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Editorial on the Research Topic 


Root structure and function adapting to climate change


Global climate change has had a profound impact on ambient temperatures and on the amount and seasonal distribution of rainfall, leading to a reduction in soil moisture and an exacerbation of heatwaves (IPCC, 2007). Projections indicate that by the end of the century, temperatures are expected to rise by 2.6 to 4.8°C compared to current levels (The Royal Society and National Academy of Sciences, 2020). In addition to increases in temperature and reduction in precipitation, atmospheric CO2 concentrations are also on the rise. The increased frequency of extreme weather events, such as soil warming, droughts, flooding, heatwaves, and wildfires, is contributing to a challenging environment for crop production and ecosystem management (Pugnaire et al., 2019; Calleja-Cabrera et al., 2020; IPCC, 2007; Lynch and Brown, 2012; Chen et al., 2015; Hazman and Brown, 2018; Malhi et al., 2020 Muluneh, 2021). Effectively addressing these challenges requires the implementation of mitigation measures, including the identification of genetic diversity, fostering adaptive phenotypic plasticity, and developing new crop varieties (Anderson and Song, 2020; Malhi et al., 2020; Brooker et al., 2022). This approach is crucial for enhancing the resilience of crops and ecosystems in the face of ongoing climate changes.

The plant root system serves as the primary organ responsible for foraging and acquiring nutrients and water from the soil, making it the initial and most sensitive target of climate change (Lynch and Brown, 2012; Chen et al., 2015). However, both the form and function of a root system are susceptible to changes in the environment (Hazman and Brown, 2018; Brooker et al., 2022). Understanding how the form and function of a root system contribute to plant growth, development, and productivity under various environmental stresses is crucial, especially given the vulnerability of root systems to changing conditions and the intricate interplay of these factors.

The root growth response to soil water availability was assessed in the field in 200 soybean accessions over a span of three years (Bui et al.). The investigation evaluated genetic variation in root morphological traits during the early growth stage and identified key root traits, such as root dry weight, total root length and root volume, contributing to improve water use efficiency. Traits such as root average diameter, number of root tips, and secondary lateral root density responded early to irrigation conditions. The studies also identified certain genotypes that demonstrated both high stability and strong growth performance across different water treatments and years, suggesting a robust root system of soybean varieties under varying soil moisture conditions.

In a Polyethylene Glycol (PEG)-6000-induced water stress experiment, 19 genes were identified directly participating in abscisic acid (ABA) metabolism, suberization, and aquaporin activity (Kim and Sung). The study suggests that there is a sophisticated regulation of the drought tolerance mechanisms in rice roots, extending up to the permanent wilting point (−1.5 MPa). ABA metabolism, suberization, and aquaporin activity may function independently and/or concurrently as a survival strategy against drought. The deposition of abundant suberin lamellae, coupled with passive water absorption facilitated by activated aquaporins and aerenchyma development, suggests that rice roots play a role in enhancing water retention within cells. These findings provide insight into the intricate regulatory networks governing water-associated mechanisms in rice under conditions of limited water availability.

A split-root systems with vertically partitioned water and nutrient availability was used to grow perennial grass Panicum virgatum aiming to determine how root systems specialize in acquiring multiple resources (Glass et al.). The differential responses in root elongation, root surface area, and branching, demonstrated the relationship between root form and function, indicating that the main function of the primary root system is for water acquisition while the function of lateral branches is nutrient uptake. Despite similar root elongation rates and root mass accumulation, the results highlight the existence of differential root functioning within perennial grasses, suggesting a fundamental relationship observed in various plant functional types. These differential root responses to resource availability need to be incorporated into root growth models through parameters such as maximum root length and branching interval.

Developing nutrient-use efficient rice lines, particularly in the context of changing climate and depleting resources, is vital. The study of Padmashree et al. phenotyped 118 rice lines for seedling vigor, root-related traits, and yield under both irrigated and aerobic conditions. Based on SSR markers, genome-wide association studies (GWAS) were conducted to identify marker-trait associations (MTAs). Significant correlations were found between root traits, seedling vigor, and yield-related traits. The study identified consistent MTAs on chromosomes 2, 3, and 12, with functional genes related to transcription factors, auxin carriers, and amino acid transporters. The highlighted rice lines with desirable traits can be utilized in breeding programs to improve seedling vigor, yield-related traits under different conditions, and adaptability to water-saving technologies.

This Research Topic provides insights into the recent knowledge regarding the response and adaptation of root systems to the dynamic interplay of changing climates, in particular drought stress. It explored the intricate relationship between the form and function of root systems and their role in plant resilience, development, and productivity under the stresses imposed by environmental changes.
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Editorial on the Research Topic


Root structure and function adapting to climate change

Global climate change has had a profound impact on ambient temperatures and on the


amount and seasonal distribution of rainfall, leading to a reduction in soil moisture and an


exacerbation of heatwaves (IPCC, 2007). Projections indicate that by the end of the century,


temperatures are expected to rise by 2.6 to 4.8°C compared to current levels (The Royal


Society and National Academy of Sciences, 2020). In addition to increases in temperature


and reduction in precipitation, atmospheric CO2 concentrations are also on the rise. The


increased frequency of extreme weather events, such as soil warming, droughts, flooding,


heatwaves, and wildfires, is contributing to a challenging environment for crop production


and ecosystem management (Pugnaire et al., 2019; Calleja-Cabrera et al., 2020; IPCC, 2007;


Lynch and Brown, 2012; Chen et al., 2015; Hazman and Brown, 2018; Malhi et al., 2020


Muluneh, 2021). Effectively addressing these challenges requires the implementation of


mitigation measures, including the identification of genetic diversity, fostering adaptive


phenotypic plasticity, and developing new crop varieties (Anderson and Song, 2020; Malhi


et al., 2020; Brooker et al., 2022). This approach is crucial for enhancing the resilience of


crops and ecosystems in the face of ongoing climate changes.


The plant root system serves as the primary organ responsible for foraging and


acquiring nutrients and water from the soil, making it the initial and most sensitive


target of climate change (Lynch and Brown, 2012; Chen et al., 2015). However, both the


form and function of a root system are susceptible to changes in the environment (Hazman


and Brown, 2018; Brooker et al., 2022). Understanding how the form and function of a root


system contribute to plant growth, development, and productivity under various


environmental stresses is crucial, especially given the vulnerability of root systems to


changing conditions and the intricate interplay of these factors.


The root growth response to soil water availability was assessed in the field in 200


soybean accessions over a span of three years (Bui et al.). The investigation evaluated


genetic variation in root morphological traits during the early growth stage and identified


key root traits, such as root dry weight, total root length and root volume, contributing to


improve water use efficiency. Traits such as root average diameter, number of root tips, and


secondary lateral root density responded early to irrigation conditions. The studies also
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identified certain genotypes that demonstrated both high stability


and strong growth performance across different water treatments


and years, suggesting a robust root system of soybean varieties


under varying soil moisture conditions.


In a Polyethylene Glycol (PEG)-6000-induced water stress


experiment, 19 genes were identified directly participating in


abscisic acid (ABA) metabolism, suberization, and aquaporin


activity (Kim and Sung). The study suggests that there is a


sophisticated regulation of the drought tolerance mechanisms in


rice roots, extending up to the permanent wilting point (−1.5 MPa).


ABA metabolism, suberization, and aquaporin activity may


function independently and/or concurrently as a survival strategy


against drought. The deposition of abundant suberin lamellae,


coupled with passive water absorption facilitated by activated


aquaporins and aerenchyma development, suggests that rice roots


play a role in enhancing water retention within cells. These findings


provide insight into the intricate regulatory networks governing


water-associated mechanisms in rice under conditions of limited


water availability.


A split-root systems with vertically partitioned water and


nutrient availability was used to grow perennial grass Panicum


virgatum aiming to determine how root systems specialize in


acquiring multiple resources (Glass et al.). The differential


responses in root elongation, root surface area, and branching,


demonstrated the relationship between root form and function,


indicating that the main function of the primary root system is for


water acquisition while the function of lateral branches is nutrient


uptake. Despite similar root elongation rates and root mass


accumulation, the results highlight the existence of differential


root functioning within perennial grasses, suggesting a


fundamental relationship observed in various plant functional


types. These differential root responses to resource availability


need to be incorporated into root growth models through


parameters such as maximum root length and branching interval.


Developing nutrient-use efficient rice lines, particularly in the


context of changing climate and depleting resources, is vital. The


study of Padmashree et al. phenotyped 118 rice lines for seedling


vigor, root-related traits, and yield under both irrigated and aerobic


conditions. Based on SSR markers, genome-wide association studies


(GWAS) were conducted to identify marker-trait associations


(MTAs). Significant correlations were found between root traits,


seedling vigor, and yield-related traits. The study identified


consistent MTAs on chromosomes 2, 3, and 12, with functional


genes related to transcription factors, auxin carriers, and amino acid


transporters. The highlighted rice lines with desirable traits can be


utilized in breeding programs to improve seedling vigor,
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yield-related traits under different conditions, and adaptability to


water-saving technologies.


This Research Topic provides insights into the recent


knowledge regarding the response and adaptation of root systems


to the dynamic interplay of changing climates, in particular drought


stress. It explored the intricate relationship between the form and


function of root systems and their role in plant resilience,


development, and productivity under the stresses imposed by


environmental changes.
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