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Classification of peanut pod rot
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Geng Yan1, Yuhong Geng1 and Yi Zhang1

1Hebei Agricultural University, Baoding, China, 2State Key Laboratory of North China Crop
Improvement and Regulation, Baoding, China, 3Technology Innovation Center of Intelligent
Agricultural Equipment, Baoding, China
Peanut pod rot is one of themajor plant diseases affecting peanut production and

quality over China, which causes large productivity losses and is challenging to

control. To improve the disease resistance of peanuts, breeding is one significant

strategy. Crucial preventative and management measures include grading

peanut pod rot and screening high-contributed genes that are highly resistant

to pod rot should be carried out. A machine vision-based grading approach for

individual cases of peanut pod rot was proposed in this study, which avoids time-

consuming, labor-intensive, and inaccurate manual categorization and provides

dependable technical assistance for breeding studies and peanut pod rot

resistance. The Shuffle Attention module has been added to the YOLOv5s (You

Only Look Once version 5 small) feature extraction backbone network to

overcome occlusion, overlap, and adhesions in complex backgrounds.

Additionally, to reduce missing and false identification of peanut pods, the loss

function CIoU (Complete Intersection over Union) was replaced with EIoU

(Enhanced Intersection over Union). The recognition results can be further

improved by introducing grade classification module, which can read the

information from the identified RGB images and output data like numbers of

non-rotted and rotten peanut pods, the rotten pod rate, and the pod rot grade.

The Precision value of the improved YOLOv5s reached 93.8%, which was 7.8%,

8.4%, and 7.3% higher than YOLOv5s, YOLOv8n, and YOLOv8s, respectively; the

mAP (mean Average Precision) value was 92.4%, which increased by 6.7%, 7.7%,

and 6.5%, respectively. Improved YOLOv5s has an average improvement of

6.26% over YOLOv5s in terms of recognition accuracy: that was 95.7% for

non-rotted peanut pods and 90.8% for rotten peanut pods. This article

presented a machine vision- based grade classification method for peanut pod

rot, which offered technological guidance for selecting high-quality cultivars with

high resistance to pod rot in peanut.
KEYWORDS

peanut pod rot, machine vision, improved YOLOv5s, Shuffle Attention, grading
classification
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1 Introduction

Peanut pod rot, also known as fruit rot, significantly impacts

peanut yield and quality, with occurrences noted in the United

States (Wheeler et al., 2016), Egypt (Elsayed Abdalla and Abdel-

Fattah, 2000) and various regions of China, including Shandong

(Zhang et al., 2016) and Hebei Province (Li et al., 2011). The

disease’s prevalence and severity are leading to increased losses

annually, with affected plots seeing up to a 15% yield reduction and

severely infected areas losing up to 50%. In some cases, it can lead to

total crop failure (He et al., 2022). So far, N. vasinfect (Gai et al.,

2011; Sun et al., 2011), Fusarium sp (Liu et al., 2020), N. striata (Sun

et al., 2012), P. myriotylum (Yu et al., 2019), and R. solani (Chi et al.,

2015) have been identified as the pathogenic bacteria of peanut pod

rot in China. Peanut pod rot poses a severe danger to the safety of

peanut output and quality, and it is critical to strengthen effective

prevention and control of it.

The difficulty in preventing and treating peanut pod rot can be

attributed to the wide range of pathogen hosts (Abd El-aal et al.,

2013) and the current lack of varietal resistance (Walker and Csinos,

1980; Lewis and Filonow, 1990; Besler et al., 2003). Varietal resistance

is frequently improved through breeding, which is an efficient

method of preventing peanut pod rot (Wynne et al., 1991). By

assessing the resistance grade of individual peanut plants to pod

rot, superior germplasm can be identified, facilitating the

development of new peanut varieties. There is comparatively little

research on peanut pod rot in China, with the majority of studies on

the pathology of peanuts being on leaf diseases, bacterial wilt, and

web blotch. At present, the grade classification of individual peanut

pod rot is still usually done manually. Manual categorization is labor-

intensive, time-consuming, and prone to errors like misidentification,

abandonment, and repeated recognition as work time grows, which is

thus not ideal for large-scale grading because of the varied grades of

peanut decay. More precise grade classification can be attained by

machine vision, which can precisely identify and interpret illness

signs in photos, extract important information from them, classify

and assess them in accordance with predetermined criteria.

Additionally, machine vision technology can expedite breeding

operations by increasing the speed and efficiency of grade

classification in comparison to manual categorization.

CNN (Convolutional neural network) has recently achieved

substantial results in the field of object identification (Zaidi et al.,

2022), including Faster R-CNN (Ren et al., 2017), YOLO (Redmon

et al., 2016), SSD (Single Shot MultiBox Detector) (Liu et al., 2016),

etc. Crop identification based on machine vision is more efficient

and less expensive, exhibiting a progressive trend of replacing

manual identification. Machine vision models have excelled in

crop disease detection. Habib et al. (2020) achieved over 90%

accuracy in classifying papaya diseases using K-means clustering

for segmentation and support vector machines for identification.

Harakannanavar et al. (2022) improved this technique by extracting

tomato leaf boundaries with K-means clustering and contour

tracing, employing SVM (Support Vector Machine), CNN, and

K-NN (K-Nearest Neighbors) algorithms for classification, with

CNN attaining an impressive 99.6% accuracy rate. Hua et al. (2022)

introduced a PD R-CNN algorithm for crop disease detection that
Frontiers in Plant Science 02
incorporates multi-feature decision fusion, consistently delivering

accuracy rates above 85% across various disease types. In citrus

orchards, Pydipati et al. (2005) developed an algorithm using the

CCM (Color Co-occurrence Method) combined with Mahalanobis

distance-based and neural network classifiers, achieving over 95%

accuracy in distinguishing between healthy and diseased citrus

leaves by leveraging hue and saturation features. To address the

challenge of diagnosing visually similar corn diseases in the field, He

et al. (2023) enhanced the Faster R-CNN by integrating batch

normalization and a central loss function, resulting in a model that

surpassed the original Faster R-CNN and SSD in terms of average

recall rate, F1 score, and both accuracy and detection speed. While

these algorithms excel at identifying and labeling lesions, they do

not quantify the number of lesions or provide crop counts. Our

study addresses this gap by utilizing the YOLO series algorithm,

renowned for its object detection capabilities, to recognize

peanut images.

The use of YOLO algorithms in agriculture is now a

comparatively developed technique. By introducing light-

weighting enhancements to YOLOv3, Shen and Zhao (2021)

developed a peanut seed identification model with great accuracy

that can operate in real-time on the CPU. By adding DenseNet

interlayer density, Gai et al. (2023) enhanced the feature extraction

ability of the YOLOv4 backbone network CSPDarknet53. Sozzi

et al. (2022) tested six versions of the original YOLO model, and the

results demonstrated that YOLOv5s can identify green grapes

quickly and accurately. Lawal (2023) upgraded the YOLOv5

backbone and neck networks and changed the loss function to

EIoU to improve the robustness in complicated and ever-changing

situations. Lawal (2021) improved the YOLOv3 model to solve

interference problems such as branch and leaf obstruction, lighting

shifts, and fruit overlapping. In the identification application of

tomatoes, the improved YOLOv3 model exhibited an average

prediction rate of 99.5%. Aran et al. (2016) employed a BPNN

(Back-propagation neural network) for the grade classification of

cashews, reaching an accuracy of 96.8%.

These methodologies can be well coupled with machine vision

in their respective crop fields, providing technological backing for

the feasibility of this study. The primary challenge faced in this

study was to reduce the model size while maintaining recognition

performance, in order to adapt it for embedded systems and enable

effective grading of outdoor peanut pod rot. The challenges include

the scarcity and diversity of data, which complicate the collection of

standardized datasets and model training; the complexity of peanut

pod rot features, especially the high variability at different stages,

presents significant difficulties for accurate identification and

grading; although existing machine vision models perform

excellently in several other domains, specific improvements are

still required to enhance performance for the characteristics of

peanut pod rot.

There is currently no research on grading peanut pod rot using

machine vision. This study aims to integrate lightweight object

detection models into portable devices to support field applications.

Given the high computational resource demands, YOLOv8 is not

suitable for mobile or embedded devices with limited computing

power. In contrast, the YOLOv5 series of algorithms, with their
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smaller size, are more suitable for integration into such embedded

systems. Among the various versions of YOLOv5, the YOLOv5s has

the smallest model size, with a 35% and 70% reduction in size

compared to YOLOv8s and YOLOv8n, respectively, making

YOLOv5s an ideal choice for integration into resource-

constrained devices. To enhance the data reliability and work

efficiency, the future approach to image acquisition will shift from

single-plant per image to multiple-plants per image, guiding the

detection task towards small object detection. With its multi-scale

feature fusion, optimized anchoring mechanism, powerful data

augmentation, and highly customizable architecture, YOLOv5s

has proven to improve the precision of small object detection

while maintaining rapid processing speed. Based on these factors,

the model was selected for optimization to meet the needs of

practical applications.

To facilitate the screening of peanut germplasm resources

resistant to pod rot, this paper proposed a grading algorithm

based on Shuffle Attention and prediction box location

optimization, targeting interference such as peanut pod adhesion,

root stem and leaf occlusion. To begin, using the YOLOv5s

identification model, the Shuffle Attention mechanism was used

to improve the capability of feature representation, location

accuracy of lesion area, and robustness in complex backdrops.

Then, the loss function was enhanced to improve the regression

accuracy of the prediction box and reduce the likelihood of errors

and omissions. Finally, the rotten pod rate was estimated by

calculating the quantity of rotten peanut pods according to the

projected results. The grade classification was carried out based on

the rotten pod rate and the results were further compared with

those of YOLOv5s, YOLOv8n, and YOLOv8s models. Based on this,

the efficiency of the proposed method in this study can be verified.

The rest of this work is structured as follows: Section 2 discusses

the planting environment of peanuts, the establishment procedure

of the dataset, and the design and optimization of the pod rot

grading model. Section 3 introduces relevant tests and compares the

recognition and prediction performance of four models. Section 4

discusses the shortcomings of the proposed method and future

research directions for the grade classification of peanut pod rot.

Section 5 highlights the experimental results of the proposed model,

emphasizing the application value of this study.
2 Materials and methods

2.1 Sample acquisition

The samples were collected from the Experimental Station of

Hebei Agricultural University in Qingyuan District, Baoding City,

Hebei Province (38°80’N, 115°57’E). A cultivar of peanut,

Jinongxian No.1, was taken as the experimental sample in this

study, which was planted in spring, 2023, with ridge plastic film and

mulching, ridge spacing of 85 cm and two rows per ridge. The

average row spacing was 42.5 cm, with a hole spacing of 15.5 cm

and two seeds per hole. The planting density was 60750 holes/acre.

Thirty peanuts were taken as samples from the field to the

laboratory for washing to remove soil on surfaces. To acquire the
Frontiers in Plant Science 03
dataset, pictures were taken using a SAMSUNG Galaxy S20+ phone

with 64 megapixels. The sampling period was set from September

27th to September 29th, 2023, all of which are sunny days. The

shooting time was set from 12:00 to 14:00 with sufficient light and

16:00 to 18:00 with dim light. All pictures were taken under natural

light, and a total of 2000 peanut images were collected. The shooting

angle was set as either top right or side up, while the shooting

distance was set as long shot, close shot, and ultra-close shot. The

distance from peanuts in the long shot was about 120 cm, the close

shot about 40 cm, and the ultra-close shot about 10 cm.

High-yielding peanut plants tend to stack more frequently

because of the abundance of pods, which makes automatic

identification challenging. It is unavoidable to run into problems

like peanut occlusion and adhesion when taking pictures. Individual

peanut and pod images were captured independently to better avoid

interference in image recognition and enhance the accuracy and

robustness of the model. Figure 1 presents the images of

typical samples.
2.2 Dataset production and
image enhancement

The images obtained by the phone have a pixel size of

4032*1816. Although a large pixel size can improve the training

effect, it significantly affects the training speed. As a result, the pixel

size of the original image was resized to be 1400*631.

Labeling was used to annotate the gathered peanut images.

Mark the non-rotted peanuts (G) and rotten peanuts (R)

individually throughout labeling, and save the files on the

computer in the “xml” format. Before training the object

detection model, five enhancement procedures were randomly

combined and applied to each image to increase the sample size

and boost the training effect. The enhancement treatment included

noise addition, cutout, rotation, cropping, translation, horizontal

flip, and vertical flip. Figure 2 depicts the enhanced image. The

dataset was finally expanded to 12,000 sheets, which promoted the

learning effect of the model on the characteristics of non-rotted and

rotten peanuts. There was a total of 83,850 labels in the dataset,

including 56,730 non-rotted peanuts and 27,120 rotten peanuts.

The dataset was randomly divided into training and testing sets in a

9:1 ratio.
2.3 YOLOv5 model

The YOLOv5 network structure (Qiao et al., 2021) consists of

three main components: Backbone, Neck, and Prediction Head, as

shown in Figure 3. The Backbone network adopts the

CSPDarknet53 architecture, which performs well in feature

extraction and was used to extract rich multi-scale features from

input images. The feature fusion module was used to fuse feature

maps with different scales from the Backbone network. YOLOv5

employed a Feature Pyramid Network (FPN) to fuse features at

different levels through upsampling and downsampling, thereby

improving the accuracy and robustness of object detection. The
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Prediction Head was responsible for generating the bounding box

and category prediction of the object. YOLOv5 adopted a decoupled

multi-level prediction head structure that can effectively handle

objects of different scales, achieving a good balance between the

speed and accuracy of identification. The combination of these

components gave YOLOv5 excellent performance and efficiency in

object detection tasks.
2.4 Improvement of feature extraction
backbone network

This study enhances YOLOv5s to classify the grade of each

peanut and calculate the rotten pod rate. It is required to output the

total number of G and R labels.

Some peanuts grow densely and have problems like adhesion

and occlusion, which makes it challenging to effectively identify

some peanuts separately. Therefore, a Shuffle Attention (SA)

module (Zhang and Yang, 2021) was devised in this study. Shuffle

Attention is a method of describing feature dependencies through

grouping, parallel processing, and information exchange. According

to the schematic diagram shown in Figure 4, SA first divided the

channel dimensions into several subfeatures and processed each

subfeature in both spatial and channel dimensions using the Shuffle
Frontiers in Plant Science 04
Unit. The channel shuffle operator was then employed to enhance

information exchange between distinct subfeatures after all

subfeatures had been summarized. After that, Shuffle Attention

was placed after each C3 module in the Backbone, which made local

features visible to the attention module. The Shuffle Attention was

performed on each layer to share learning pressure.

The purpose of adding the SA module is as follows:
1. Boost the capacity for feature representation. Through channel

shuffling and self-attention mechanisms, the SA module can

improve the network’s ability to represent features, including

long-distance dependency and contextual information. It can

also help extract features related to peanut pod rot from

images more effectively, such as fine details of lesion areas

and contextual information.

2. Improve the positioning accuracy of lesion areas. The SA

module employs a self-attention mechanism to gather

association information from various positions of the

image. Based on this, the lesion area of peanut pod rot

can be located more precisely, thereby improving

positioning accuracy and minimizing missing and

false identification.

3. Enhance the ability to distinguish between non-rotted and

rotten peanuts. Peanuts differ from one another in their
B

C D

A

FIGURE 1

Original peanut image samples. (A) Individual non-rotted peanut; (B) Individual rotten peanut; (C) Low-yielding plant without occlusion and
adhesion; (D) High-yielding plant with severe occlusion and adhesion.
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Fron
physical characteristics. The channel shuffling and self-

attention mechanism of the SA module can distinguish

between rotten and non-rotted peanuts based on minute

feature differences. YOLOv5s can learn and discriminate

between rotten and non-rotted peanuts, boosting the

network’s ability to differentiate pod quality.
It can be concluded that the SA module has increased the feature

representation ability, the positioning accuracy of the lesion area, and

the capacity to discriminate different disease grades. The introduction

of the SA module to YOLOv5s has promoted the accuracy and

robustness of peanut pod rot identification by improving the

effectiveness of grade classification. Figure 5 depicts the overall

architecture design of adding a SA module to YOLOv5s.
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2.5 Loss function

The loss functions of YOLOv5s include Classification Loss (Lcla),

Localization Loss (Lloc), and Confidence Loss (Lconf ). The total loss

function is the sum of the three, as shown in Equation (1):

Loss = Lcla + Lloc + Lconf (1)

Currently, the Localization Loss used in the YOLOv5s model is

CIoU (Lu et al., 2022). The sample size of non-rotted peanuts in the

dataset was much larger than that of rotten peanuts. The significant

quantity difference resulted in a problem of imbalanced samples.

Therefore, there is a higher requirement for the accuracy of

prediction box regression. The calculation formula for CIoU is as

shown in Equations (2)–(4):
B

C D

A

E F

FIGURE 2

Original and enhanced images. (A) Original image; (B) Translation; (C) Rotation+cutout+noise; (D) Vertical flip+rotation+translation; (E) Rotation
+cutout+noise+translation; (F) Horizontal flip+rotation+translation.
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CIoU = 1 − IoU +
r2(b, bgt)

c2
+ av (2)

v =
4
p2 (arctan

wgt

hgt
− arctan

w
h
)2 (3)

a =
    0,      if  IoU < 0:5

v
1−IoU+v ,      if  IoU ≥ 0:5

(
(4)

Where, IoU refers to the intersection over union between the

ground truth box and the prediction box. r2(b, bgt) refers to the

Euclidean distance between the center points of two boxes. c2 is

the squared≥value of the diagonal length of the minimum closure

region that can contain two boxes at the same time. The ratio of the

two represents the distance between the ground truth box and the

prediction box. av is the influencing factor of the length-width ratio

between the two boxes. w, h, wgt , and hgt represent the width and

height of the prediction box and the ground truth box, respectively.

When there is an inclusion phenomenon between the detection

box and the ground truth box, CIoU overcomes the problems of

degradation to IoU as well as the slow convergence in the horizontal

and vertical dimensions when the two boxes cross. Although CIoU
Frontiers in Plant Science 06
offers certain advantages over IoU, the difference in aspect ratio

given by v in the formula is not the real difference between width

and height and its confidence, which will impede effective similarity

optimization of the model.

EIoU takes into account the real difference in length, width,

overlapping area, and center point distance (Zhang et al., 2022). It solves

the imprecise definition of aspect ratio based on CIoU by calculating the

difference in width and height instead of aspect ratio, thus boosting

regression accuracy. The imbalance between non-rotted and rotten

peanut samples in BBox regression can be resolved by introducing Focal

Loss. Therefore, EIoU was used in place of CIoU in this study, and the

calculation formula for EIoU is as shown in Equation (5):

EIoU = 1 − IoU +
r2(b, bgt)

c2
+
r2(w,wgt)

c2w
+
r2(h, hgt)

c2h
(5)

Where, cw and ch are the width and height of the bounding

rectangle of the two boxes, respectively. r2(w,wgt )
c2w

and r2(h,hgt )
c2h

reveal

the difference in width and height between the prediction box and

the ground truth box.

The improved model is named YOLOv5s-ES, which was

established based on the YOLOv5s model with an introduction of

the SA module and a replacement of CIoU with EIoU.
FIGURE 3

Network architecture diagram of YOLOv5.
FIGURE 4

Schematic diagram of Shuffle Attention module.
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2.6 Grade classification module

On the one hand, the grade classification of peanut pod rot can

be used to determine the severity of diseases. Different stages of the

disease may necessitate different prevention and control measures,

and the grading aids in the selection of appropriate tactics as well as

the improvement of preventative and control effectiveness. On the

other hand, the grade classification can offer timely awareness of the

disease progression. Taking early response measures is

advantageous for sensible resource allocation and cost reductions.

The grade classification of peanut pod rot can be claimed to increase

targeted and effective prevention and control work, ensure peanut

output and quality, and reduce economic losses.

According to the findings of Wheeler et al. (2016), the following

are the grading criteria for peanut pod rot: Level 1 for no rotten
Frontiers in Plant Science 07
fruit, with a rotten pod rate of 0; Level 3 for a rotten pod rate

between 0 and 10%; Level 5 for a rotten pod rate between 10% and

25%; Level 7 for a rotten pod rate between 25% and 50%; and Level

9 for a rotten pod rate larger than 50%.

As shown in Figure 6, an external grade classification module

was put after the Prediction network to perform the grading

function. After executing detect.py, the predicted images were

generated in the exp folder, along with a graduation folder. This

folder includes.txt files with the predicted image information, as

well as statistical data on the number of non-rotted and rotten

peanuts. Running gradation.py after generating the text file

information will generate an.xlsx file in the root directory that

contains the amount of non-rotted and rotten peanuts, as well as the

overall number, rotten pod rate, and grade classification of rotten

peanuts for all predicted images. The numbers of non-rotted and
FIGURE 5

YOLOv5s architecture diagram with added Shuffle Attention module.
FIGURE 6

Implementing the peanut pod rot grading system in PyCharm.
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rotten peanuts are shown in the second and third columns,

respectively. The rotten pod rate is shown in the fifth column.

The grade of individual rotten peanuts, as decided by the grading

criteria, is shown in the sixth column. The formula for calculating

the rotten pod rate is shown in Equation (6):

Rotten pod rate

=
Number Rotten

Number Non − rotted + Number Rotten
(6)

Where, Number Rotten refers to the number of rotten peanuts;

Number Non-rotted refers to the number of non-rotted peanuts.
3 Results

3.1 Model specification

CUDA 11.3 and cuDNN8.0 were the network training

environments used in this study. A 12GB NVIDIA RTX3070Ti

was used as the training accelerator. Facebook’s open-source deep

learning framework Python 1.11.0 was employed as the

development environment, and the programming language used

was Python 3.9.7. Adaptive Moment Estimation (Adam) was used
Frontiers in Plant Science 08
to automatically modify the learning rate and solve the gradient

vanishing problem, which allowed the model to converge faster and

perform better. Table 1 displays the parameter configuration of the

training model.
3.2 Evaluation indicator

This study utilized two methods, visual evaluation, and

quantitative comparison, to evaluate the grading performance.

Visual evaluation is a common way to visually compare and

evaluate the detection results. In quantitative analysis, the

evaluation indicators are Precision (P), Average Precision (AP),

mean Average Precision (mAP), and Comparison Precision (CP).

The calculations of the three indicators are shown in Equations (7)–

(9):

P =
TP

TP + FP
� 100% (7)

mAP = o
2
n=1AP(n)

2
� 100% (8)

CP =
AS
RS

� 100% (9)

Where, TP is the quantity of label boxes for non-rotted and

rotten peanuts that accurately match the prediction boxes. FP is the

number of prediction boxes containing inaccurate forecasts. P is the

percentage of non-rotted and rotten peanuts that were accurately

identified in each prediction box. AP represents the average

Precision value of each category. mAP represents the average

Precision value of all categories. AS (Automatic Statistics)

represents the number of images where the model correctly
B

C

A

FIGURE 7

Comparison of recognition results of four models. (A) No adhesion; (B) Slight adhesion; (C) Severe adhesion.
TABLE 1 Parameter configuration of training model.

Parameter Value

Num class 2

Epoch 200

Batch size 32

Initial learning rate 0.01
frontiersin.org

https://doi.org/10.3389/fpls.2024.1364185
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2024.1364185
identifies non-rotted and rotten peanuts in the image. RS (Realistic

Statistics) represents the actual number of images of different types.

CP represents the comparison precision.
3.3 Experiment result analysis

Plant phenotypic detection makes extensive use of object

detection. In order to compare the detection performance of

YOLOv5s-ES on peanut images, this study used three YOLO-

based object detection models, i.e. YOLOv5s, YOLOv8n, and

YOLOv8s. Comparative experiments were carried out under the

conditions of no adhesion, slight adhesion, and severe adhesion to

validate the improving effect of the model. Comparative

experiments aid in understanding the differences in performance

between different models and drive future improvements to object

detection algorithms. Simultaneously, code availability and

repeatability were taken into consideration to assure the

dependability and reproducibility of the experiment. Figure 7

depicts the identification results of each model under various

adhesion situations.
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Figure 7A depicts a peanut image with no adhesion. It can be seen

that the four models all had good recognition performance, achieving

proper recognition with no omissions or errors. Figure 7B depicts a

peanut image with slight adhesion, and the recognition ability of the

three unimproved models all dropped. YOLOv8n missed two

peanuts, and YOLOv5s missed one. Although YOLOv8s

distinguished all the peanuts, the accuracy of the prediction box

was low, and a single peanut pod was not marked. Figure 7C depicts a

peanut image with severe adhesion. The identification ability of the

other three models was considerably diminished, with the exception

of the YOLOv5s-ES model. YOLOv8n missed 4 peanuts, with low

prediction accuracy. YOLOv5s missed 3, with a relatively high

accuracy of the prediction box. Although YOLOv8s recognized all

the peanuts, the accuracy of the prediction box was extremely low,

with cases of repeated and incorrect recognition. The YOLOv5s-ES

model recognized all the peanuts correctly, with only one prediction

box being inaccurately labeled. It can be concluded that the improved

model YOLOv5s-ES effectively solved the problems that other three

algorithms encountered when predicting images, and had the

feasibility of grading peanut pod rot in practical applications.

The SA module was introduced to the YOLOv5s-ES model and

the loss function CIoU was replaced with EIoU. Ablation

experiments were carried out on the YOLOv5s-ES model to

confirm the efficacy of the enhanced model. The experimental

outcomes are displayed in Table 2, the mAP values represent the

average results of five-fold cross-validation.

The mAP of the model increased by 2.5% after the SA module

was introduced to the YOLOv5s backbone network, as shown in

Table 2. The mAP increased by 1.3% after improving the loss

function of the original model. After incorporating both

improvements into the model, the value of mAP reached 92.4%,
frontiersin.o
TABLE 2 Data comparison between the three enhanced models
and YOLOv5s.

No. Added SA Module EIoU mAP/% P-value/%

1 × × 86.2 /

2 √ × 88.7 0.544

3 × √ 87.5 3.759

4 √ √ 92.4 0.002
FIGURE 8

Visual comparison between the three enhanced models and YOLOv5s.
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6.2% higher than that of YOLOv5s. In order to be more convincing,

this study verified whether the differences between the algorithm

variants were statistically significant and calculated the

corresponding P-values. The results showed that the P-values of

the three variants of the algorithms were less than 5%, which proved

that each improvement was significantly correlated to the

improvement of the detection performance. Based on this, the

effectiveness of the improved model can be verified.

This study aims to enhance the performance of a peanut image

recognition model, particularly under complex background

conditions, through two key improvements. To assess the

effectiveness of these enhancements, three groups of high-yield

peanut images, which demonstrated superior recognition

capabilities in preliminary experiments, were selected as cases.

These images encompass rich background information and typical

challenges such as mutual occlusion and environmental noise.

The comparison of the visualization results of the ablation

experiment in Figure 8 reveals the effectiveness of the model

improvement. By integrating the SA (Spatial Attention) mechanism,

themodel focusesmore on key areas when processing peanut images in

complex backgrounds, significantly reducing the missed detection and

false detection rates of the model, especially in cases where peanut
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leaves and roots are mixed or adhered to each other, improving the

accuracy and robustness of recognition. Furthermore, themodel adopts

the EIoU loss function instead of the traditional IoU loss, which

increases the comprehensive consideration of the target shape, size,

and center point, improves the accuracy of bounding box positioning,

and is crucial for the accurate classification of peanut fruit rot.
3.4 Comparative experiments between
multiple algorithms

Based on the RS values and AS values of the four models, the CP

values were calculated to validate the identification performance of

the enhanced model on a solitary image. The AS value indicates the

number of images in which the algorithm properly distinguished

non-rotted and rotten peanuts in the image. The RS value indicates

the number of images with severe adhesion, slight adhesion, and no

adhesion. One hundred and fifty images of peanuts were chosen at

random for the validation dataset of the experiment, with 50 images

for each adhesion type. Four models - YOLOv5s, YOLOv5s-ES,

YOLOv8n, and YOLOv8s - were used to identify the 150 images.

The numbers of images for non-rotted and rotten peanuts that can
TABLE 3 Comparison accuracy value comparison of different algorithms.

YOLOv5s YOLOv5s-ES YOLOv8n YOLOv8s

AS1 RS CP1/% AS2 RS CP2/% AS3 RS CP3/% AS4 RS CP4/%

No 50 50 100 50 50 100 49 50 98 50 50 100

Slight 42 50 84 46 50 92 40 50 80 42 50 84

Severe 38 50 76 46 50 92 36 50 72 39 50 78

Total 130 150 86.67 142 150 94.67 125 150 83.33 131 150 87.33
fron
FIGURE 9

Statistical graph of non-rotted and rotten peanuts identified by four different models.
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be successfully identified via the four models were recorded as AS1,

AS2, AS3 and AS4. The corresponding CP1, CP2, CP3 and CP4 were

calculated as well. Table 3 displays the comparison precision values

of the four models.

Due to the relatively simple identification of peanut images with

no adhesion, more attention was paid to comparing the prediction

results of images with slight and severe adhesions. The comparison

precision of the four models was 84%, 92%, 80%, and 84%, for the

images with slight adhesion and 76%, 92%, 72%, and 78% for the

images with severe adhesion, respectively. When it came to

prediction performance, YOLOv5s-ES outperformed the three

unaltered models with an improvement in the case of slight

adhesion and a significant improvement in the case of

severe adhesion.

To confirm the enhanced model’s capacity to distinguish

between non-rotted and rotten peanuts, 100 peanut images

containing a higher proportion of rotten peanuts - a total of 563
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non-rotted ones and 337 rotten ones - were chosen for

identification using the four models. Statistical analysis was

performed to determine how many rotten and non-rotted

peanuts were identified, and the results were illustrated in Figure 9.

Figure 9 illustrates that YOLOv8s identified non-rotted peanuts

with a high recognition rate of 90.76%, but only 83.98% for rotten

peanuts, the recognition rate of YOLOv5s is basically the same as

YOLOv8s. This is due, in part, to an imbalance in the sample size

between non-rotted and rotten peanuts, which limited the

information available for model learning about rotten peanuts.

However, some rotten pods shared coloration with rotten stems,

roots, and leaves, making identification more challenging.

YOLOv8n had a moderate recognition rate and a significantly

weaker capacity to distinguish between rotten and non-rotted

peanuts, this model had an overall recognition rate of about 83%.

The above data is essentially in line with the comparison precision

values listed in Table 3. The enhanced YOLOv5s-ES model can

identify rotten peanuts with a recognition rate of 90.8% and non-

rotted ones of 95.74%. The enhanced model considerably enhanced

the capacity to identify rotten peanuts and had a slight

improvement in identifying non-rotted ones.

To further illustrate the superiority of the algorithm proposed in

this study, four models were compared for mAP change curves on

the same dataset. The mAP change curve during training is

displayed in Figure 10. It can be seen that YOLOv5s, YOLOv8n,

YOLOv8s, and YOLOv5s-ES had mAP values of 85.7%, 84.7%,

85.9%, and 92.4%, respectively. The convergence rates of all four

curves were incredibly quick, and the three unimproved models

achieved fitting with around 75 epochs. Excessive data fitting may

result in unstable model parameters. When there is some

randomness or fluctuation in the data, the model may update

parameters excessively to accommodate these changes, resulting

in inconsistent model performance. Instability may affect the

model’s reliability and interpretability, resulting in poor

performance in practical applications since it cannot catch

potential patterns and overall trends in the data. After 100

epochs, the mAP of YOLOv5s-ES hit 91.4% and tended to
FIGURE 10

Comparison curve of mean Average Precision values of
different algorithms.
FIGURE 11

Comparison of Precision (%) for five-fold cross-validation of
four models.
FIGURE 12

Comparison of Recall (%) for five-fold cross-validation of
four models.
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stabilize, eventually achieving 92.4%. It can be concluded that the

enhanced model leveraged the likelihood of capturing real patterns

and overall trends in the data, rather than unnecessarily responding

to the noise and intricacies of the training data. In this way, the

generalization ability of the model can be promoted on unknown

data, making it more suitable for practical applications.

To address the potential inaccuracies in assessment results that

might arise from a single dataset split, a five-fold cross-validation

study was conducted on four different models. Precision and Recall

values from five separate trials were collected and averaged. The
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results of the five-fold cross-validation for both metrics are

presented in Figures 11 and 12. The data in the figures reveal

only minor fluctuations in the model’s recognition capabilities

across the five randomly partitioned datasets, confirming the

model’s robust generalization performance in identifying peanut

fruit rot disease. The Precision of the improved model YOLOv5s-ES

was 93.8%, 7.8%, 8.7%, and 7.3% higher than YOLOv5s, YOLOv8n,

and YOLOv8s, respectively. The Recall value was 90.7%, which

increased by 5.7%, 7.7%, and 4.8% than the other three models,

respectively. As shown in Table 4.
4 Discussions

Peanut pod rot causes fruit degradation and yield loss, making

prevention and management difficult and potentially transmittable.

Grade classification of peanut pod rot allows for the evaluation of

disease resistance, the selection of outstanding germplasm

resources, and the promotion of breeding improvement. This

study suggests an object detection approach based on YOLOv5s-
FIGURE 13

Two types of misidentification present in the improved model.
TABLE 4 Comparison of precision and recall metrics across four models
using five-fold cross-validation.

Model YOLOv5s
YOLOv5s-

ES
YOLOv8n YOLOv8s

Precision
(%)

86.0 93.8 85.1 86.5

Recall
(%)

85.0 90.7 83.0 85.9
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ES in response to the drawbacks of manual classification, which can

successfully increase the efficacy and precision of pod rot grading

and eventually replace conventional manual classification.

Although this study is of great significance in addressing pod rot

grading, there are certain concerns that require additional research

and analysis.

The improved YOLOv5s-ES model may encounter

misidentification during prediction. Two typical examples are

shown in Figure 13.

In Figure 13A, the model accurately identified and labeled the

rotten peanut, but incorrectly identified the peanut as a non-rotted

one and repeated labeling, leaving the model unable to differentiate

between the non-rotted and rotten types of the peanut. One

reasonable explanation on the one hand is the insufficient

debugging of the model parameter threshold, which makes it

hard for the model to reliably identify whether this type of peanut

belongs to non-rotted or rotten. Based on this, improvement can be

achieved through parameter adjustment, threshold modification,

etc. On the other hand, some peanut pods have a moderate degree

of decay, making it hard to distinguish between the non-rotted and

rotten types solely based on phenotypic sampling. In this case,

semantic segmentation methods can be introduced. Specifically, the

diseased area of each peanut is calculated, the proportion of which

can be used to determine whether the pod belongs to a rotten one.

In this way, the problem can be solved using the judgment results of

semantic segmentation combined with object detection algorithms.

In Figure 13B, a peanut pod was mistakenly identified as two

pods, meaning that the model labeled a valencia type peanut as a

double-kernal one and a single-kernal one during prediction. This

error tends to happen when the sample size is insufficient. During

training, the model identified a small number of valencia type

peanuts, so that when new valencia type peanuts appeared, the

entire pod could not be correctly identified and was misjudged as

two or more double-kernal and single-kernal pods. Increasing the

sample size, especially the images of valencia type peanuts, is an

effective way to solve such recognition errors.

Furthermore, after being infected with peanut pod rot, some

peanut pods only form a thin coating of decay on the surface, leaving

the kernels unaffected. As a result, the impact on peanut yield

includes the rotten kernel rate. The degree of pod rot was used to

classify peanut pod rot in this study, and the rotten kernel rate was

not considered. As a result, the projected data has a poor practical

application value in yield estimation, which is a shortcoming of

machine vision-based pod rot grade classification. In order to ensure

that the design scheme can be used effectively in more aspects, greater

attention may be paid to the grading of peanut pod rot under the dual

factors of rotten pod rate and rotten kernel rate.

Moreover, due to the differences in pod rot among various

peanut varieties and the lack of relevant samples, this study cannot

predict whether the model’s recognition capability for images of

other peanut varieties will decrease. In order to overcome the

aforementioned drawbacks, we will expand the sample size of

different kinds of peanuts, conduct transfer learning across

different varieties with the model , combine semantic

segmentation methods, and enhance the model’s performance.

First, we will ascertain whether a single peanut has pod rot. Then,
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the peanut pods in the image will be annotated using object

identification methods to improve the accuracy of the results. To

further increase prediction accuracy and visibility, it is feasible to

introduce an instance segmentation algorithm and confirm its

benefits in extreme peanut adhesion scenarios. Additionally, data

on peanut pod rot in complex environments should be analyzed

concurrently to strengthen the resilience of the model and make it

more applicable to peanut plants in various conditions

and cultivars.
5 Conclusions

Starting with the relevance of grading individual peanut pod rot,

this study employed the Jinongxian No.1 peanut as the

experimental object in the field management planting base. To

address the inadequacies of the current grade classification for

peanut pod rot, a machine vision-based method was proposed

using a modified loss function and feature extraction backbone

network of the YOLOv5s algorithm.

(1) The SA module was introduced to the YOLOv5s network as

the main framework to overcome problems like adhesion and

obstruction in the dense development of certain peanut plants,

which are vulnerable to interference from roots, stems, and leaves.

The feature extraction ability of the network for identifying non-

rotted and rotten peanuts was enhanced by substituting the EIoU for

the CIoU in the original network in response to the sample imbalance

problem caused by the fact that the number of non-rotted pods is

much higher than the number of rotten pods in actual situations.

(2) With a Precision value of 93.8%, the improved model

YOLOv5s-ES outperformed YOLOv5s, YOLOv8n, and YOLOv8s

by 7.8%, 8.4%, and 7.3%, respectively. Its mAP value was 92.4%,

outperforming YOLOv5s, YOLOv8n, and YOLOv8s by 6.7%, 7.7%,

and 6.5%, respectively. With a non-rotted pods recognition rate of

95.74% and a rotten pods recognition rate of 90.8%, the comparison

precision reached 94.67%, satisfying the requirements of

exact recognition.

(3) With the addition of a grade classification module after the

Prediction network, this study realized the calculation of the

number of non-rotted and rotten peanuts as well as the rotten

pod rate in the images. The results were then written into a.txt file.

The grading of pod rot can be completed by adding the grade

classification module to the YOLOv5s-ES model, which allows the

database to read text files and record the number of non-rotted and

rotten peanuts, the rotten pod rate, and the grading of pod rot.

In conclusion, the improved model proposed in this study will

help the automatic grade classification of individual peanut pod rot

in practical prediction applications, facilitating in the screening of

superior germplasm resources and peanut breeding.
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