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This paper presents a robust deep learning method for fruit decay detection and

plant identification. By addressing the limitations of previous studies that

primarily focused on model accuracy, our approach aims to provide a more

comprehensive solution that considers the challenges of robustness and limited

data scenarios. The proposed method achieves exceptional accuracy of 99.93%,

surpassing established models. In addition to its exceptional accuracy, the

proposed method highlights the significance of robustness and adaptability in

limited data scenarios. The proposed model exhibits strong performance even

under the challenging conditions, such as intense lighting variations and partial

image obstructions. Extensive evaluations demonstrate its robust performance,

generalization ability, and minimal misclassifications. The inclusion of Class

Activation Maps enhances the model’s capability to identify distinguishing

features between fresh and rotten fruits. This research has significant

implications for fruit quality control, economic loss reduction, and applications

in agriculture, transportation, and scientific research. The proposed method

serves as a valuable resource for fruit and plant-related industries. It offers

precise adaptation to specific data, customization of the network architecture,

and effective training even with limited data. Overall, this research contributes to

fruit quality control, economic loss reduction, and waste minimization.
KEYWORDS

convolutional neural networks, fruit quality control, deep learning, class activation
maps, data augmentation, model generalizability, robustness
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1 Introduction

Fruit decay detection and plant identification are crucial aspects

in agricultural and horticultural practices, playing a significant role

in ensuring crop quality, disease control, and overall productivity

(Pessarakli, 1994; Jayasena et al., 2015). Detecting fruit decay

accurately and in a timely manner minimizes post-harvest losses,

ensures food safety, and optimizes storage and distribution

processes (Pessarakli, 1994). Additionally, early detection allows

for prompt actions such as sorting and removal, preventing the

spread of diseases and preserving the quality of the remaining fruits

(Pessarakli, 1994).

Automated fruit decay detection systems based on computer

vision and machine learning techniques have demonstrated

promising results in terms of accuracy, speed, and cost-

effectiveness (Jayasena et al., 2015; Boulent et al., 2019;

Lakshmanan, 2019). These systems contribute to reducing post-

harvest losses, optimizing storage conditions, and enhancing the

overall efficiency of the fruit supply chain.

Plant identification is equally important and serves various

purposes in agricultural practices. Accurate identification of plant

species and cultivars aids in selecting appropriate varieties for specific

environments, optimizing cultivation techniques, and improving

agricultural practices (Barbedo, 2018; Wäldchen and Mader, 2018).

Furthermore, plant identification plays a vital role in effective pest

management by enabling timely and targeted application of control

measures (Ferentinos, 2018). It also contributes to biodiversity

conservation efforts by facilitating the monitoring and preservation

of endangered plant species (Kaur and Kaur, 2019).

Technological advancements, particularly in computer vision,

machine learning, and image processing, have greatly facilitated

fruit decay detection and plant identification (Barbedo, 2018;

Boulent et al., 2019). Computer vision techniques, including

feature extraction, pattern recognition, and deep learning

algorithms, have proven to be highly effective in automating these

tasks. By analyzing images or sensor data captured from fruits or

plants, these systems accurately identify signs of decay and classify

plant species, even in large-scale agricultural settings

(Goodfellow, 2016).

In summary, fruit decay detection and plant identification hold

paramount importance in agricultural and horticultural practices.

The ability to promptly and accurately detect fruit decay minimizes

post-harvest losses and ensures food safety. Similarly, precise plant

identification contributes to cultivar selection, pest management,

and biodiversity conservation. The integration of computer vision

and machine learning techniques has opened up new avenues for

developing automated systems that enhance the efficiency,

productivity, and sustainability of agricultural processes (Jayasena

et al., 2015; Barbedo, 2018; Ferentinos, 2018; Wäldchen and Mader,

2018; Boulent et al., 2019; Kaur and Kaur, 2019).
1.1 The importance of fruit decay detection

In the field of artificial intelligence and deep learning, the

detection and analysis of fruit decay and plant identification hold
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significant importance. Fruit decay is recognized as one of the major

challenges in the agricultural product supply chain and the

agriculture industry. This decay not only has negative effects on

human health and nutrition but also poses a serious problem in the

management of agricultural product supply chains. Fruit decay

results in significant losses of agricultural products, leading to

substantial economic damages for producers and various

industries (Brownlee, 2018a; Lewis, 2022; Norman, 2019).

To address these challenges, the use of advanced technologies,

such as convolutional neural networks (CNNs) and deep learning

algorithms, has gained considerable attention. These techniques

offer the potential to develop intelligent models capable of

accurately detecting and classifying spoiled fruits with high

precision and accuracy. By leveraging the power of artificial

intelligence, it becomes possible to enhance fruit quality control,

improve supply chain management, and minimize economic losses

caused by fruit decay. This article aims to explore the application of

CNNs and deep learning techniques in fruit decay detection and

plant identification. It provides an overview of the importance of

distinguishing between spoiled and non-spoiled fruits, highlighting

the negative impacts on human health, nutrition, and the

management of agricultural product supply chains (Shahid, 2019;

Lewis, 2022). The research presented in this article draws upon

previous studies and developments in the field of artificial

intelligence and deep learning, with a focus on addressing the

challenges associated with fruit decay detection (Sonwani et al.,

2022). By examining the existing literature and presenting empirical

evidence, this article aims to contribute to the body of knowledge on

fruit decay detection and its significance in the agricultural industry.

The findings of this research have implications for improving fruit

quality, optimizing supply chain processes, and minimizing

economic losses for producers and stakeholders in the

agriculture sector.
1.2 The need for a better model

Extensive research has been conducted in the field of fruit

detection and imaging using convolutional neural networks

(CNNs). These studies aim to develop more accurate methods for

distinguishing between spoiled and healthy fruits. However, some

of these research efforts have not yielded satisfactory results due to

limitations and shortcomings. Therefore, there is a need to enhance

and improve existing models in this area. The model presented in

this article incorporates enhancements and innovations that

provide a better response to the requirements of fruit decay

detection. The existing models in fruit decay detection have faced

challenges related to accuracy and performance. Some models

struggled to accurately classify fruits based on their decay level or

distinguish between different types of spoilage. These limitations

have hindered the effectiveness of fruit quality control and supply

chain management processes. Consequently, there is a demand for a

more robust and efficient model that can address these

shortcomings and deliver improved results.

The model proposed in this article introduces several

advancements to overcome the limitations of previous
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approaches. It leverages state-of-the-art CNN architectures to

improve the accuracy of fruit decay detection. Additionally, novel

data augmentation techniques are employed to enhance the model’s

ability to generalize and adapt to different fruit varieties and decay

patterns. To validate the effectiveness of the proposed model,

extensive experiments conducted using datasets comprising

various fruit types and decay stages. The results demonstrate

significant improvements in the accuracy and reliability of fruit

decay detection compared to previous methods. The enhanced

model is not only achieving higher precision in classifying spoiled

and non-spoiled fruits but also exhibits robustness in real-world

scenarios, making it a practical solution for fruit quality control and

supply chain optimization. With its superior accuracy, this new

network can perform effectively and adapt well in various

conditions, offering precise and customized performance.
2 Related work

CNNs are a class of deep learning models specifically designed

to analyze and extract meaningful features from images (Alex et al.,

2012; Simonyan and Zisserman, 2014). They have achieved

remarkable success in various computer vision tasks, including

image classification, object detection, and semantic segmentation.

The hierarchical nature of CNNs allows them to excel in image

classification tasks. By learning increasingly complex features

through multiple layers, CNNs can effectively differentiate

between different objects or classes in images (Alex et al., 2012).

This capability makes CNNs particularly valuable in applications

such as image recognition and categorization.

Furthermore, CNNs have shown great potential in semantic

segmentation, where the goal is to assign a class label to each pixel in

an image. Fully convolutional networks (FCNs), an extension of

CNNs, have been specifically designed for this task and have

achieved impressive results (Long et al., 2015). FCNs preserve

spatial information throughout the network, enabling pixel-wise

predictions and facilitating accurate segmentation of objects and

regions within images.

In summary, Convolutional Neural Networks have

revolutionized image processing and object detection. Their

ability to automatically learn hierarchical representations from

images, combined with their flexibility in handling various

computer vision tasks, has made CNNs indispensable in the field.

By leveraging the power of deep learning, CNNs have significantly

advanced image understanding, object localization, and semantic

segmentation (Girshick et al., 2014).

In the field of image processing, and Fruit Decay Detection

several deep learning architectures have made significant

contributions. Here, let’s compare some of the most important

deep learning models specifically relevant to image processing:

Convolutional Neural Networks (CNNs): CNNs have become the

cornerstone of image processing tasks. They excel at capturing

spatial hierarchies and local features through convolutional layers.

CNNs have achieved remarkable success in image classification,

object detection, image segmentation, and various other computer

vision tasks (LeCun et al., 2015). One of the most influential CNN
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architectures is the VGGNet, which introduced deeper networks

with smaller filters, showcasing impressive performance

(Simonyan and Zisserman, 2014).

Residual Neural Networks (ResNets) addressed the challenge of

training very deep neural networks by introducing skip

connections. These connections enable the network to learn

residual mappings, allowing for the training of deeper

architectures without degradation in performance. ResNets

demonstrated superior performance in image classification and

won the ImageNet challenge in 2015 (He et al., 2016). U-Net is a

popular architecture for image segmentation tasks, particularly in

biomedical image analysis. It consists of an encoder-decoder

structure with skip connections that enable precise localization of

segmentation boundaries. U-Net has been widely adopted in tasks

such as medical image segmentation, cell counting, and semantic

segmentation (Ronneberger et al., 2015; JananiSBabu, 2020).

Generative Adversarial Networks (GANs) have had a significant

impact on image generation and synthesis. They consist of a

generator network that produces synthetic images and a

discriminator network that distinguishes between real and

generated images. GANs have been successful in generating

realistic images, image-to-image translation, and style transfer

tasks (Goodfellow et al., 2014). An influential GAN architecture is

the Progressive Growing of GANs (PGGAN), which progressively

grows the resolution of generated images, resulting in high-quality

outputs (Karras et al., 2018). EfficientNet is a deep learning

architecture that has gained attention for its impressive

performance and efficiency. It uses a compound scaling method

to balance model size and computational resources, achieving state-

of-the-art results with fewer parameters. EfficientNet has shown

remarkable performance in image classification tasks, surpassing

previous models while being computationally efficient (Tan and Le,

2019). These are just a few examples of influential deep learning

architectures in image processing and Fruit Decay Detection. It’s

worth noting that the field is continually evolving, and new

architectures are being introduced regularly, pushing the

boundaries of image analysis and understanding.
2.1 Fruit decay detection using CNNs

Several studies have explored the application of convolutional

neural networks (CNNs) in fruit decay detection. These studies aim

to develop intelligent models capable of accurately distinguishing

between spoiled and healthy fruits based on image analysis (Selvaraj

et al., 2019).

One notable research effort by Zhang et al. (2020) utilized a

CNN model to detect fruit decay in apples. The model achieved a

high accuracy of 94.5% in classifying healthy and decayed apples.

However, this study focused on a specific fruit type and did not

consider other varieties or spoilage types (Fan et al., 2020).

Another study by Li et al. (2019) employed a deep learning

model based on a pre-trained CNN architecture to classify different

types of fruit decay. The model achieved an accuracy of 92.7% in

detecting four kinds of fruit decay. However, this research also

focused on a limited range of fruit types and spoilage categories.
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The other study proposed DeepFruits, where is a fruit detection

system using deep neural networks (Sa et al., 2016). DeepFruits is a

notable model developed for fruit detection, which capitalizes on

convolutional neural networks (CNNs) and transfer learning

through VGG16 network architecture. The system also includes

image preprocessing algorithms and neural networks for decision-

making, amplifying its performance. Nevertheless, the DeepFruits

model encounters challenges with images captured under varying

environmental conditions. Those indicates potential performance

disruptions when processing photos taken under diverse lighting

conditions, backgrounds, or perspectives. Also, the model

necessitates abundant training data and considerable

computational resources, which might restrict its practical

application. DeepFruits represents a significant stride in fruit

detection using deep neural networks, but its limitations

necessitate further research to augment its robustness in diverse

environmental settings (Sa et al., 2016). Another study addresses the

challenges in cauliflower disease identification and detection,

emphasizing the role of advanced deep transfer learning

techniques in automating the process and benefiting agricultural

management (Kanna et al., 2023).

FruitDetect is the other model that detects fruit using

convolutional neural networks. FruitDetect exploits a

convolutional neural network (CNN) and transfer learning with

VGG16 to detect and identify fruits. Despite demonstrating

accurate fruit detection, the model’s limitations include a

potential need for larger training datasets to enhance its final

accuracy (Faouzi, 2021).

The project “Melanoma Detection using ResNet50” leverages

the ResNet50 neural network for melanoma detection. Despite its

accurate detection of melanoma, the model might struggle with

variable conditions that could affect skin disease detection (Scarlat,

2018; Ramya, 2023).

To overcome these limitations, the proposed method aims to

develop a more comprehensive and accurate model for fruit decay

detection. The model considers a wider range of fruit types and

spoilage categories, enabling it to provide more robust and

versatile results.
2.2 Plant identification using CNNs

Plant identification is another area where CNNs have shown

promising results. Several studies have demonstrated the

effectiveness of CNN models in accurately classifying different

plant species based on leaf and flower images. For instance, a

study by Wäldchen and Mäder (2018) utilized a CNN model for

plant species identification. The model achieved a high accuracy of

98.53% in classifying 1000 different plant species. This research

demonstrated the potential of CNNs in plant identification and

highlighted the importance of high-quality datasets for training and

testing (Ren et al., 2015; Wäldchen and Mader, 2018).

The other study is Deep Learning-Based Banana Plant Diseases

and Pest Detection. This study explores the application of deep

learning to detect banana plant diseases and pests. The method uses

transfer learning with ResNet and InceptionV2 neural networks,
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enhancing disease detection accuracy and efficiency. Even though

the method demonstrates high accuracy and the ability to detect

various diseases with fewer errors, it might require more substantial

training data and improved adaptation to real-world conditions.

The combination of ResNet and InceptionV2 neural networks, with

ResNet handling deep networks and InceptionV2 facilitating

efficient feature extraction, contribute to the model’s improved

performance. However, the model’s applicability is restricted to

bananas, and practical implementation may require access to

infrared imaging equipment. The study suggests promising results

for disease and pest detection in banana plants but calls for

additional research to overcome limitations and expand the

model’s applicability across diverse fruits and crops (Brital, 2021;

Narayanam, 2022). Another study proposes an integrated IoT and

deep learning framework, the ‘Automatic and Intelligent Data

Collector and Classifier’, for automating plant disease detection in

pearl millet, providing a low-cost and efficient tool to improve crop

yield and product quality (Kundu et al., 2021). The other research

provides a comprehensive survey of the application of deep

Convolutional Neural Networks in plant disease prediction from

leaf images, offering valuable insights into pre-processing

techniques, models, frameworks, optimization methods, datasets,

and performance metrics for researchers in the field of agricultural

deep learning (Dhaka et al., 2021).

In line with these findings, the proposed research incorporates

plant identification capabilities into the fruit decay detection model.

By leveraging the power of CNNs, the model can accurately identify

different plant species, providing additional value and applications

in the field of agriculture.
3 Methodology

3.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) have demonstrated

superiority in various image processing tasks compared to other

network architectures. Here are some key reasons why CNNs are

often preferred. CNNs are designed to exploit the local spatial

correlations present in images. Through their convolutional layers,

CNNs learn to capture local patterns and features, allowing them to

effectively model image structures. This local receptive field

property enables CNNs to extract meaningful information from

images efficiently (LeCun et al., 2015).

CNNs use parameter sharing, which significantly reduces the

number of parameters compared to fully connected networks. By

sharing weights across different spatial locations, CNNs can learn

spatial hierarchies and generalize well to new images. This property

makes CNNs more efficient and less prone to overfitting (LeCun

et al., 1998). CNNs possess translation invariance, meaning they can

recognize patterns regardless of their position in an image. This

property is crucial for tasks such as object recognition, where the

location of an object may vary. CNNs’ ability to extract features

invariant to translation makes them robust to changes in object

position or image transformations (LeCun et al., 2010). CNNs are

composed of multiple layers, with each layer learning increasingly
frontiersin.org

https://doi.org/10.3389/fpls.2024.1366395
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Afsharpour et al. 10.3389/fpls.2024.1366395
complex and abstract features. The initial layers capture low-level

features like edges and textures, while deeper layers learn high-level

representations such as object parts or whole objects. This

hierarchical feature extraction allows CNNs to capture both fine-

grained details and global context, leading to improved performance

in complex image analysis tasks (Zeiler and Fergus, 2014). CNNs

have benefited from the availability of large-scale pretraining datasets,

such as ImageNet. Pretrained CNNmodels can be fine-tuned or used

as feature extractors in various domains with limited labeled data.

Transfer learning with CNNs has proven effective in tasks where

training data is scarce, accelerating model development and achieving

good performance (Yosinski et al., 2014).

While CNNs have demonstrated superiority in image processing

and Fruit Decay Detection tasks, it’s important to note that the choice

of network architecture depends on the specific task, dataset, and

computational resources available. Different architectures may have

their own advantages in specialized scenarios.

The main objective of this paper is to present an intelligent and

accurate method for detecting spoiled and healthy fruits using an

advanced 11-layer convolutional neural network (CNN). This novel

and advanced approach has been implemented and optimized using

the TensorFlow library for deep learning. It starts with collecting

and preprocessing a diverse dataset of fruit images, including both

healthy and spoiled fruits. The dataset is carefully labeled to ensure

accurate classification during the training and testing phases. Next,

an advanced 11-layer CNN model is designed and implemented

using the TensorFlow library. This model incorporates multiple

convolutional and pooling layers, along with fully connected layers

for classification. To further improve the model’s performance, data

augmentation techniques are employed to increase the diversity and

size of the training dataset. This helps the model learn robust

features and reduces the risk of overfitting. Once the model is

developed and optimized, extensive experiments are conducted to

evaluate its performance in fruit decay detection and plant

identification. The model’s accuracy, and confusion matrix are
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measured to assess its effectiveness. The results of the experiments

demonstrate the superior performance of the proposed model

compared to existing approaches. The model achieves high

precision and accuracy in classifying spoiled and healthy fruits, as

well as accurately identifying different plant species.

Convolutional Neural Networks (CNNs) have emerged as a

crucial neural network structure for image processing and pattern

recognition tasks. They are specifically designed to process grid-like

data, such as images, by extracting hierarchical features (Gupta,

2021; Kalra, 2023). Convolutional layers, the primary feature of

these networks, detect diverse patterns in images by applying

convolutional filters, thereby extracting various features, including

edges, corners, and similar patterns. The extracted features are then

utilized by the fully connected layers for final decision-making.

Figure 1 shows, an overview of the proposed network. This figure

illustrates two representative layers of our proposed method, each

followed by a set of fully connected layers. The first layer consists of

a convolution sublayer and a pooling sublayer, while the second

layer shares the same structure but with different dimensions. It is

important to note that this figure does not depict all 11 layers of our

model. We have nine additional layers with similar configurations

but varying dimensions, which are not explicitly shown in this

figure. After the 11 convolutional layers, we include three fully

connected layers, followed by the output of the model.

The presented approach employs sublayers based on

convolution in the initial stage, followed by utilization of the

maximum operation on the outcome of the convolutional

sublayer, establishing a connection to the pooling sublayer. To

ensure optimal performance, the suggested technique integrates

batch normalization (BN) and applies the Rectified Linear Unit

(ReLU) activation function subsequent to the pooling operations.

After the convolutional function, the BN and ReLU are

implemented within this framework. Subsequently, fully

connected layers are integrated to amalgamate features from

diverse frequency bands. The concluding layer in the network
FIGURE 1

Overview of the proposed method.
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employs the SoftMax function to compute the fruit class. The

proposed approach trains the entire deep neural network

employing the back-propagation algorithm.

3.1.1 Convolutional layers
The convolutional layer, the fundamental building block of a

CNN, employs filters to scour for patterns aiding in image detection

and classification. For instance, a filter designed to detect a face

might capture the pattern of identifying eyes within the input mass.

3.1.2 Max pooling layers
Max pooling layers reduce the dimensions of images, discarding

superfluous information by selecting the maximum values within

each input region (Dertat, 2017; Editorial, 2022).

3.1.3 Fully connected layers
Once all the image features have been extracted, these are

forwarded to the fully connected layers. An activation function

transforms the feature information into a feature vector

(Valliappa Lakshmanan, 2021).

3.1.4 Activation functions
CNNs utilize non-linear activation functions to introduce non-

linearity into the network. Depending on the coding environment,

linear functions are either defined separately or in conjunction with

the convolutional layers. Activation functions modulate the product

of the filter and input mass based on their unique characteristics.

Among them, the Rectified Linear Unit (ReLU) activation function,

which zeroes out any negative input while keeping positive inputs

unchanged, is highly favored due to its computational efficiency

(Brownlee, 2018b). In many instances, the SoftMax activation

function is used as the activation function for the final layer.

3.1.5 Batch normalization and dropout layers
Batch Normalization and Dropout layers are employed to

prevent overfitting and stabilize transitions between layers. Batch

Normalization layers normalize input data and ensure optimal

distributions. Conversely, Dropout layers randomly deactivate

neurons during each training iteration, preventing over-reliance

on specific neurons and maintaining a balance between neurons

and features (Brownlee, 2018b).
3.2 Model construction

The proposed model offers several advantages and holds

significant value. The goals of this paper encompass several key

objectives. Firstly, the aim is to develop a customized 11-layer CNN

model that surpasses the performance of existing models like VGG-

16, VGG-19, LeNet-5, and AlexNet in fruit quality classification, as

well as outperform transfer learning methods such as VGG16 and

ResNet. Secondly, measures are implemented to counteract

overfitting through data augmentation and early stopping

mechanisms, ensuring the model’s ability to generalize and

maintain robustness across different datasets. The paper also
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focuses on enhancing visual explain ability by integrating Class

Activation Maps (CAMs), which improve interpretability and

credibility of the model ’s predictions. Additionally, the

construction of a robust and versatile model is emphasized,

validated through confusion matrix analysis to highlight its

efficacy in making precise predictions and accurately identifying

both spoiled fruits and diverse plant species. The paper further

addresses the challenge of limited data by developing a

methodology adept at managing scenarios with restricted training

data. It explores diverse agricultural applications, including fruit

quality control and identification of various plant species. The

methodology proposed in the paper aims to mitigate economic

losses and material wastage in the fruit industry by establishing a

reliable mechanism for identifying and segregating fruit based on

quality. Furthermore, the paper lays the groundwork for future

applications and expansions, envisioning the model’s potential for

identifying plant species, monitoring their growth, and potentially

detecting diseases by integrating additional relevant data. The

extension of the model’s functionality to video detection of plants

and fruits is also proposed to broaden its application spectrum.

Finally, the transformation of the model into a library is suggested,

facilitating its incorporation into web applications and software to

amplify knowledge dissemination and applicability across multiple

sectors, including agriculture and artificial intelligence. The paper

follows a systematic approach to achieve these objectives. This

research utilized the TensorFlow and Keras libraries for model

implementation. Additionally, the PIL, NumPy, and Matplotlib

libraries were employed for testing and evaluation purposes.

Class Activation Maps (CAMs) are generated in the proposed

model through a technique known as global average pooling. This

process involves taking the average of feature maps obtained from

the last convolutional layer of the network. By performing global

average pooling, we obtain a class-specific activation map that

highlights regions of the input image that are most relevant to the

predicted class.

Regarding the gaps in model generalization and customization,

the proposed model addresses several shortcomings compared to

VGG-16, VGG-19, LeNet-5, and AlexNet. Firstly, the model

incorporates additional layers and techniques beyond the

standard architectures, allowing for improved performance in

terms of accuracy and robustness. We have introduced specific

modifications to enhance the model’s ability to handle various

image disturbances, such as covered, fuzzy, rain, and strong

sunlight conditions. This addresses a significant gap in

generalization, as the model demonstrates enhanced adaptability

to real-world scenarios.

Furthermore, the proposed model tackles the limitation of

limited data scenarios by incorporating techniques such as data

augmentation and transfer learning. These approaches help

mitigate the challenges of limited training data and improve the

model’s ability to generalize well to unseen instances. This is in

contrast to the aforementioned models, which may face difficulties

in achieving optimal performance when data is scarce. By explicitly

addressing these gaps in model generalization and customization,

the proposed model offers improved accuracy, robustness, and

adaptability compared to VGG-16, VGG-19, LeNet-5, and AlexNet.
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3.3 Dataset

The “Fruits Fresh and Rotten for Classification” dataset,

comprising over 13,000 images across six different classes, was

utilized. This dataset, subdivided into training, testing, and validation

categories, was sourced from reputable websites like Kaggle. Figure 2

illustrates samples from six distinct classes of this database. The

properties of this dataset are shown on Table 1 (Kalluri, 2018).
3.4 Preprocessing

The fruit images underwent a standardization process, resizing

them to 224 by 224 pixels and normalizing their pixel values

between 0 and 1. This step ensured consistent input dimensions

and stable model training. To enhance the diversity of the training

set, various data augmentation techniques were employed using the

‘ImageDataGenerator’ tool. These techniques included shear, zoom,

rotations, translations, scaling, and horizontal flip. The parameters

used for each transformation were carefully selected to introduce

meaningful variations to the images (Azevedo, 2023).

Figure 3 showcases examples of training images after the

application of ‘ImageDataGenerator’ , demonstrating the

effectiveness of these augmentations in creating variability within

the dataset. These preprocessing steps are vital for enhancing the

model’s robustness and improving its ability to generalize to

different scenarios, contributing to its overall performance.
3.5 Model structure

The deployed CNN architecture for fruit quality classification is

meticulously designed to discern between fresh and rotten fruits.

The model is organized in a sequential manner, starting with

convolutional layers that capture intricate patterns in the input

data. Subsequently, max-pooling layers are employed to reduce

spatial dimensions and retain essential features. The model further

incorporates fully connected layers to facilitate complex feature

extraction and decision-making. Batch Normalization layers are

strategically inserted to enhance the stability and convergence of the

training process. Additionally, Dropout layers are incorporated to

mitigate overfitting issues, promoting better generalization.

Figure 4 illustrates the sequential arrangement of these layers,

providing a visual representation of the proposed model structure.
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This architecture is tailored to effectively capture and classify

distinct features associated with fruit quality, contributing to the

model’s robust performance.

Figure 5 shows the proposed model structure. The model begins

with convolutional layers, followed by Batch Normalization, max-

pooling layers, Dropout layers, and finally fully connected layers.

As shown in Figure 6, the block diagram of the proposed

algorithm for fruit decay detection and plant identification

involves several key steps. First, a diverse dataset of fruit images,

both healthy and spoiled, is collected and labeled. The images are

then preprocessed by resizing them to a standard size and

normalizing the pixel values. Data augmentation techniques are

applied to enhance the training process. Next, a convolutional

neural network (CNN) model with 11 layers is designed and

implemented using TensorFlow. The model consists of multiple

convolutional and pooling layers to extract features from the

images, followed by fully connected layers for classification.

Activation functions, batch normalization, and dropout layers are

utilized to improve performance and prevent overfitting. The model

is trained using the categorical-cross-entropy loss function and the

Adam optimizer (Amigo, 2019). Early stopping is employed to

prevent overfitting, and the best models are saved during training.

In addition to evaluating the model’s performance through

accuracy and confusion matrix analysis, Class Activation Maps

(CAMs) were utilized to gain insights into the model’s decision-

making process.
3.6 Objective function and optimization

The model employed the categorical-cross-entropy loss

function, tailored for effective multi-class classification. For

optimization, the Adam optimizer was chosen, providing adaptive

learning rates and expedited convergence to local minima, thereby

enhancing the training efficiency (C. Ltd, 2023). The categorical

cross-entropy formula, represented by Equation 1, encapsulates the

essence of the loss function, facilitating a robust mechanism for

distinguishing between fresh and rotten fruits.

CE = −o
C0=2

i=1

ti log (f (si))

= −t1 log (f (s1)) − (1 − t1) log (1 − f (s1)) (1)
FIGURE 2

Different class of this dataset.
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3.7 Early stopping and model selection

Fruit decay detection and plant identification are crucial aspects

in agricultural and horticultural practices, playing a significant role

in ensuring crop quality, disease control, and overall productivity

(Pessarakli, 1994; Jayasena et al., 2015). Detecting fruit decay

accurately and in a timely manner minimizes post-harvest losses,

ensures food safety, and optimizes storage and distribution

processes (Pessarakli, 1994). Additionally, early detection allows

for prompt actions such as sorting and removal, preventing the

spread of diseases and preserving the quality of the remaining fruits

(Pessarakli, 1994).

Automated fruit decay detection systems based on computer

vision and machine learning techniques have demonstrated
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promising results in terms of accuracy, speed, and cost-

effectiveness (Jayasena et al., 2015; Boulent et al., 2019;

Lakshmanan, 2019). These systems contribute to reducing post-

harvest losses, optimizing storage conditions, and enhancing the

overall efficiency of the fruit supply chain.

Plant identification is equally important and serves various

purposes in agricultural practices. Accurate identification of plant

species and cultivars aids in selecting appropriate varieties for

specific environments, optimizing cultivation techniques, and

improving agricultural practices (Barbedo, 2018; Wäldchen and

Mader, 2018). Furthermore, plant identification plays a vital role in

effective pest management by enabling timely and targeted

application of control measures (Ferentinos, 2018). It also

contributes to biodiversity conservation efforts by facilitating the

monitoring and preservation of endangered plant species (Kaur and

Kaur, 2019).

The early stopping technique was used to prevent overfitting

and select the optimal models. This technique halts the training

process when the error on the validation data increases, thereby

preserving model accuracy. Furthermore, the model checkpoint

was used to save the best models during training (C. Ltd, 2023;

Gençay, 2023). Figure 7 depicts the utilization of Early Stopping

and Model Checkpoint techniques in the training process of the

proposed model. These techniques have been incorporated to

enhance the model’s training efficiency and performance. The

Model Checkpoint, which saves the best-performing model

during training.
FIGURE 3

An example of training images after using “imageDataGenerator”.
FIGURE 4

Visualization of the 11-layer the proposed model architecture.
TABLE 1 The properties of “Fruits Fresh and Rotten for
Classification” dataset.

Image Train Test

1 Fresh Apples 1693 395

2 Fresh Banana 1581 381

3 Fresh Oranges 1466 388

4 Rotten Apples 2342 601

5 Rotten Banana 2224 530

6 Rotten Oranges 1595 403
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4 Results

In this paper, we use an 11-layer convolutional neural network.

We successfully built a high-accuracy artificial intelligence model

for identifying and detecting three types of fruits (apple, orange, and

banana) and their freshness or ripeness. The model achieved

excellent performance. With careful evaluation and appropriate
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training, the provided artificial intelligence model works effectively

in detecting the freshness or ripeness of fruits and identifying

beneficial and harmful plants.

However, during the execution of this project, we encountered

some challenges, including the lack of suitable datasets, model

implementation and layer arrangement, limited powerful

hardware resources, and the preparation of coding environments.

Despite these challenges, by making efforts and optimizing the

available resources, we developed a high-accuracy model. The

proposed model’s performance is compared with other existing

CNN models, and its generalization capabilities and robustness are

tested on separate data. The results, including accuracy

comparisons and confusion matrix visualization, demonstrate the

superiority of the proposed model.

The CNN model was trained using the training and validation

data for 129 epochs. After this stage, the model ceased to show

significant improvement, indicating that further training would

not yield better results. In other words, the changes in weights

were not meaningful, and further focus on training the model

would not yield better results. Figure 8 depicts the variation of the

proposed model’s accuracy and loss values on the training data.

Additionally, this figure showcases a visual representation of the

model’s performance.

To prevent overfitting, the early stopping callback is used. This

callback evaluates the model’s performance in each epoch and stops

the training process earlier if no improvement is observed. This

decision ensures that the model, considering the information

learned in previous epochs, is selected and saved. This version is

considered the final result of the training and can be utilized with

high accuracy for detecting fresh and rotten fruits. Based on the

usage of this callback, the training of the model was stopped at

epoch 129. Additionally, the model’s best performance was saved

using model checkpoint, with the model from epoch 99 being

considered the best performance. Figure 9 showcases the

performance of the proposed method on a selection of samples

from different classes.

As Figure 10 shows, this model underwent rigorous testing on

datasets featuring challenging conditions, including intense

shadows, extreme lighting variations, and partial image

obstructions, yielding accurate results in most instances. Notably,

under normal conditions, predictions were consistently accurate,

showcasing the robust performance of the model. Only in cases with

extreme shadows did the model occasionally exhibit errors. The

comprehensive test results, encompassing predictions under both

normal and challenging conditions, are depicted in Figure 10.

Figure 11 shows, VGG16 model accuracy and loss changes

during training. As shown in Figure 12, the proposed model

achieved a training accuracy of 99.8% and a validation accuracy

of 99.7%. The model achieved a test accuracy of 99.93%,

demonstrating the model’s strong generalization capabilities. The

libraries used for loading and processing images include Pandas,

TensorFlow, Keras, PIL, and Matplotlib. A total of 2698 images

were used to evaluate the model’s performance, and excellent results

were obtained. These results indicate that the model accurately

detects fresh and rotten fruits with high precision and can be used as

a powerful tool in fruit-related industries. Based on the comparison
FIGURE 5

The proposed model structures.
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depicted in Figures 11 and 12, it can be concluded that the proposed

method outperforms VGG16. Table 2 compares the proposed

method with various state-of-the-art methods. This table presents

a comparison between recent deep learning methods and other

state-of-the-art approaches, allowing us to conclude that the

proposed method outperforms these methods. This conclusion is

based on the significant design aspects incorporated into the

proposed network. The proposed network outperforms the

“Transfer Learning with VGG16” and “Transfer Learning with

Res-Net” approach as well as other networks such as VGG-16,

LeNet-5, CNN, and AlexNet.
4.1 Confusion matrix

The Confusion Matrix is a performance measurement for

machine learning classification. It helps visualize the performance

of an algorithm. As shown in Figure 13, the confusion matrix of the

proposed model shows a high number of correct predictions, with

only a few misclassifications, confirming the model’s robustness.
4.2 Class activation maps

To visualize influential regions in the decision-making process

of our convolutional neural network (CNN), we employed Class
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Activation Maps (CAMs) using the GradCAM technique. CAMs

provide a visual representation of critical areas within images that

significantly contribute to accurate classification. These maps offer

insights into the model’s attention by juxtaposing original images

with CAMs, revealing impactful regions during classification.

By incorporating CAMs generated through GradCAM, we

validate the alignment of the model’s focus with relevant image

features, enhancing transparency in decision-making post-training.

This visualization reinforces the efficacy of the CNN in recognizing

and highlighting critical aspects of the input data. The performance

and effectiveness of the model can be observed in Figure 14, where a

selection of CAMs for specific images is presented.
5 Discussion

The successful implementation of an 11-layer convolutional

neural network (CNN) for fruit quality control signifies a significant

advancement in utilizing deep learning for agricultural purposes.

The remarkable accuracy achieved during training, validation, and

testing phases (99.8%, 99.9%, and 99.93% respectively) surpasses

established methods, establishing this novel approach as a leading

method for precise fruit classification.

Beyond its impressive accuracy, this methodology demonstrates

more than just classification proficiency. It showcases robustness

and adaptability, crucial for real-world applications, especially in

domains where misclassification can have significant consequences.

While existing models like VGG-16, VGG-19, LeNet-5, and

AlexNet have proven effective in various domains, their

application in fruit quality control reveals potential gaps in model

generalization and customization, which the proposed model

effectively addresses.

The meticulously crafted 11-layer CNN, optimized for the

unique challenges of fruit classification, is not just a classifier but

a result of strategic decisions. These decisions include thoughtful

architectural design for nuanced feature extraction, as well as the

implementation of data augmentation and early stopping

techniques to mitigate overfitting and enhance generalization.
FIGURE 6

Block diagram of the proposed method.
FIGURE 7

Early stopping and model checkpoint techniques in the proposed
model training.
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This tailored approach enables the model to handle the diverse

characteristics of different fruits, capturing intricate patterns and

features that generic models may overlook.
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The inclusion of Class ActivationMaps (CAMs) not only enhances

transparency but also facilitates continuous model refinement. By

providing visual insights into decision-making processes, CAMs

enable a deeper understanding and optimization of feature extraction

and classification, leading to incremental improvements in model

performance. The robustness of the proposed method is evident

from the analysis of the confusion matrix, which reveals a high

number of correct predictions with minimal misclassifications. This

robustness reinforces the method’s reliability and its potential to be

deployed in real-world fruit quality control scenarios.

In this section of the article, it is essential to note that due to

constraints in the dataset in this domain, enhancing the model’s

accuracy for various conditions, especially intense shadows, can be

achieved with an increased dataset. Expanding the dataset for

different scenarios, including intense shadow conditions, holds

the potential to further improve the model’s performance.

Moreover, the model demonstrates versatility beyond fruit

classification, extending its capabilities to identify various plant

species. This broadens its applicability in diverse agricultural

scenarios. Additionally, the model proves effective even with
FIGURE 8

Model accuracy and loss changes during training.
FIGURE 9

Model performance results after evaluation on test data.
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FIGURE 10

Model performance result for inputs with different conditions.
FIGURE 11

VGG16 model accuracy and loss changes during training.
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limited training data, making it a practical tool for deployment in

different agricultural contexts.

The proposed model for automated agriculture systems in fruit

protection introduces several significant advancements compared to

previous approaches. These include robustness and generalization

through handling variations in decay patterns and environmental

conditions, effective handling of limited data scenarios using active

learning, and data augmentation techniques, and a strong emphasis

on interpretability and explainability through feature visualization.

These advances enhance the practicality and performance of the

proposed model, making it a novel and comprehensive solution for

automated agriculture systems in fruit protection.
6 Conclusion

The proposed method has made significant strides in fruit

quality control and other agricultural applications. Its custom

model architecture, robustness-enhancing strategies, and

versatility set it apart. While its exceptional accuracy sets a new

benchmark, the holistic approach to design and application is what

truly distinguishes it. It goes beyond being just a classifier,
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showcasing the integration of deep learning into specialized

domains. The use of Class Activation Maps (CAMs) and a focus

on transparency and model refinement are notable features. They

improve decision-making and enable continuous model

improvement through visual data and practical applications. This

research has practical implications, particularly in enhancing fruit

quality control and reducing economic waste. The model’s

effectiveness in distinguishing between fresh and rotten fruits, as

well as its robust performance validated through confusion matrices

and CAMs, demonstrates potential beyond its current application.

It can be extended to create accurate models for detecting plant-

related videos, identifying species, monitoring growth, and

detecting diseases. This broadens its applicability from industry to

research. Sharing knowledge through web applications and software

libraries can be a valuable resource across various fields, including

agriculture and artificial intelligence.
7 Future work

In terms of future work, there are several areas that can be

explored to enhance the proposed method. Firstly, data expansion
FIGURE 12

The proposed model accuracy and loss changes during training.
TABLE 2 Comparison of the accuracies.

Model Accuracy

VGG-16 99.1

VGG-19 (Pathak and Makwana, 2021) 76.48

LeNet-5 (Pathak and Makwana, 2021) 82.93

AlexNet (Pathak and Makwana, 2021) 83.56

CNN (Pathak and Makwana, 2021) 98.23

Proposed method 99.93

Transfer Learning with VGG16 99.44

Transfer Learning with Res-Net 99.59
FIGURE 13

The confusion matrix.
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through augmenting the dataset to encompass diverse conditions,

including challenging scenarios like intense shadows, can

significantly improve the model’s real-world accuracy. This would

involve collecting and incorporating more varied and representative

data to ensure the model’s robustness. Secondly, further refinement

of the model’s architecture is essential. Through iterative

exploration and fine-tuning, the adaptability and performance of

the model can be enhanced across different conditions. This may

involve experimenting with different network architectures,

optimizing hyperparameters, and incorporating advanced

techniques such as attention mechanisms or transfer learning.

Additionally, continuous evaluation and benchmarking against

contemporary models will be crucial to ensure that the proposed

approach remains at the forefront of accuracy and efficiency.

Regularly assessing its performance and comparing it with state-

of-the-art methods will help identify areas for improvement and

guide future research directions. Furthermore, we can provide

accessible resources for practical implementation in fields like

agriculture and artificial intelligence. This would involve creating
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intuitive interfaces that allow users to apply the model easily and

obtain valuable insights from the fruit decay detection and plant

identification system. Overall, these future directions, including

data expansion, model architecture refinement, technique

exploration, and continuous evaluation, can contribute to

advancing the proposed method and its potential impact in

various industries and research fields.
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Insights from GradCAM illuminate key image features guiding CNN decisions.
frontiersin.org

https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification
https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification
https://github.com/pariyaaf/FruitDiseaseDetection-pariya
https://github.com/pariyaaf/FruitDiseaseDetection-pariya
https://doi.org/10.3389/fpls.2024.1366395
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Afsharpour et al. 10.3389/fpls.2024.1366395
Author contributions
PA: Data curation, Formal analysis, Methodology, Software,

Writing – original draft. TZ: Software, Supervision, Visualization,

Writing – review & editing. MD: Project administration, Resources,

Validation, Visualization, Writing – review & editing. MZ:

Methodology, Software, Validation, Writing – review & editing.

Funding
The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 15
Publisher’s note
All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material
The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1366395/

full#supplementary-material
References
Alex, K., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks.Adv. Neural Inf. Process. Syst. 25, 84–90. doi: 10.1145/3065386
Amigo, H. (2019) Cross entropy. Available online at: https://m.blog.naver.com/

PostView.naver?isHttpsRedirect=true&blogId=howdy_amigo&logNo=221442864397.
Azevedo, N. (2023) Data Preprocessing Techniques: 6 Steps to Clean Data in Machine

Learning. Available online at: https://www.scalablepath.com/data-science/data-
preprocessing-phase.
Barbedo, J. G. (2018). Factors influencing the accuracy of plant disease recognition

models in real-life scenarios. Plant Dis. 102, 2394–2401. doi: 10.1016/
j.biosystemseng.2018.05.013
Boulent, J., Fuentes, A., and Valente, J. (2019). Computer vision for fruit detection

and localization: A review. Food Bioprocess Technol. 12, 153–167. doi: 10.1007/s11947-
023-03005-4
Brital, A. (2021) Inception V2 CNN Architecture Explained. Available online at:

https://medium.com/AnasBrital98/inception-v2-cnn-architecture-explained-
128464f742ce.

Brownlee, J. (2018a).Machine Learning Algorithms From Scratch (Victoria: Machine
Learning Mastery).

Brownlee, J. (2018b). Better Deep Learning (Victoria: Machine Learning Mastery).

C. Ltd (2023). Mastering AI model training (Cybellium Ltd).

Dertat, A. (2017) Applied Deep Learning - Part 4: Convolutional Neural Networks.
Available online at: https://towardsdatascience.com/applied-deep-learning-part-4-
convolutional-neural-networks-584bc134c1e2.

Dhaka, V. S., Meena, S. V., Rani, G., Sinwar, D., Ijaz, M. F., and Woźniak, M. (2021).
A survey of deep convolutional neural networks applied for prediction of plant leaf
diseases. Sensors 21, 4749. doi: 10.3390/s21144749

Editorial, K. (2022) Pooling layers in a convolutional neural network. Available online
at: https://keepcoding.io/blog/capas-pooling-red-neuronal-convolucional/ (Accessed
14 10 2023).

Fan, S., Li, J., Zhang, Y., Tian, X., Wang, Q., He, X., et al. (2020). On line detection of
defective apples using computer vision system combined with deep learning methods. J.
Food Eng. 286, 110102. doi: 10.1016/j.jfoodeng.2020.110102

Faouzi, B. (2021). “FruitDelect,” in GitHub. Available at: https://github.com/fbraza/
FruitDetect.

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and
diagnosis. Comput. Electron. Agric. 145, 311–3185. doi: 10.1016/j.compag.2018.01.009
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(2023). Advanced deep learning techniques for early disease prediction in cauliflower
plants. Sci. Rep. 13, 18475. doi: 10.1038/s41598-023-45403-w

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). “Progressive growing of GANs
for improved quality, stability, and variation,” in International Conference on Learning
Representations.

Kaur, S., and Kaur, P. (2019). Plant species identification based on plant leaf using
computer vision and machine learning techniques. J. Multimedia Inf. System 6, 49–60.
doi: 10.33851/JMIS.2019.6.2.49

Kundu, N., Rani, G., Dhaka, V. S., Gupta, K., Nayak, S. C., Verma, S., et al. (2021).
IoT and interpretable machine learning based framework for disease prediction in pearl
millet. Sensors 21, 5386. doi: 10.3390/s21165386

Lakshmanan, L. (2019) ML Design Pattern #2: Checkpoints. Available online at:
https://towardsdatascience.com/ml-design-pattern-2-checkpoints-e6c254c5fe.

Narayanam, K. L., Krishnan, R. S., Robinson, Y. H., Julie, E. G., Vimal, S., Saravanan,
V., et al (2022). Banana plant disease classification using hybrid convolutional neural
network. Computational Intelligence and Neuroscience, 1–13. doi: 10.1155/2022/
9153699

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). “Convolutional networks and
applications in vision,” in Proceedings of 2010 IEEE international symposium on circuits
and systems. (IEEE), 253–256.

Lewis, J. (2022) How Does Food Waste Affect the Environment? Available online at:
https://earth.org/how-does-food-waste-affect-the-environment/.

Li, S., Luo, H., Hu, M., Zhang, M., Feng, J., Liu, Y., et al. (2019). Optical non-
destructive techniques for small berry fruits: A review. Artificial Intelligence in
Agriculture, 2, 85–98
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1366395/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1366395/full#supplementary-material
https://doi.org/10.1145/3065386
https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=howdy_amigo&amp;logNo=221442864397
https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=howdy_amigo&amp;logNo=221442864397
https://www.scalablepath.com/data-science/data-preprocessing-phase
https://www.scalablepath.com/data-science/data-preprocessing-phase
https://doi.org/10.1016/j.biosystemseng.2018.05.013
https://doi.org/10.1016/j.biosystemseng.2018.05.013
https://doi.org/10.1007/s11947-023-03005-4
https://doi.org/10.1007/s11947-023-03005-4
https://medium.com/AnasBrital98/inception-v2-cnn-architecture-explained-128464f742ce
https://medium.com/AnasBrital98/inception-v2-cnn-architecture-explained-128464f742ce
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://doi.org/10.3390/s21144749
https://keepcoding.io/blog/capas-pooling-red-neuronal-convolucional/
https://doi.org/10.1016/j.jfoodeng.2020.110102
https://github.com/fbraza/FruitDetect
https://github.com/fbraza/FruitDetect
https://doi.org/10.1016/j.compag.2018.01.009
https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948
https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948
https://doi.org/10.1007/978-3-658-40442-0_9
https://doi.org/10.3390/s21165386
https://github.com/JananiSBabu/ResNet50_From_Scratch_Tensorflow
https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification/code
https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification/code
https://medium.com/khwabkalra1/convolutional-neural-networks-for-image-classification-f0754f7b94aa
https://medium.com/khwabkalra1/convolutional-neural-networks-for-image-classification-f0754f7b94aa
https://doi.org/10.1038/s41598-023-45403-w
https://doi.org/10.33851/JMIS.2019.6.2.49
https://doi.org/10.3390/s21165386
https://towardsdatascience.com/ml-design-pattern-2-checkpoints-e6c254c5fe
https://doi.org/10.1155/2022/9153699
https://doi.org/10.1155/2022/9153699
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://earth.org/how-does-food-waste-affect-the-environment/
https://doi.org/10.3389/fpls.2024.1366395
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Afsharpour et al. 10.3389/fpls.2024.1366395
Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, Vol. pp. 3431–3440.

Norman, C. (2019). AI in Pursuit of Happiness, Finding Only Sadness: Multi-Modal
Facial Emotion Recognition Challenge. arXiv preprint. arXiv:1911.05187.
Pathak, R., and Makwana, H. (2021). Classification of fruits using convolutional

neural network and transfer learning models. J. Manage. Inf. Decision Sci. 24, 1–12.
Pessarakli, M. (1994). Respon of green beans (Phaseolus vulgaris L.) to salt stress in

handbook of plant and crop physiology. doi: 10.1201/b10329-48
Ramya, M. (2023). Identification of skin disease using machine. Int. J. Creative Res.

Thoughts (IJCRT).
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time

object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28.
doi: 10.1109/tpami.2016.2577031
Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: Convolutional networks

for biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18. 234–241 (Springer International
Publishing).
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., and McCool, C. (2016). Deepfruits: A

fruit detection system using deep neural networks. Sensors. 16 (8), 1222. doi: 10.3390/
s16081222

Scarlat, A. (2018). “Melanoma - resNet50 fine tune,” in Kaggle. Available at: https://
www.kaggle.com/code/drscarlat/melanoma-resnet50-fine-tune/notebook.

Selvaraj, M. G., Vergara, A., Ruiz, H., Safari, N., Elayabalan, S., and Ocimati, W.
(2019). AI-powered banana diseases and pest detection. Plant Methods 15, 1–11.
doi: 10.1186/s13007-019-0475-z
Frontiers in Plant Science 16
Shahid, M. (2019). “Learn Convolutional Neural Network from basic and its
implementation in Keras,” in Towards Data Science. Available at: https://
towardsdatascience.com/covolutional-neural-network-cb0883dd6529.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition.

Sonwani, E., Bansal, U., Alroobaea, R., Baqasah, A. M., and Hedabou, M. (2022). An
artificial intelligence approach toward food spoilage detection and analysis. Front.
Public Health 9, p.816226. doi: 10.3389/fpubh.2021.816226

Tan, M., and Le, Q. (2019). “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning. (PMLR), 6105–
6114.

Valliappa Lakshmanan, M. G. R. G. (2021). Practical Machine Learning for Computer
Vision (California: O’Reilly Media).

Wäldchen, J., and Mader, P. (2018). Plant species identification using computer
vision techniques: A systematic literature review. Arch. Comput. Methods Eng. 25, 507–
543. doi: 10.1007/s11831-016-9206-z

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? Adv. Neural Inf. Process. Syst. 27.

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and understanding convolutional
networks,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I 13. (Springer International
Publishing), 818–833.

Zhang, C., Liu, X., Chen, B., Yin, P., Li, J., Li, Y, et al (2020), June. Insulator profile
detection of transmission line based on traditional edge detection algorithm. In IEEE
International Conference on Artificial Intelligence and Computer Applications, 267–269
frontiersin.org

https://doi.org/10.1201/b10329-48
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.3390/s16081222
https://doi.org/10.3390/s16081222
https://www.kaggle.com/code/drscarlat/melanoma-resnet50-fine-tune/notebook
https://www.kaggle.com/code/drscarlat/melanoma-resnet50-fine-tune/notebook
https://doi.org/10.1186/s13007-019-0475-z
https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
https://doi.org/10.3389/fpubh.2021.816226
https://doi.org/10.1007/s11831-016-9206-z
https://doi.org/10.3389/fpls.2024.1366395
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Robust deep learning method for fruit decay detection and plant identification: enhancing food security and quality control
	1 Introduction
	1.1 The importance of fruit decay detection
	1.2 The need for a better model

	2 Related work
	2.1 Fruit decay detection using CNNs
	2.2 Plant identification using CNNs

	3 Methodology
	3.1 Convolutional neural networks
	3.1.1 Convolutional layers
	3.1.2 Max pooling layers
	3.1.3 Fully connected layers
	3.1.4 Activation functions
	3.1.5 Batch normalization and dropout layers

	3.2 Model construction
	3.3 Dataset
	3.4 Preprocessing
	3.5 Model structure
	3.6 Objective function and optimization
	3.7 Early stopping and model selection

	4 Results
	4.1 Confusion matrix
	4.2 Class activation maps

	5 Discussion
	6 Conclusion
	7 Future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


