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Low mutation rate of
spontaneous mutants enables
detection of causative genes by
comparing whole
genome sequences
Mao Suganami1†, Soichi Kojima2*†, Hideki Yoshida1,
Masaki Mori3, Mayuko Kawamura3, Eriko Koketsu3

and Makoto Matsuoka1*

1Faculty of Food and Agricultural Sciences, Institute of Fermentation Sciences, Fukushima University,
Fukushima, Japan, 2Graduate School of Agricultural Science, Tohoku University, Sendai, Japan,
3Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
In the early 1900s, mutation breeding to select varieties with desirable traits using

spontaneous mutation was actively conducted around the world, including

Japan. In rice, the number of fixed mutations per generation was estimated to

be 1.38-2.25. Although this low mutation rate was a major problem for breeding

in those days, in the modern era with the development of next-generation

sequencing (NGS) technology, it was conversely considered to be an advantage

for efficient gene identification. In this paper, we proposed an in silico approach

using NGS to compare the whole genome sequence of a spontaneous mutant

with that of a closely related strain with a nearly identical genome, to find

polymorphisms that differ between them, and to identify the causal gene by

predicting the functional variation of the gene caused by the polymorphism.

Using this approach, we found four causal genes for the dwarf mutation, the

round shape grain mutation and the awnless mutation. Three of these genes

were the same as those previously reported, but one was a novel gene involved in

awn formation. The novel gene was isolated from Bozu-Aikoku, a mutant of

Aikoku with the awnless trait, in which nine polymorphisms were predicted to

alter gene function by their whole-genome comparison. Based on the

information on gene function and tissue-specific expression patterns of these

candidate genes, Os03g0115700/LOC_Os03g02460, annotated as a short-

chain dehydrogenase/reductase SDR family protein, is most likely to be

involved in the awnless mutation. Indeed, complementation tests by

transformation showed that it is involved in awn formation. Thus, this method

is an effective way to accelerate genome breeding of various crop species by

enabling the identification of useful genes that can be used for crop breeding

with minimal effort for NGS analysis.
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1 Introduction

The rediscovery of Mendel’s laws of heredity in 1900, followed by

the establishment of Johansen’s “pure lineage theory” in 1903,

marked the beginning of modern plant breeding, in which

mutation breeding was attempted in various crops. While mutation

breeding with treatments that increase mutation rates, such as

gamma rays, heavy ion beams, and ethyl methanesulfonate (EMS)

(Jankowicz-Cieslak et al., 2016), has become common in the modern

era, mutation breeding at that time depended on spontaneous

mutation under natural conditions. Although the extremely low

frequency of spontaneous mutation was a major problem for

mutation breeding, public experimental institutions in various

countries, including Japan, actively tried to find mutant lines with

desirable traits and isolate pure lines from them, and several lines

have been preserved to the present day.

With the recent remarkable development of next-generation

sequencing (NGS) technology, it has become possible to obtain

whole-genome information of the various rice lines at relatively low

cost, enabling genetic and molecular biological analysis (Guo et al.,

2014; Nguyen et al., 2019; Kalendar et al., 2022). In such a situation,

the low frequency of spontaneous mutation could be an advantage

in finding causative genes involved in traits that differ from the

parental varieties. Based on this assumption, we propose an in silico

approach to identify the causative gene by comparing the whole

genome sequence of a spontaneous mutant line with that of closely

related varieties, with almost identical genomes. In this study, using

several spontaneous mutant lines that have been isolated in Japan,

we succeeded in identifying four causative genes, including a novel

gene involved in awn formation. Thus, this method offers the

possibility of finding genes involved in traits that breeders are

looking for with virtually no effort other than NGS analysis, and

can be applied not only for rice but also for other crops.
2 Materials and methods

2.1 Plant materials and genotyping

We obtained rice varieties used in this study from NARO

geneb ank (h t t p s : / /www . g ene . a ff r c . g o . j p / d a t a b a s e s -

plant_search_char.php?type=428). DNA preparation and

genotyping were performed as previously described (Yano et al.,

2016; Suganami et al., 2023) with slight modifications. DNA for

genotyping was isolated from leaves using a DNeasy Plant Mini Kit

(Qiagen, #69104) and fragmented into approximately 500 bp using

Covaris S2 (Covaris). The NEBNext DNA Library Prep Reagent Set

(BioLabs, #E6000) was used for DNA library construction. Paired-

end sequencing was performed using the Illumina Hiseq system

(Illumina Co., Ltd) with a read length of 100–150 bp. All reads

were mapped against Os-NipponbareReference-IRGSP-1.0

pseudomolecules (all.con ver.7, Kawahara et al., 2013), and fastq

files were converted into samfiles using the bwa-mem command of

BWA software ver 0.7.18 (Li, 2013). Commands samtools-view,

samtools-sort, and samtools-index of Samtools software ver1.9
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(Li et al., 2009) were used to generate, sort, and index bam files

successively. The variants for each accession were called using the

GATK HaplotypeCaller (release 4.1.9.0) with the ‘.g.vcf’ extension

(McKenna et al., 2010). GATK CombineGVCFs was used for joint

genotyping to produce a single VCF file for each compared pairs

and groups. Homozygous polymorphisms in all compared genomes

were used for prediction of causative polymorphisms.
2.2 Phenotypic data

Data on culm length and ratio of length to width in brown rice

were obtained from the Genebank Project, NARO (2023). Phenotypic

data were scored according to an in-housemanual (available from the

NARO Genebank website), and the average of five replicates was

recorded as a single data.We treated the lines with the same name but

different JP number (i.e., index number in NARO) as different lines.

For the lines with multiple data, all data are shown.
2.3 Transgenic analysis

Transgenic analysis was performed according to Yano et al.

(2016) and Yoshida et al. (2022). To produce the complementation

construct, the genomic DNA fragments of Os06g0695900/

LOC_Os06g48065 and Os03g0115700/LOC_Os03g02460

plus upstream and downstream regions were PCR amplified

from genomic DNA extracted from Aikoku genomic DNA.

Os06g0695900/LOC_Os06g48065 genomic fragment was

produced with the primer pair 5’- CGGCGCGCCGAATTCAT

GACATATTCTAGTACGAT-3 ’ and 5 ’- GCAGGTCGAC

GGATCCACACGCATACGACCAGCT-3’ . Os03g0115700/

LOC_Os03g02460 genomic fragment was produced with the

primer pair 5 ’- CGGCGCGCCGAATTCAATTAGGAAC

TTAGGATATG-3’ and 5’- GCAGGTCGACGGATCCTGTACCT

CCTTGGATGGAA-3’. The coding sequences of these genes were

produced by PCR using Aikoku cDNA as template. Os06g0695900/

LOC_Os06g48065 cDNA fragment was produced with the primer

pair 5’- CTAGACCCGGGGATCCATGGAGCCGTCGCGGCGG-

3 ’ and 5 ’- TAGCGTTAACACTAGTCTAGGTGCTAGG

GCCGTT-3’. Os03g0115700/LOC_Os03g02460 cDNA fragment

was produced with the primer pair 5’- CTAGACCCGGGG

ATCCATGCTGCGGGCGGCGAAG-3’ and 5’- TAGCGTT

AACACTAGTTCAGGGAGCGGAGGCATC-3’. The genomic

and CDS fragments were subcloned into the EcoRI-BamHI sites

of pUbi-omega/pCAMBIA (Hirano et al., 2017) and BamHI-SpeI

site of pCAMBIA1380 using the NEBuilder HiFi DNA Assembly

master mix (New England Biolabs), respectively. PCR-amplified

fragments were sequenced to ensure that no mutations

were introduced.
2.4 Calculation of genomic similarity rate

The genomic similarity was calculated by dividing the number

of positions where the two accessions have different alleles by the
frontiersin.org
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length of the reference rice genome. The number of allelic positions

was counted from VCF files containing the allele information for

the two accessions.
2.5 Prediction of causative polymorphisms

A list of polymorphisms specific to the target mutant line was

prepared as the VCF file, and the effect of the polymorphisms on

gene function was evaluated by SnpEff (Cingolani et al., 2012) to

narrow down the list to those polymorphisms that were evaluated as

HIGH or MODERATE. For the listed genes, causative

polymorphisms were predicted based on gene expression

information from RiceXPro (Sato et al., 2013; https://

ricexpro.dna.affrc.go.jp/) and Transcriptome ENcyclopedia Of

Rice (Kawahara et al., 2016; https://tenor.dna.affrc.go.jp/), gene

function information from RAP-DB (https://rapdb.dna.affrc.go.jp/

), Rice Genome Annotation Project (http://rice.uga.edu/), Ensembl

Plants (https://plants.ensembl.org/) and Phytozome (phytozome-

next.jgi.doe.gov) and the literatures, and amino acid alignment

analysis using land plants as comparative targets. For amino acid

alignment of sequences, Clustal Omega was used with default

parameter settings (Sievers et al., 2011). The following land plant

species were chosen for the alignment analysis: Arabidopsis

thaliana, Glycine max, Solanum lycopersicum L., Zea mays,

Sorghum bicolor, Setaria italica, Paspalum virgatum, Selaginella

moellendorffii, and Physcomitrium patens.
3 Result

First, we estimated the number of mutations that occur within

373 Mb of the rice entire genome per generation (Figure 1). For

estimating the number of fixed spontaneous mutations, we assume

that mutations occur heterozygously and that the causative gene is

recessive. The number of heterozygous mutations that newly occur

per generation (N) is the spontaneous mutation rate x genome size.

Heterozygous mutations are the sum of newly occurring mutations

and mutations inherited from heterozygous mutations in the

previous generation (Li et al., 2016). As shown in the gray shaded

area of Figure 1, the number of heterozygous mutations can be

expressed as the sum of a geometric progression with an initial value

of N and a tolerance (r) of 1/2. Spontaneous mutation is a

constantly occurring phenomenon, and heterozygous mutation

should be considered to have reached saturation in an individual

plant. Thus, the number of heterozygous mutations per individual

plant is estimated to be 2N. The causative mutation in the mutant

line is derived from heterozygous mutations present in the

premutation line. The fixed homozygous mutations per

generation are estimated to be one-quarter of the heterozygous

mutations in the previous generation, i.e., N/2, according to

Mendel’s laws. Based on the reports of spontaneous mutation rate

in rice (Yang et al., 2015; Ichikawa et al., 2023), the number of fixed

mutations per generation is estimated to be 1.38-2.25, and when 50
Frontiers in Plant Science 03
generations have passed, the number of mutations is estimated to be

69.0-112.5 in the whole genome, and 10.4-16.9 in the coding region

based on Itoh et al. (2007) (Figure 1). Furthermore, by eliminating

mutations that are not involved in changes in gene function,

including non-synonymous substitutions, the number of

candidate causative polymorphisms can be reduced to ~10. Based

on this speculation, we calculated that approximately 10 to 17 genes

would be mutated, and by examining the surrounding information

on the effects of these mutations on gene function and tissue-

specific expression patterns, etc., we thought it highly likely that we

would be able to identify the causative gene.

For this study, we used data from NARO genebank (https://

www.gene.affrc.go.jp/databases-plant_search_char.php?type=428),

which has registered varieties selected through a mutation selection

process from previous breeding programs in Japan. Our first study

focused on Ginbouzu-Miidashi, which was isolated in 1919 as a

dwarf mutant of Ginbouzu (Terada, 1955). Its entire genome is

almost identical to the other three Ginbouzu varieties (Figure 2A),

but Ginbouzu-Miidashi has a shorter culm length compared to the

others (Figure 2B), as shown in the old literature. By comparing the

whole genome sequence between Ginbouzu-Miidashi and the other

Ginbouzu varieties, we identified polymorphisms specific to

Ginbouzu-Miidashi and scored these as HIGH (frameshift, stop

codon gain/lost) or MODERATE (amino acid substitution, inframe

insertion/deletion) by snpEff (Cingolani et al., 2012). As a result, 22

polymorphisms in nine genes were identified as candidate causative

polymorphisms (Supplementary Table 1). Based on information on

gene function, gene expression, and the alignment of amino acid

substitution (details shown in Supplementary Table 1), the amino

acid substitution R238S in Os06g0570100/LOC_Os06g37364 was

determined to be the causal polymorphism (Figure 2C). The residue

R238 is highly conserved in land plants (Figure 2D, Supplementary

Figure 1). As this polymorphism has already been reported as the

cause of dwarfism in Tan-Ginbouzu (D35/KO2; Itoh et al., 2004),

this supports the validity of this approach.

In a second study, we focused on Kamenoo-Daikoku.

According to its name, we assumed that Kamenoo-Daikoku was

selected for the “Daikoku (short grain in Japanese)” phenotype

(Hayashi and Takamure, 1999). We compared the whole genome

sequence and grain length between Kamenoo-Daikoku and five

Kamenoo and related varieties, including Rikutou-Rikuu 2 and

Rikuu 2 (almost identical genome to Kamenoo) (Figures 2A, B).

Seventeen polymorphisms in eight genes were identified as

candidate causative polymorphisms by the above prediction

method (Supplementary Table 2). By comprehensive evaluation,

the amino acid substi tution Q58L in Os05g0333200/

LOC_Os05g26890 was judged to be the causative polymorphism

(Figure 3C). Because the residue Q58 is highly conserved in land

plants, this amino acid substitution was predicted to be deleterious

(Figure 2D, Supplementary Figure 2). This gene has been reported

as the causative gene for five different mutants showing the same

short grain phenotypes (Fujisawa et al., 1999). The five mutants

analyzed in this paper by Fujisawa et al. (1999) all had different

mutations occurring independently in the same gene, but none of
frontiersin.org
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them contained the Kamenoo-Daikoku mutation found here. The

short-grain rice produced by the Daikoku mutation is not

considered to be an agriculturally useful mutation because of its

smaller grain size and lower yield, but if the mutant lines are

maintained, the gene responsible for it can be easily identified by the

method we propose.

Okada (1919) reported that mutation breeding had been carried

out in Japan to remove the awn from Aikoku and its awnless

mutants had been isolated. Based on this old document, we

compared four long awned Aikoku with the three awnless

varieties, which have almost identical genomes (Figure 4). There

were no polymorphisms common to the three awnless varieties, but

there are nine polymorphisms shared by the two mutants, Tokyo-

Mubo-Aikoku and Mubo-Aikoku (Supplementary Table 3), while
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eight are specific to another mutant, Bozu-Aikoku (Supplementary

Table 4), and we predicted that these are candidates for causative

polymorphisms. Based on a comprehensive evaluation, DNA

insertions expected to cause frameshift in Os06g0695900/

LOC_Os06g48065 annotated as E3 ubiquitin ligase (53-bp

insertion for Tokyo-Mubo-Aikoku and 85-bp insertion for Mubo-

Aikoku) and a 4-bp DNA insertion expected to cause frameshift in

Os03g0115700/LOC_Os03g02460, Short-chain dehydrogenase/

reductase SDR family protein, for Bozu-Aikoku were selected

(Figure 4C, Supplementary Figure 3). When the expression

patterns of these genes were compared with known awn-forming

genes (An-1/RAE1, Luo et al., 2013 and An-2/LABA1, Gu et al.,

2015), they were found to share a common feature in that their

expression is strongly repressed by ABA and jasmonic acid
FIGURE 1

Estimation of the number of fixed spontaneous mutations in the rice mutant line. For estimating the number of fixed spontaneous mutations, we
assume that mutations occur heterozygously and that the causative gene is recessive. The causative mutation in the mutant line is derived from
heterozygous mutations present in the premutation line. The fixed homozygous mutations per generation are estimated to be one-quarter of the
heterozygous mutations in the previous generation, i.e., N/2. Based on the reports of spontaneous mutation rate in rice (Yang et al., 2015; Ichikawa
et al., 2023), the number of fixed mutations per generation is estimated to be 1.38-2.25, and when 50 generations have passed, the mutations are
estimated 69.0-112.5 in the whole genome, and 10.4-16.9 in the coding region.
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(Supplementary Figures 4, 5). We also found a similarity in their

expression is observed in the lemma/palea, pistil, and inflorescence

(Supplementary Figures 4, 5), supporting our findings.

To confirm that these genes are indeed involved in awn

formation, we expressed the whole genomic regions of both genes

or cDNAs under the control of the maize ubiquitin promoter in

Tokyo-Mubo-Aikoku/Mubo-Aikoku or Bozu-Aikoku plants,

respectively. As a result, all these transformants formed a long

awn (Figures 4D, E). These results confirmed that both genes have

functions essential for awn formation.
4 Discussion

In this study, we proposed an in silico approach that compares

the whole genome sequence of a spontaneous mutant line with that
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of closely related lines and successfully identified four causative

genes. These results indicate that this approach is effective in

identifying genes that confer useful traits that can be used for

breeding. The causative gene for dwarfism found in Ginbouzu-

Miidashi and the gene for short grain found in Kamenoo-Daikoku

were previously reported genes, respectively (Fujisawa et al., 1999;

Itoh et al., 2004). On the other hand, of the two genes identified in

this study, although Os06g0695900/LOC_Os06g48065 found in

Tokyo-Mubo-Aikoku and Mubo-Aikoku is the same gene as

RAE3, very recently identified in African rice (Bessho-Uehara

et al., 2023), Os03g0115700/LOC_Os03g02460 found in Bozu-

Aikoku is a novel gene involved in awn formation.

Previously, a method called “MutMap” was proposed as a way

to map important agronomic traits using rice whole genome

sequence information (Abe et al., 2012). This method can identify

causative mutations by whole-genome sequencing of pooled DNA
A

B

D

C

FIGURE 2

Identification of genes for dwarf phenotype from Ginbouzu varieties by comparison of their whole genomes. (A) Genomic similarity among three
nondwarf cultivars (Ginbouzu-Bansei, Ginbouzu 1 and Ginbouzu 2) and dwarf cultivar, Ginbouzu-Miidashi. (B) Culm length in three nondwarf
cultivars and Ginbouzu-Miidashi. (C) Exon-intron structure of Os06g0570100/LOC_Os06g37364 with DNA polymorphisms including amino acid
exchanges. ID-1, DKT-1,DKT-2, DK22, and CM 1361-1 are mutations reported in Fujisawa et al. (1999). (D) Amino acid alignment of Os06g0570100
surrounding mutation site. Mutations shown in yellow are thought to be the causative amino acid substitution for culm length. Os06t0570100-01
(Oryza sativa), AT5G25900.1 (Arabidopsis thaliana), Glyma.13G371400.1.p (Glycine max), Solyc04g083160.1.1 (Solanum lycopersicum L.),
GRMZM2G059308_P01 (Zea mays), Sobic.010G172700.1.p (Sorghum bicolor), Si006269m (Setaria italica), Pavir.J31452.1.p (Paspalum virgatum),
74427 (Selaginella moellendorffii), Pp3c20_800V3.1.p (Physcomitrium patens). The overall amino acid alignment of Os06g0570100 is shown in
Supplementary Figure 1. They mean the similarity of amino acid sequences. * means identical, : means almost identical
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from segregants to reveal key genetic loci associated with important

agronomic traits in rice, providing valuable insights for rice

breeding and genetic improvement. In fact, the MutMap method

has been successfully used to isolate many causative genes in several

crop mutants. In addition, its improved methods have been

proposed and their effectiveness has been reported in several

cases (Fekih et al., 2013; Nordstrom et al., 2013; Sahu et al.,

2020). However, these methods are essentially based on a genetic

approach in which the mutant of interest is crossed with its parental

line, the F2 generations are distinguished on the basis of phenotype,

and the whole genome is compared between the two to find the

mutation that causes the difference in trait. This requires at least two

generations of cultivation and a reasonable number of individuals

for the F2 segregation generation, which is time consuming and

labor intensive. Such problems may not be a major obstacle in the

case of model plants/crops such as Arabidopsis and rice, but they
Frontiers in Plant Science 06
can be a major obstacle for plants that take a long time to update a

generation, such as trees, perennial crops, some grasses that flower

only once every few decades. In addition, many of these plants are

often difficult to grow in large populations.

The method we propose in this study does not involve a genetic

approach and therefore does not have any of the limitations of

MutMap and its modified approaches. Instead, it may be difficult to

apply this method widely and generally to many plants and crops.

In fact, this method can only be applied to mutants produced by

natural mutation. There are two sides to this feature - a good side

and a bad side. On the positive side, as we have already mentioned,

the natural mutation rate per generation is not high, and therefore it

is possible to identify the gene responsible for the mutation by

directly comparing the whole genome sequence without resorting to

genetic methods, as shown in this paper. On the other hand, this

fact clearly shows a disadvantage of this method: the spontaneous
A

B

D

C

FIGURE 3

Identification of genes for Daikoku (short grain) phenotype from Kamenoo varieties by comparison of their whole genomes. (A) Genomic similarity
rate among five normal grain cultivars (Rikutou-Rikuu 2, Kamenoo 4, Rikuu 2, Kamenoo 1, Kamenoo (11485)) and Daikoku variety, Kamenoo-
Daikoku. (B) Ratio of length to width in brown rice in four normal grain cultivars and Kamenoo-Daikoku. (C) Exon-intron structure of
Os05g0333200/LOC_Os05g26890 with DNA polymorphisms including amino acid substitution. (D) Amino acid alignment of Os05g0333200
surrounding mutation site. Mutations shown in yellow are thought to be the causative amino acid substitution for short grain. Os05t0333200-01
(Oryza sativa), AT2G26300.1 (Arabidopsis thaliana), Glyma.17G226700.1.p (Glycine max), Solyc08g061220.2.1 (Solanum lycopersicum L.),
GRMZM2G064732_P02 (Zea mays), Sobic.001G484200.1.p (Sorghum bicolor), Si022288m (Setaria italica), Pavir.Ib00484.1.p (Paspalum virgatum),
75723 (Selaginella moellendorffii), Pp3cl_38907V3.1.p (Physcomitrium patens). The overall amino acid alignment of Os05g0333200 is shown in
Supplementary Figure 2. They mean the similarity of amino acid sequences. * means identical, : means almost identical
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mutation rate is low and the resulting mutants are rare. However, in

the case of rice, for example, this plant has been cultivated for a very

long time as a very important crop, and during this time many

mutants have accumulated due to natural mutation. For example,

the mutant that produces Daikoku-type seeds was repeatedly

introduced in various literature published in the 17th and 19th

centuries (Sase, 1684, Iwasaki, 1828), and in fact many different

mutant alleles have been found as Daikoku mutants (Figure 3,

Fujisawa et al., 1999). In the case of plant species that have a long

history of cultivation and many lines with abnormal phenotypes

have been preserved (e.g. fruit trees and orchids), the approach

proposed here can be expected to lead to the causal gene of the
Frontiers in Plant Science 07
mutation with only a very low-cost and low-task whole

genome analysis.

Theoretically, it is most likely to succeed by directly comparing

the sequences between the plant with the mutant phenotype and its

siblings without the mutant phenotype. However, in this study,

since those siblings were not available, we used several varieties

whose genomes were almost identical to the mutants. In this case,

the number of mutations detected was higher than theoretical

(Figure 1), but still the causal polymorphisms were successfully

identified. Therefore, this method is applicable when genomically

close varieties are available. It should be noted, however, that this

approach will not always be successful, for example, when the
A

B

D E

C

FIGURE 4

Identification of genes for awn formation from Aikoku varieties by comparison of their whole genomes. (A) Genomic similarity among four long-
awned cultivars (Aikoku, Rikuu 20, Rikuu-Aikoku 20 and Nakate-Aikoku) and three awnless cultivars (Tokyo-Mubo-Aikoku, Mubo-Aikoku and Bozu-
Aikoku). (B) Typical awned cultivar Aikoku and three awnless cultivars. (C) Exon-intron structure of Os06g0695900/LOC_Os06g48065 and
Os03g0115700/LOC_Os03g02460 with DNA polymorphisms causing frameshift. (D) Tokyo-Mubo-Aikoku and Mubo-Aikoku with awns produced by
transgenic complementation of whole genomic regions and cDNA of Os06g0695900/LOC_Os06g48065. (E) Bozu-Aikoku with awns produced by
transgenic complementation of whole genomic regions and cDNA of Os03g0115700/LOC_Os03g02460. Alt, alternative allele; ins, insertion; Ref,
reference allele.
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mutation alters gene expression or has epigenetic effects. However,

even in such cases, it is possible to predict candidate genes by

searching for causative polymorphisms in the promoter regions and

comparing their level and specificity of expression.

In terms of mutation rates, a large study of de novomutations in

Arabidopsis has recently been reported (Monroe et al., 2022).

According to this study, contrary to the common theory

(mutagenesis occurs randomly across the genome), genes under

strong selective pressure have a low mutation frequency. If this is

true for crops, the mutation rate could vary depending on the trait

of interest. In any case, the mutation rate at the whole genome level

in plants, especially in crops that are always under artificial control,

needs to be analyzed in the future.

Although there are many lines that have been produced by

spontaneous mutation in the past, only a few of them have been

used in breeding programs, leaving a large amount of unutilized

genetic resources. The in silico approach proposed in this study will

enable the identification of useful genes that can be used for crop

breeding with minimal effort required for NGS analysis. Effective

use of this approach will accelerate the molecular breeding through

such as the generation of molecular markers (Hasan et al., 2021)

and the breeding of new varieties through pinpoint improvement

using the latest genome editing technologies (Mishra et al., 2018).
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