genetic

gain compared to the equal allocation for all ten replications. In

particular, the final genetic gains for TBVGVP improved by 7.22–

12.4% compared to those for the equal allocation strategy within

just four generations (Table 1).
3.5 Genetic diversity over four generations

We compared the optimized and equal allocation strategies in

genetic diversity across generations (Figure 3D). The genetic

diversity of a population in each generation was calculated as the

genetic variance of the true genotypic values in the population.

First, in t   = 1, all the optimized strategies, except WBVGVP,

showed lower genetic variances than those in the parent panel, t = 0

(Figure 3D). From t = 2 to t = 4, genetic diversity was preserved in

all strategies compared to t = 0. In these generations, strategies with

GVP maintained higher genetic variance than those without GVP

and the equal allocation strategy. The difference between the

strategies with or without GVP was most observed at t = 3,

followed by a sharp decrease in genetic variance for the former

strategies through the final generation, t = 4.

In contrast, strategies using different selection criteria (BV or

WBV) showed little difference in genetic variance (Figure 3D). The

strategy using only WBV as a feature for the allocation appeared to

maintain a higher genetic variance than those using BV or both BV

and WBV. However, the difference was much smaller than between

strategies with or without GVP.
3.6 Optimized weighting parameters for
each strategy

After the 20,000 function evaluations, we obtained a set of

optimized weighting parameters h(t)
� �

t=0,  1,2,3 for each allocation

strategy (Table 2; Supplementary Tables S1, S2). A large value of h(t)

indicates a large weight of the feature for the allocation.

As for the strategies without GVP, the weighting parameters in

generation t = 1, h(1), showed the smallest values among all

generations, and the weights in the latter generations increased
TABLE 1 Minimum, mean, and maximum improvement rate in the final
genetic gain of the optimized strategies compared to equal allocation
strategy among ten different target traits (%).

Method Min (%) Mean (%) Max (%)

BV 0:00 2:97 4:89

WBV 2:07 2:88 3:89

TBV 2:11 3:52 5:86

BVGVP 6:40 8:63 12:4

WBVGVP 6:99 8:28 9:95

TBVGVP 7:22 9:33 12:4
fr
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through the final generation (Table 2, Supplementary Tables S1,

S2). Using strategies with GVP, the weighting parameters for the

selection criteria (BV and WBV) showed higher values in

generation t = 1 than in other generations. The tendency of the

selection criteria to increase in later generations was unchanged in

the strategies with GVP, and the weights for GVP were similar to

those of other selection criteria across generations.
3.7 Optimized progeny allocation in
generation t = 0

Finally, we present the optimized number of progenies allocated

to each mating pair in generation t = 0, b(0). Here, we compared b(0)

in breeding schemes based on the equal and the six optimized

allocation strategies (Supplementary Table S3). The trend of which

cross is more preferred was almost the same between the six

optimized strategies, but the trend of how progenies are allocated

to crosses was quite different. For example, the optimized strategies

without GVP, such as WBV and TBV, tended to allocate more

progenies to the best pair (G0_0669 x G0_0669). In contrast, the

strategies with GVP, such as BVGVP and WBVGVP, tended to

allocate progenies to many pairs so that the genetic diversity was

maintained. From the results, we can see which mating pair was

more emphasized in each strategy in not discrete but continuous

ways. Thus, even if it is not practical for real breeders to carry out

the exact allocation proposed by the AI breeder, the information on

the optimized continuous progeny allocation will help breeders

select appropriate mating pairs.
4 Discussion

In this study, we utilized the StoSOO algorithm to optimize the

allocation of progenies and obtained quasi-optimal solutions for the

set of weighting parameters h(t) given a finite number of function

evaluations. Utilizing these quasi-optimized weighting parameters

for the allocation strategy can be justified because the true genetic

gain corresponding to each set of parameters almost increased as

StoSOO conducted more function evaluations (Supplementary

Figure S2). Thus, when applying this novel optimization approach

to actual breeding schemes, the appropriate number of function

evaluations will be determined according to the computational

resources, and within that number of evaluations, the quasi-
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optimized parameters obtained from StoSOO will be used to

allocate progenies.

After optimizing the weighting parameters using StoSOO, we

compared the optimized allocation strategies with equal allocation

strategies. The simulation results showed that the final genetic gain

was higher in the following order: optimized strategies with GVP

(BVGVP, WBVGVP, TBVGVP), optimized strategies without GVP

(BV, WBV, TBV), and non-optimized strategy (EQ) (Figures 3A,

C). These results suggest that the developed optimization

framework for the progeny allocation is efficient in conventional

GS and that considering the genetic diversity for later generations in

the optimization framework can further improve the final genetic

gains even in mid-term breeding programs (T = 4). In particular,

the superiority of the optimized strategies with GVP was

remarkable because those strategies guaranteed a certain level of

the final genetic gains compared to other strategies, even when

random factors, such as recombination between markers and

segregation of alleles, are not realized in a real breeding scheme

as they are in the optimization process (Figure 3B). Thus, because

the optimized strategies with GVP are expected to consistently

produce better genotypes than conventional GS, breeders can easily

adopt our novel optimization framework in actual breeding

schemes. Also, even when breeders find it difficult to implement

the progeny allocation strategy proposed by the AI breeder as it is in

actual breeding schemes, they can use progeny allocation results to

select mating pairs as the results provide the information on which

cross is likely to contribute to the production of better genotypes in

the future generation (Supplementary Table S3).

On the other hand, the impact on the final genetic gain caused by

the type of criteria (BV, WBV, or both) used for allocation was much

smaller than that caused by the existence of GVP (Figures 3A, C).

BecauseWBV was always utilized in the selection step in this study, we

successfully maintained the genetic diversity throughout the breeding

scheme regardless of the allocation strategy (Figure 3D), which may

reduce the superiority ofWBV in the allocation step against BV.We do

not show the results here, but in our preliminary simulation

experiments with different settings, when BV was utilized in the

selection step, the final genetic gains drastically decreased compared

to when WBV was utilized for selection, regardless of the allocation

strategy. Thus, since the choice of selection criteria in the selection step

has a more significant impact on the final genetic gain than in the

allocation step, it is strongly recommended that WBV instead of BV be

used in the selection step when applying the developed method to a

breeding scheme.
TABLE 2 Optimized weighting parameters h(t) in different generations t = 0,…, T 1 for BV and BVGVP strategies.

Generation (t ) BV BVGVP

BV GVP BV GVP

0 1:00 − 1:00 0:33

1 0:33 − 1:00 1:00

2 1:67 − 1:67 1:67

3 1:89 − 1:67 1:67
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When focusing on the genetic gains in t = 1, the optimized

strategies with GVP showed lower genetic gains than those without

GVP (Figure 3A). In contrast, the optimized strategies with GVP

showed larger genetic variances than those without GVP from t = 1

(Figure 3D). These results suggest that the optimized strategies with

GVP were able to attain higher genetic gains in the final generation

by their success in maintaining genetic diversity throughout the

schemes and converting it into genetic gain toward the final

generation, even in mid-term breeding programs (T = 4). When

focusing on the optimized parameters for the strategies with GVP,

the optimized weights became larger after t = 2, which meant that

the selection intensity automatically became higher in later

generations (Table 2). In addition, when focusing on the

optimized weighting parameters for the strategies without GVP,

the optimized weight for BV in t = 1 was smaller than that for

WBV. This may be because the larger weight of BV in the earlier

generation led to less diversity, and the optimizer controlled the

selection intensity by adjusting the weight to avoid such a situation.

Thus, the developed framework to optimize the allocation strategy

of progenies can automatically adjust the weights in each generation

in an interpretable form for breeders and is expected to deal with

various situations, such as breeding programs with varying

deadlines T , by estimating proper weights for each feature for the

allocation. In other words, although we assumed the situation close

to small-scale plant breeding schemes with a relatively small

number of breeding cycles and a small population size as one

example of the simulation settings in this study, we can easily apply

our novel framework to larger-scale plant breeding programs, and

further animal breeding programs, by considering the assumed

conditions such as mating constraints and changing the simulation

settings proceeded by the AI breeder. Also, although we focused on

the allocation strategies to prove that our future-oriented

simulations can optimize the decision-making in breeding, we can

further extend our framework to consider the optimization of other

strategies, such as selection intensity or selection criteria used in the

selection step by introducing parameters regarding those strategies

to the simulation settings.

Next, we discuss the validity of the optimization method from

the viewpoint of the genetic variance (Figure 3D). Since we assumed

a genetic architecture with a relatively small number of QTLs

instead of the infinitesimal model, the reduction in genetic

variance was mainly influenced by the fixation of each QTL. In

this study, common alleles were fixed in earlier generations, while

the allele frequencies of rare positive alleles increased and reached

around 0.5 from t = 2 to t = 3 (Supplementary Figure S3), resulting

in an increase in genetic variance until t = 3 (Figure 3D).

Subsequently, particularly in the optimized strategies with GVP,

fixing these rare alleles from t = 3 to the final generation t = 4 led to

a great increase in genetic gains compared to the other strategies

(Supplementary Figures S3D–F). This result seems to suggest that

the optimization algorithm aimed to solve the combinatorial

problem of maximizing the probability of obtaining the ideal

genotype with more positive alleles in the final generation.

However, the black-box optimization algorithm itself did not

specifically address the combinatorial problem and simply

focused on maximizing the final genetic gain, resulting in only
Frontiers in Plant Science 11
the above phenomenon of a rapid increase in genetic gain towards

the final generation. Therefore, our framework is expected to be

applicable to traits under the infinitesimal model that cannot be

addressed as a combinatorial problem.

The developed future-oriented simulation-based framework

achieved much higher final genetic gains than the GS method

without optimized allocation of progenies. In particular, the final

genetic gains for TBVGVP improved by more than 9% on average

compared with those for the non-optimized equal allocation

strategy (Table 1). This improvement was quite large for the

genetic gains in just four generations because we compared the

developed framework to the GS based on WBV (Goddard, 2009;

Jannink, 2010), one of the most promising selection strategies in

mid- and long-term breeding programs to date, not phenotypic

selection or conventional GS based on BV (Meuwissen et al., 2001).

Also, since the optimization algorithm was forced to terminate in

the middle for the results of the ten replicates for the phenotype

simulation due to the computational limitation, we may still

underestimate our optimized results and can expect higher

improvement than that obtained in Table 1. However, it is

important to note that we used true marker effects to compute

the selection criteria and GVP in this study. Although breeding

strategies are often proposed based on the true QTL effects to

simply provide a key idea (Kemper et al., 2012; Daetwyler et al.,

2015; Goiffon et al., 2017; Müller et al., 2018; Moeinizade et al.,

2019), in actual breeding schemes, we cannot know such true

marker effects and must use estimated marker effects based on

GP models. Because the optimization algorithm developed in this

study can be largely influenced by the estimation accuracy of GP

models, developing a robust method to optimize the allocation

strategy in such cases is crucial in future studies. The other

important factor when assuming real breeding schemes is the

timing of GP model updates. If we can appropriately update the

GP model, the estimation accuracy of the marker effects and

optimization performance of the allocation strategies will be

improved, which will directly lead to further improvement in the

final genetic gains. In addition, we can deal with long breeding

schemes by conducting appropriate model updates. Thus, we will

further investigate the potential of our optimization framework by

assuming real breeding schemes with the factors discussed above.

Genomic selection is a promising technique that contributes to

the acceleration of breeding. In this study, we introduced and

developed a novel framework that can upgrade conventional GS

in breeding schemes by optimizing the allocation strategy of

progenies via future-oriented simulations. To optimize the

allocation strategy, we parameterized the strategy via softmax

conversion by utilizing the selection criteria and expected genetic

variance of progenies. From the simulation results, our novel

framework with the optimized allocation greatly outperformed

the non-optimized strategies, especially when we added the

genetic variance of progenies to the algorithm. Thus, this future-

oriented optimization framework for breeding schemes can

contribute to the acceleration, high efficiency, and optimization of

plant breeding at the hybridization stage, which will lead to the

optimization of various kinds of decision-making in plant and

animal breeding.
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