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The complete mitochondrial
genome of Aglaia odorata,
insights into its genomic
structure and RNA editing sites
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Jianqiang Li3,4, Laixin Luo3,5* and Yingbin Li1*
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Resource in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming,
Yunnan, China, 2Sanya Institute of China Agricultural University, Sanya, Hainan, China, 3Hainan Seed
Industry Laboratory, Sanya, Hainan, China, 4Department of Plant Pathology, Beijing Key Laboratory of
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Aglaia odorata, native to Guangdong, Guangxi, and Hainan provinces in China,

has long been utilized as an herbal remedy in ancient China. In this study, we

assembled and annotated the complete mitochondrial genome (mitogenome) of

A. odorata, which spans a total length of 537,321 bp. Conformation of the A.

odorata recombination was verified through PCR experiments and Sanger

sequencing. We identified and annotated 35 protein-coding genes (PCGs), 22

tRNA genes, and 3 rRNA genes within the mitogenome. Analysis of repeated

elements revealed the presence of 192 SSRs, 29 pairs of tandem repeats, and 333

pairs of dispersed repeats in the A. odorata mitogenome. Additionally, we

analyzed codon usage and mitochondrial plastid DNAs (MTPTs). Twelve MTPTs

between the plastome and mitogenome of A. odorata were identified, with a

combined length of 2,501 bp, accounting for 0.47% of the mitogenome.

Furthermore, 359 high-confidence C to U RNA editing sites were predicted on

PCGs, and four selected RNA editing sites were specially examined to verify the

creation of start and/or stop codons. Extensive genomic rearrangement was

observed between A. odorata and related mitogenomes. Phylogenetic analysis

based on mitochondrial PCGs were conducted to elucidate the evolutionary

relationships between A. odorata and other angiosperms.
KEYWORDS

Aglaia odorata, mitochondrial genome, recombination, MTPT, RNA editing
Abbreviations: PCR, Polymerase chain reaction; SSR, Simple sequence repeat; ML, Maximum-likelihood; BI,

Bayesian inferences; NCBI, National Center for Biotechnology Information; BLAST, Basic Local Alignment

Search Tool; PCGs, Protein-coding gene sequences; MTPT, Mitochondrial plastid; DNA lncRNA, Long non-

coding RMA.
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Introduction

Aglaia odorata Lour. belongs to the Aglaia genus within the

Meliaceae family. It is native to Guangdong, Guangxi and Hainan

provinces in China, as well as various Southeast Asian countries

(Zhang et al., 2020b). This plant is commonly found in sparsely

forested areas and shrubbery within low-altitude mountain regions

(Liu et al., 2014). In ancient China, A. odorata has traditionally been

employed as an herbal remedy for treating heart diseases, bruises,

traumatic injuries, and fever (Yang et al., 2022). Modern

pharmacological studies indicate that A. odorata exhibits anti-

cancer, anti-inflammatory, antibacterial, and antiviral activities

(Inad et al., 2001). Despite its economic value, there has been

limited research on it, and the genomic information of this species is

still lacking at present. So far, in various databases such as the

GenBank database, only the chloroplast genome resource is

available (accession number: NC_048994.1).

Mitochondria play a pivotal role in synthesizing and converting

energy for diverse cellular physiological processes, rendering them

essential for plant growth and development (Ye et al., 2017). They

transform biomass energy into chemical energy via

phosphorylation and participate in cellular processes such as cell

division, differentiation, and apoptosis (Kroemer and Reed, 2000;

van Loo et al., 2002; Bonora et al., 2014). Mitochondria stand as

distinctive cellular structures separate from the nucleus, housing

their own genome. This genetic material is inherited in a haploid,

asexual, and maternal fashion (Cheng et al., 2021). Following the

endosymbiotic theory, mitochondria’s origins trace back to the

mutualistic relationship between alpha-bacteria and archaea-

derived host cells, eventually evolved into integral organelles

within eukaryotic cells (Roger et al., 2017). While mitogenomes,

like to plastidial genomes, are maternally inherited and encompass a

smaller gene set, significant evolutionary distinctions exist between

these two genomes. Compared to the mitogenomes, the plastidial

genomes are relatively compact and remarkably conserved. Plant

mitogenomes display significant size variation, spanning from 60 kb

to over 11 Mb among different species, a considerably broader range

than what is observed in plastid genomes (Sloan et al., 2012;

Skippington et al., 2015). Higher plant mitogenomes exhibit

linear, circular, complex branching and reticular structures,

whereas the majority of plant plastidial genomes have a circular

structure (Cheng et al., 2017; Kozik et al., 2019; Fischer et al., 2022).

Plant mitogenomes tend to exhibit higher mutation rates in

comparison to nuclear genomes, a consequence attributed to the

absence of robust DNA repair systems (Gualberto et al., 2014;

Morley et al., 2019). This higher mutation rate contributes to

rearrangements, duplications, and the generation of subgenomic

configurations within the mitogenome. Furthermore, certain plant

mitogenomes have assimilated genes through horizontal gene

transfer from external organisms. This occurrence is especially

prevalent in higher plants, where they have incorporated several

plastid sequences from neighboring chloroplasts. This evolutionary

process has transpired over an extended timeframe and is likely

ongoing (Choi and Park, 2021; Garcia et al., 2021; Lin et al., 2022).

Currently, the availability of mitogenome resources for the plants

is limited.
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In this study, we assembled and annotated the mitogenome and

plastidial genome of A. odorata, analyzed the codon usage, repeated

elements, and mitochondrial plastid DNAs (MTPTs). We also

analyzed the RNA editing sites in mitochondrial PCGs. Lastly, we

inferred the phylogenetic relationships of A. odorata and other

angiosperms based on mitochondrial PCGs. As the first reported

mitogenome within genus Aglaia, this study provides valuable

reference for mitogenome analysis in Aglaia species. Additionally,

it offers important insights into RNA editing, mitochondrial

genome evolution, genome rearrangement, and phylogenetics of

angiosperms. Furthermore, we also provide reliable genomic

resources for studying the organelle genomes of Meliaceae plants.
Materials and methods

Plant sampling, DNA extracting
and sequencing

The fresh leaves of A. odorata were collected in Sanya, Hainan,

China. These specimens have been deposited in our lab (Seed

Health Centre of China Agricultural University, Sanya Institute of

China Agricultural University and Yunnan Agricultural

University). Genomic DNA was extracted using the Tiangen

Biotech DNA kit (Beijing). For library construction, we utilized

the NEBNext® library building kit with an insert size of 350 bp. The

constructed DNA library was sequenced on the NovaSeq 6000

platform at Benagen (Wuhan, China). To ensure data quality, we

applied Trimmomatic (Bolger et al., 2014) to remove low-quality

sequences, including those with a quality value (Q) of less than or

equal to 5, which accounted for more than 50% of the total bases, as

well as sequences containing more than 10% “N” bases.

Furthermore, the plant sample used for Illumina sequencing was

also subjected to Oxford Nanopore sequencing based on

PromethION devices. Purified DNA was prepared for long-read

sequencing following the protocol outlined in the SQK-LSK109

genomic sequencing kit (ONT, Oxford, UK).
RNA extracting and sequencing

For long non-coding RNA (lncRNA) extraction, total RNA was

isolated from fresh A. odorata leaves using a high-quality RNA

extraction kit (TRIzol® Reagent, Thermo Fisher Scientific,

Waltham, MA, USA), following the manufacturer’s instructions.

The extracted RNA was reverse-transcribed into cDNA using

random primers, and rRNA was subsequently removed. The

processed cDNA was fragmented and constructed into a library

with an average length of 500 bp. The integrity and concentration of

the RNA were assessed using Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA) and NanoDrop

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA). The enriched lncRNA was then used to construct a cDNA

library employing a protocol compatible with lncRNA sequencing.

The library was subsequently sequenced using an Illumina HiSeq

platform. Quality control measures were implemented to filter out
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low-quality sequences, and bioinformatics analyses were performed

on the resulting data to identify and characterize lncRNAs.
Organelle genome assembly

For plastome assembly, we utilized GetOrganelle v1.7.4.1 with

the following parameters: ‘-R 15 -k 21,45,65,85,105 -F embplant_pt’

to assemble the Illumina short-reads (Jin et al., 2020). GetOrganelle

generated two complete plastome sequences, and we selected the

one where the SSC region aligns in the same direction as

Arabidopsis thaliana (NC_000932.1). Subsequently, we performed

de novo assembly for long-reads. The long-reads were polished

using Canu (Koren et al., 2017) and then assembled using PMAT

assembler (Bi et al., 2024a) with the default parameters. BLASTn

(Chen et al., 2015) was employed to identify the draft mitogenome

from the assembled sequences. Six mitochondrial contigs were

successfully identified. Considering the low accuracy of long-reads

from Oxford Nanopore sequencing, we further utilize assembled

mitochondrial sequences as the reference sequence. We establish an

index using BWA (Li and Durbin, 2009). Subsequently, ‘bwa mem’

was utilized to obtain reads successfully mapped to the reference

sequence. Indexing and mapping of the long-reads were performed

using minimap2 (Li, 2018), with specific parameters ‘minimap2 -d’

for index creation and ‘minimap2 -ax map-ont -t 8 –secondary=no’

for mapping long-reads. Finally, we performed hybrid assembly

using Unicycler (Wick et al., 2017) by combining Illumina short-

reads and Nanopore long reads. The mapped Illumina short-reads

were initially assembled using SPAdes (Bankevich et al., 2012), and

then the Nanopore long-reads were employed to resolve repetitive

sequence regions in the assembly, using minimap2 (Li, 2018). After

multiple iterations and adjustments, we determined the optimal

kmer value of 89. The resulting GFA format files generated by

Unicycler were visualized using Bandage (Wick et al., 2015).

Ultimately, Unicycler generated a complete circular genome.

Notably, as these contigs were assembled based on Illumina

short-reads, no additional polishing steps were necessary.
Verification of the mitogenome structure

In our study, we employed PCR experiments to investigate the

structure of A. odorata. Specifically, we designed eight specific

primers to verify the accuracy of assembly generated by PMAT

assembler. The primer design was conducted using the Primer

designing tool on NCBI (https://www.ncbi.nlm.nih.gov/tools/

primer-blast/) with default parameters. The primer sequences used

for PCR reactions are listed in Supplementary Table 1. Subsequently,

DNA was extracted, and the amplifications were performed using a

Pro-Flex PCR system (Applied Biosystems, Waltham, MA, USA).

The PCR reaction volume was 25 µL, comprising 2 µL of template

DNA, 0.5 µL of forward primer, 0.5 µL of reverse primer, 12.5 µL of 2

× Taq PCR Master Mix, and 9.5 µL of ddH2O. The amplification

conditions consisted of an initial denaturation at 94 °C for 5 min,

followed by 30 cycles of denaturation at 94 °C for 30 s, annealing at 58
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°C for 30 s, extension at 72 °C for 60 s, and a final extension step at 72

°C for 5 min. The PCR amplicons were visualized using 1% agarose

gel electrophoresis. Subsequently, the single bright bands were

excised and sent to Sangon Biotech (Shanghai, China) Co., Ltd. for

Sanger sequencing.
Mitogenome and plastidial
genome annotation

The plastome of our A. odorata was annotated using

CPGAVAS2 (Shi et al., 2019). The plastome of published A.

odorata (NC_048994.1) was used as the reference genome. The

annotation results were further verified using CPGView (Liu et al.,

2023) to ensure accurate gene annotations. We utilized IPMGA

(http://www.1kmpg.cn/ipmga/) to annotate the assembled

mitogenome of A. odorata . We selected a database of

mitochondrial genes of angiosperms on IPMGA. IPMGA

generates annotated files in the standard GenBank format. The

tRNA annotations were performed using tRNAscan-SE (Lowe and

Eddy, 1997) while rRNA annotations were obtained through

BLASTn (Chen et al., 2015). To ensure accuracy, manual edits

were made to the annotations using Apollo (Lewis et al., 2002).

Finally, the genome map was generated using OGDRAW (v1.3.1)

(Alverson et al., 2010).
Repetitive elements

The long tandem repeats were detected by Tandem Repeats

Finder (TRF, https://tandem.bu.edu/trf/trf.html) with the default

parameters (Benson, 1999). The simple sequence repeats (SSRs) of

the assembled mitogenome were identified using the online website

MISA (https://webblast.ipk-gatersleben.de/misa/), the parameters of

the minimum numbers of mono-, di-, tri-, tetra-, penta-, and

hexanucleotides were set as 10, 5, 4, 3, 3, and 3, respectively.

Additionally, forward, reverse, palindromic, and complementary

repeat sequences were identified using REPuter (https://

bibiserv.cebitec.uni-bielefeld.de/reputer/) with the following settings:

hamming distance of three and minimal repeat size of 30 bp, and e-

value is limited to less than 1e-5. The visualization of the repetitive

elements was done using the Circos package (Zhang et al., 2013).
Codon usage of mitochondrial genes

We employed PhyloSuite software (v1.2.2) (Zhang et al., 2020a)

to parse the GenBank format file of the A. odorata mitogenome,

extracting the protein-coding genes (PCGs). Subsequently, we

conducted an analysis of the codon usage in mitochondrial PCGs

using Mega 7.0 software (Kumar et al., 2016), which involved the

calculation of Relative Synonymous Codon Usage (RSCU) values.

An RSCU value of 1 signifies a neutral preference for codon

utilization, whereas an RSCU value exceeding 1 indicates a

relatively higher frequency of codon usage.
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Identification of the mitochondrial
plastid sequences

To identify the mitochondrial plastid DNAs (MTPTs), we

compare the plastome and mitogenome DNAs of A. odorata by

using BLASTn (Chen et al., 2015) program with the following

parameters: -evalue 1e-5, -word_size 9, -gapopen 5, - gapextend 2,

-reward 2, -penalty -3. The BLASTn results were visualized using

Circos package (Zhang et al., 2013). The identified MTPTs were also

annotated by using GeSeq.
Analysis of RNA editing sites

We employed a two-step approach for predicting RNA editing

sites. Initially, lncRNA-Seq reads were mapped to the coding

sequences (CDS) of each protein-coding gene (PCG) using BWA

software (Li and Durbin, 2009) with default parameters.

Subsequently, we utilized REDItools (Picardi and Pesole, 2013) to

predict RNA editing sites based on the mapping results. The

prediction criteria were established as follows: coverage exceeding

30, frequency equal to or greater than 0.1, and p-value equal to or

greater than 0.05. Afterward, the Illumina short-reads of DNA were

aligned to the CDS of each PCG using BWA software with default

parameters. Genomic SNPs were predicted using BCFtools (Li,

2011) based on the mapping outcomes, with thresholds set at

coverage greater than 30 and frequency less than or equal to 0.1.

These heterogeneous sites of natural variation need to be excluded

from RNA editing sites. Finally, after excluding SNP sites, the

remaining sites identified in the lncRNA-seq mapping will be

considered as genuine RNA editing sites.

To confirm the accuracy of the predicted RNA editing sites, we

further designed experiments to validate these four specific sites.

The primers were designed on both sides of the editing sites

(Supplementary Table 2), and amplification was performed using

genomic DNA (gDNA) and cDNA obtained from RNA reverse

transcription using random primers as templates. The reaction

conditions for amplification are described above. The amplified

products were subsequently subjected to Sanger sequencing. Finally,

by comparing the sequences of the products obtained from gDNA

and cDNA, we determined the occurrence of RNA editing events.
Collinear analysis

For the collinear analysis with A. odorata, we selected five

closely related species: Citrus unshiu (NC_057142.1), Citrus

maxima (NC_057143.1), Citrus sinensis (NC_037463.1), Toona

ciliata (NC_065060.1) and Toona sinensis (NC_065061.1). We

identified collinear blocks based on sequence similarity using the

BLASTn program with the following parameters: -evalue 1e-5,

-word_size 9, -gapopen 5, - gapextend 2, -reward 2, -penalty -3.

Only collinear blocks longer than 1 kb were retained for

downstream analysis. To visualize the collinear relationships, we

generated a multiple synteny plot using TBtools (Chen et al., 2023).
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Phylogenetic analysis

We retrieved a total of 31 mitogenomes, including two

outgroups (Stylosanthes capitata and Glycine max), from the

GenBank database. These mitogenomes were used to construct a

phylogenetic tree with A. odorata. Firstly, PhyloSuite (v.1.2.2)

(Zhang et al., 2020a) was employed to identify and extract

orthologous protein-coding genes (PCGs) across the analyzed

species. The nucleotide sequences corresponding to these PCGs

were then aligned using MAFFT (v7.471) (Katoh and Standley,

2013). Subsequently, the aligned sequences were concatenated to

generate the input for phylogenetic tree construction. The

maximum likelihood (ML) method was implemented using IQ-

TREE (version 2.1.4-beta) (Minh et al., 2020) with the parameters

“–alrt 1000 -B 1000”. Using the Bayesian Information Criterion

(BIC) for model selection, the results indicate that the best-fit

model is GTR+F+R2. The bootstrap analysis was performed with

1,000 replicates. Finally, the resulting phylogenetic tree was

visualized and edited using the online tool ITOL (Letunic and

Bork, 2019).
Results

Genomic structure of the A.
odorata mitogenome

The assembly is composed of six distinct nodes and eight edges

(paths), visually depicted in Figure 1A. Each of these nodes signifies

an assembled contig, demonstrating a region of overlap along the

linkages. It’s worth noting that contig5 and contig6 exhibited

distinct characteristics suggestive of potential repetitive sequences.

These two repeat sequences each showcased four distinct paths

(designated as p1–p4 and p5–p8, Figure 1B). To confirm the

presence of these paths within the A. odorata mitogenome, we

conducted PCR experiments. The four primer pairs (F1 + R1, F2 +

R1, F3 + R3, F3 + R2) were employed to validate the repeated

sequence within contig5 and the paths, while the remaining pairs

(F4 + R4, F5 + R5, F6 + R4, F7 + R7) were utilized to confirm the

repetitive sequence within contig6 and the paths. The PCR products

exhibited conformity with the anticipated outcome (Supplementary

Figure 1). The results of these PCR experiment not only validated

the accuracy of the assembly and the eight paths, but also helped us

to propose four possible genomic configurations. Configuration 1

presents a master circular structure, incorporating all six contigs

(Figure 1C). In configuration 2, contig2, contig3, contig4, contig5,

and contig6 collectively form a circular arrangement, and contig1

and contig6 form a smaller circular (Figure 1D). Similarly,

configuration 3 showcases a circular arrangement encompassing

all six contigs, while the contig3 was inverted compare to

configuration 1 (Figure 1E). Lastly, configuration 4 is similar to

configuration 2, with the inversion of contig3 (Figure 1F). Our PCR

experiments show the possibility of multiple configurations, and

here we use configuration 1, a master circle represent the complete

mitogenome, for subsequent analysis.
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Gene content of the A.
odorata mitogenome

The mitogenome maps of A. odorata was visually presents in

Figure 2A. The total length of A. odoratamitogenome is 534,321 bp,

and consists of 35 distinct protein-coding genes (PCGs) (Table 1),

including five ATP synthase genes (atp1, atp4, atp6, atp8, and atp9),

four cytochrome c biogenesis genes (ccmB, ccmC, ccmFC, and

ccmFN), nine NADH dehydrogenase genes (nad1, nad2, nad3,

nad4, nad4L, nad5, nad6, nad7, and nad9), three cytochrome c

oxidase genes (cox1, cox2, and cox3), one transport membrane

protein gene (mttB), one maturases gene (matR), and one

cytochrome b gene (cob), four large subunits of ribosomal

proteins (rpl2, rpl5, rpl10, and rpl16), five small subunits of

ribosomal proteins (rps1, rps3, rps4, rps10 and rps12), as well as

two succinate dehydrogenases (sdh3 and sdh4).

In the A. odorata mitogenome, a total of 22 tRNA genes have

been annotated, with 19 being unique. Among these, 11 tRNA genes

are mitochondrial native. Furthermore, our investigation has

revealed 7 tRNA genes originating from the plastid: trnN-GUU,

trnH-GUG, trnM-CAU, trnD-GUC, trnW-CCA, trnP-UGG, and

trnI-CAU . Notably, our exploration has led us to the

identification of a tRNA gene with bacterial origins, trnC-GCA,

exhibiting a remarkable level of sequence homology with previously

documented genes (Kitazaki et al., 2011). The remaining tRNA

genes, devoid of sequence homology with known organelle tRNA

genes, are unknown about their origin (Li, 2011; Rice et al., 2013).

Furthermore, we have successfully pinpointed three distinct rRNA

genes within the A. odorata mitogenome, namely rrn5, rrn18, and

rrn26. The precise positions of each gene can be referenced in

Supplementary Table 3. Among the entirety of the genes that have
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been annotated, 10 PCGs encompass introns (Supplementary Table

3). To elaborate, the genes ccmFC, cox2, cox1, trnP-CGG, and rps10

each feature one intron, whereas nad4 encompasses two introns. On

the other hand, the genes nad1, nad2, nad5, and nad7 encompass

four introns each.
Repetitive elements

Microsatellites, also known as simple sequence repeats (SSRs),

typically consist of tandem sequences with a length of up to 6 base

pairs in eukaryotic genomes. Within the mitogenome of A. odorata,

a comprehensive total of 192 SSRs has been meticulously identified

(as shown in Supplementary Table 4). Among this array of SSRs,

tetrameric repeats stand out as the most prominent, encompassing

34.90% (67) of the overall count. This pattern is subsequently trailed

by monomeric repeats (42), dimeric repeats (31), trimeric repeats

(29), pentameric repeats (18), and hexametric repeats (5)

(Figure 2A). And we have detected 29 long tandem repeat

elements (Supplementary Table 5).

In addition, we have meticulously identified a total of 333 pairs

of dispersed repeats within the A. odorata mitogenome, each with

lengths equal to or exceeding 30 base pairs. This collection

encompasses 173 pairs of forward repeats, 146 pairs of

palindromic repeats, and 7 pairs of reverse repeats and

complementary repeats, as outlined in Supplementary Table 6.

Most of these repeat elements exhibit a length of less than 200

bp, and it’s evident that the number of dispersed repeats surpasses

that of both SSRs and tandem repeats. The only two long dispersed

repeats identified in the A. odorata mitogenome is contig5 and

contig6 (10,113 bp palindromic repeat element and 6,621 bp repeat
B

C D

E F

A

FIGURE 1

The graphic assembly and verification of A odorata mitogenome. (A). The graphic mitogenome consists of six contigs with different lengths, and they
connected to each other. The length of the six contigs are 242,861 bp, 182,678 bp, 46,804 bp, 28,510 bp, 10,113 bp and 6,621 bp, respectively.
Contig 5 and contig6 are the repetitive sequence. (B). represents the electropherogram of eight paths. (C-F) represent four conformations mediated
by two pairs of repeat sequences, respectively. The arrows in panel (C-F) indicates the direction of sequence 3. These four conformations can
dynamically change between them.
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element). Cumulatively, the extent of these dispersed repeats

encompasses 30,754 bp, constituting 5.76% of the entire A.

odorata mitogenome. Furthermore, we provide a visual

representation employing the Circos (v1.120) package

(Krzywinski et al., 2009) to depict the dispersed repeats of the A.

odorata mitogenome and counted the number of repetitive

sequences in Figure 2B. These dispersed repeats are distributed in

various regions of the mitogenome, effectively increasing the size of

the genome.
Codon usage analysis

We conducted an analysis of the codon usage within the PCGs.

The comprehensive codon usage data for all PCGs is presented in

Supplementary Table 7. As shown in Figure 3A, revealing a

discernible preference for specific codons among mitochondrial

protein-coding genes. Notably, the RSCU values for the start codons

AUG (Met) and UGG (Trp) both equate to 1. Furthermore, the

RSCU values for the termination codons UGA (End), UAA (End),

and UAG (End) are recorded as 1.20, 1.02, and 0.78, respectively. In

terms of specific codons, GCU (Ala), UAA (End), CAU (His), CCU

(Pro), and UAU (Tyr) emerge as the four most frequently employed

codons within A. odorata. Conversely, GCG (Ala), UAG (End),

CAC (His), and UAC (Tyr) are identified as the four least utilized

codons. A visual representation in Figure 3A underscores the

prevalence of arginine (Arg), leucine (Leu), and serine (Ser)
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codons, while methionine (Met) and tryptophan (Trp) codons

exhibit relatively lower occurrence rates.
Characteristic of mitochondrial
plastid DNAs

In our study, we conducted an annotation of the plastidial

genome of A. odorata and performed a comprehensive comparison

with its mitogenome. Employing the BLASTn program, we

successfully identified a total of 12 instances of homologous

sequences, we considered they might be potential MTPTs

occurring between these two organelle genomes. These 12 MTPTs

collectively span a length of 2,501 bp, contributing to 0.47% of the

mitogenome’s total size (Supplementary Table 8). Among these

MTPTs, MTPT12 stands out as the longest, spanning 1,122 bp,

while MTPT1 emerges as the briefest, encompassing a mere 29 bp.

Subsequently, our efforts focused on annotating these MTPTs,

revealing a revelation: every MTPT encompassed plastidial genes

or gene fragments. As depicted in Figure 3B and Supplementary

Table 8, MTPT12 harbors a set of plastid genes, primarily associated

with the photosystem II protein complex. It included psbJ, psbL,

psbF, and psbE. Moreover, our analysis unearthed various gene

fragments that resulted from the process of plastid migration. These

fragments encompassed genes such as petG, ndhD, psbC, and atpH.

It is plausible that these gene fragments underwent sequence loss

during migration.
B

A

FIGURE 2

The mitogenome map of A odorata. (A). The figure shows the master circle of A odorata mitogenome. Genes transcript clockwise or counter-
clockwise strands are drawn on the upper or lower of the circles, respectively. Genes belonging to different functional groups are color-coded. The
table showing the number of SSRs of each type, with tetrameric being the most and Hexametric being the least. (B). The identified dispersed repeats
(≥ 30bp). The green ribbons represent the forward repeats, the yellow ribbons represent the palindromic repeats, the red ribbons represent the
complementary repeats and the blue ribbons represent the reverse repeats. The detailed information about dispersed repeats can be found in
Table S6.
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Analysis of RNA editing sites

We have successfully discerned a total of 427 high-confidence C

to U RNA editing sites across 32 mitochondrial protein-coding

genes (Supplementary Table 9). These editing sites are supported by

our lncRNA data with an average depth of nearly 5100 times. The

RNA editing sites for each gene are visually represented in

Figure 3C. Within this set of mitochondrial genes, ccmB boasts

the highest number of RNA editing sites at 45, closely followed by

mttB with 41, positioning them as the foremost two genes in terms

of RNA editing occurrences. Conversely, genes like atp1, atp6 and

rpl5 possess the least number of editing sites, with only a solitary C

to U edit detected for each. Based on our findings, we have

identified C to U RNA editing events in three genes, which lead

to the creation of premature stop codons. These genes are ccmFC,

atp9 and rps10 (where CGA transitions to UGA). Notably, RNA

editing plays a role in the formation of start codons as well, such as

gene nad4L, have their start codons generated through RNA

editing, converting ACG codon to AUG.

To evaluate the precision of this prediction, we employed PCR

amplification and Sanger sequencing as a means of substantiating

the occurrence of RNA editing. The four primer sequences can be

found in Supplementary Table 2. Among these, every RNA site

underwent successful verification, namely nad4L-2, atp9-223,
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ccmFC-1324, and rps10-412 (as depicted in Figure 3D). And all

the validated sites encompassed C to U substitutions (Figure 3E),

ccmFC-1324 is an exception, probably because of the lower

frequency of editing, but the peak plot shows a hybrid peak of

base U (uracil). Notably, the genomic DNA (gDNA) of rps10 has a

longer PCR product because our primers span its introns, and the

banding here also confirms that the DNA was sufficiently removed

in the cDNA experimental group. Moreover, it’s noteworthy that

each of these sites involved non-synonymous substitutions, as

detailed in Supplementary Table 9. These PCR experiment firmly

attesting to the dependability of the anticipated RNA editing sites.
Collinear and phylogenetic analysis

To delve into the rearrangements and conserved sequence

blocks within the mitogenomes, we utilized the BLASTn program

to pinpoint homologous collinear blocks. Illustrated in Figure 4A,

each ribbon connecting two neighboring mitogenomes signifies a

remarkably homologous collinear block or sequence. When

comparing A. odorata and T. ciliata, we observed one large

adjacent collinear block. Furthermore, we uncovered three

collinear blocks exceeding 10 kb in length between these two

mitogenomes. However, in the case of comparing A. odorata with

C. sinensis, no extensive collinear blocks were detected, with the

longest identified block measuring only 7.5 kb. Overall, while longer

collinear blocks tend to be present between closely related species,

the mitogenomes demonstrated limited collinearity, with several

regions lacking homology. These findings underscore the

prevalence of extensive genomic rearrangements between A.

odorata and its related mitogenomes, suggesting that the genomic

structure of the mitogenomes is not conserved.

In addition, we carried out a phylogenetic analysis utilizing 31

mitogenomes of related species, with T. capitata and G. max serving

as outgroups for reference. The detailed list of species and their

corresponding GenBank accessions utilized for this analysis is

available in Supplementary Table 10. By aligning and

concatenating the shared protein-coding genes (PCGs), we

created the matrix data for analysis. The outcome of our

phylogenetic investigation yielded a maximum likelihood (ML)

tree that exhibits robust support along the primary basal branches

(refer to Figure 4B). In terms of evolutionary relationships, A.

odorata exhibits its closest affinity with T. ciliata, both species

falling under the Sapindales order. While the overall structure of the

phylogenetic tree broadly aligns with the APG IV system (The

Angiosperm Phylogeny et al., 2016) at the order level, it’s

noteworthy that within the Sapindales order, a couple of nodes

lack bootstrap support. This suggests that deriving phylogenetic

inferences solely from mitochondrial PCGs might have limitations

in accurately resolving lower taxonomic categories.
Discussion

Our study successfully assembled the complete mitogenome of

A. odorata, with a total length of 534,321 bp. To accomplish this
TABLE 1 Gene composition in the mitogenome of A. odorata.

Group
of genes

Name of genes

ATP synthase atp1, atp4, atp6, atp8, atp9

NADH
dehydrogenase

nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9

Cytochrome b cob

Cytochrome
c biogenesis

ccmB, ccmC, ccmFC, ccmFN

Cytochrome
c oxidase

cox1, cox2, cox3

Maturases matR

Transport
membrane
protein

mttB

Succinate
dehydrogenase

sdh3, sdh4

Ribosomal
protein
large subunit

rpl2, rpl5, rpl10, rpl16

Ribosomal
protein
small subunit

rps1, rps3, rps4, rps10, rps12

Ribosome
RNA

rrn5, rrn18, rrn26

Transfer RNA

trnS-GCU, trnF-GAA (×2), trnP-UGG, trnI-CAU, trnP-GGG,
trnW-CCA (×2), trnK-UUU, trnQ-UUG, trnG-GCC, trnM-
CAU, trnD-GUC, trnS-UGA, trnP-CGG, trnfM-CAU, trnC-
GCA, trnN-GUU, trnY-GUA, trnE-UUC (×2), trnH-GUG
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task, we employed a hybrid assembly approach, combining both

Illumina short-reads and Oxford Nanopore long-reads. In contrast

to the stability observed in plant plastomes, plant mitogenomes

have undergone significant transformations throughout evolution,

resulting in complex structures (Bi et al., 2022; Han et al., 2022; Ma

et al., 2022; Bi et al., 2024b). Numerous researchers have delved into

the intricate structural variations within plant mitogenomes

(Chevigny et al., 2020), leading to the development of various

tools for decoding these dynamically evolving genomes (He et al.,

2023; Shan et al., 2023). Some studies propose that the diversity

within mitogenomes may arise from long repeat-mediated

recombination (Wang et al., 2023a). Within the mitogenome of

A. odorata, our analysis unveiled two pairs of lengthy repetitive

sequences, measuring 10,113 bp and 6,621 bp, respectively. This

prolific presence of repeats points towards their potential

significance not only in genome reconfiguration but also in

influencing genome size dynamics. Remarkably, these two pairs of
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long repetitive sequences each possibly facilitated two

conformations, and up to four potential configurations can be

created. This highlights that the mitogenome structure of A.

odorata is not static but rather dynamically varies among these

four conformations. The phenomenon of long repeat-mediated

recombination is not unique to A. odorata; it has also been

observed in other plant species such as Mimulus guttatus (Mower

et al., 2012), Scutellaria tsinyunensis (Li et al., 2021), Photinia

serratifolia (Wang et al., 2023a), and Ginkgo biloba (Guo et al.,

2016). Furthermore, extensive research has demonstrated that short

dispersed repeats contribute to mitogenome recombination in

various plant species, including Nymphaea colorata (Dong et al.,

2018), Silene latifolia (Sloan et al., 2012), and Ginkgo biloba (Guo

et al., 2016).

Horizontal gene transfer (HGT) among organellar genomes and

the nuclear genome is a common phenomenon that plays a pivotal

role in plant evolution (Sprinzl and Vassilenko, 2005). The genome
B

C

D

E

A

FIGURE 3

(A) The codon usage and RSCU value of A odorata PCGs. Codon families are shown on the x-axis. RSCU values are the number of times a particular
codon is observed relative to the number of times that codon would be expected for uniform synonymous codon usage. (B) Schematic
representation of the distribution of MTPTs between the mitogenome and the plastome of A odorata. The MTPTs on the chloroplast IR regions were
counted only once. The location of each MTPT has been marked on the Figure. (C) Characteristics of the RNA editing sites identified in
mitochondrial PCGs of A odorata. The ordinate shows the number of RNA editing sites identified in PCGs, the abscissa shows the name of PCGs
identified in the mitogenome of A odorata. (D) The figure shows the results of PCR experiments on cDNA and gDNA of four genes. The experimental
results are as expected. gDNA amplification length of rpl10-412 gene is longer because of the presence of intron in the gene. (E). The figure shows
the results of Sanger sequencing experiments on cDNA and gDNA of four genes, and it shows that RNA editing is not universally present in all cases.
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structure and evolutionary dynamics of plant mitogenomes render

them particularly prone to acquiring and assimilating foreign DNA

(Christensen, 2013). In contrast to plastid DNA, plant mitogenomes

exhibit a greater propensity to accept and incorporate foreign

genetic material, a phenomenon frequently observed. In the case

of A. odorata, we have observed some sequences transferred from

the plastidial genome to the mitogenome (Supplementary Table 8,

Figure 3B). These MTPTs are believed to hold substantial

implications for eukaryotic evolution, fostering genetic diversity.

Among the MTPTs identified in the A. odorata mitogenome,

MTPT12 stands out as the longest, spanning 1,122 base pairs.

However, in comparison to the mitogenomes of other published

species, A. odorata displays fewer MTPTs, and they tend to be of

shorter lengths. For instance, in Suaeda glauca, MTPTs covering

26.87 kb constitute 5.18% of its mitogenome. Some studies have

unveiled a notable degree of diversity in MTPTs among various

species. Previous research has revealed that tRNAs within plant

mitochondria have diverse origins. A portion of these tRNAs is

inherited from the ancestral mitochondria, while another part is

acquired from chloroplasts through HGT (Sprinzl and Vassilenko,

2005). By leveraging sequence similarities and existing findings, we

successfully identified specific tRNA genes in the A. odorata

mitogenome that originated from the plastid and were transferred

to the mitochondria (Richardson et al., 2013). Within the A.

odorata mitogenome, we identified the following tRNA genes as

potential acquisitions from the plastid: trnN-GUU, trnH-GUG,

trnM-CAU, trnD-GUC, trnW-CCA, trnP-UGG, and trnI-CAU.

Over the course of evolutionary timescales, these MTPTs have led

to the incorporation of functional tRNAs, as evidenced by their

widespread conservation across angiosperms (Chaw et al., 2008).

For instance, trnH-GUG and trnM-CAU were early additions to the

mitogenome and remain functional (Joyce and Gray, 1989).
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However, during the transfer of DNA fragments from

chloroplasts to the mitogenome, some PCGs are often carried

along and tend to become nonfunctional pseudogenes. This

phenomenon also occurs within the mitogenome of A. odorata

(Supplementary Table Table 8).

Plant mitochondrial RNA editing is a biological phenomenon

where specific nucleotide positions within the mitochondrial RNA

sequence undergo base mutations catalyzed by mitochondrial RNA

editing enzymes (Wang et al., 2019; Liu et al., 2020; Wang et al.,

2023b). These RNA editing processes can convert C to U or U to C

in the RNA sequence (Gerke et al., 2020), playing a pivotal role in

mitochondrial gene expression and function (Sosso et al., 2012).

This is because many of these RNA editing events can result in

changes in RNA sequences, leading to variations in the final protein

products (Edera et al., 2018). And RNA editing of mitochondrial

genes is believed to be an important factor in regulating plant

cytoplasmic inheritance-related traits (Liu et al., 2013). In our

predictions, we observed that most RNA editing sites occur at the

first or second positions of the triplet codon, a pattern similar to

that seen in many other plants (Grewe et al., 2014; Kovar et al.,

2018). Furthermore, as depicted in Figure 3E, the frequency of

editing varies greatly at different sites. For example, in gene ccmFC-

1324, the frequency of RNA editing is lower than that of non-

editing events. Furthermore, in our RNA editing experiments, we

have successfully confirmed the occurrence of RNA editing events

that generate stop codons in gene ccmFC, rps10 and atp9. The

emergence of RNA editing events that yielded start codons also

been found in gene nad4L. This new start and stop codons are

typically generated to encode proteins that exhibit greater

conservation and homology with corresponding proteins in other

species, thereby enhancing gene expression within the

mitochondria. In future cases, the annotation of these genes
BA

FIGURE 4

(A) Collinear analysis of A odorata mitogenome and its related species. The colorful bars indicated the mitogenomes, and the ribbons showed the
homologous sequences between the adjacent species. The blue ribbons indicate regions with homology and the red ribbons indicate where the
inversion occurred. The homologous blocks less than 0.5 kb in length are not remaining, and regions that fail to have a homologous block indicate
that they are unique to the species. (B) The phylogenetic relationships of A odorata and another 30 species based on conserved mitochondrial
genes. The tree was constructed based on the nucleotide sequences of conserved mitochondrial protein-coding genes (PCGs). We used Maximum
Likelihood (ML) method to reconstruct the phylogenetic tree. The ML topology is indicated with ML bootstrap support values. T. capitata and G max
were used as outgroups. The species list and its accession numbers that used in phylogenetic analysis are shown in Table S10.
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should fully account for the influence of RNA editing events,

otherwise the wrong coding sequence will be obtained.
Conclusion

In our study, we have accomplished the successful assembly of

the mitogenome of A. odorata, revealing a circular genome

structure. We conducted thorough analyses to explore its gene

content, repetitive elements, codon usage, MTPTs, and RNA editing

sites, along with making phylogenetic inferences. To the best of our

knowledge, this represents the first comprehensive description of a

complete mitogenome within A. odorata. Our findings illuminate

previously uncharted aspects of the evolutionary dynamics of

mitochondrial genes, providing valuable insights into the

evolutionary history of mitogenomes.
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