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Currently, foliar diseases of chili have significantly impacted both yield and

quality. Despite effective advancements in deep learning techniques for the

classification of chili leaf diseases, most existing classification models still face

challenges in terms of accuracy and practical application in disease identification.

Therefore, in this study, an optimized and enhanced convolutional neural

network model named MCCM (MCSAM-ConvNeXt-MSFFM) is proposed by

introducing ConvNeXt. The model incorporates a Multi-Scale Feature Fusion

Module (MSFFM) aimed at better capturing disease features of various sizes and

positions within the images. Moreover, adjustments are made to the positioning,

activation functions, and normalization operations of the MSFFM module to

further optimize the overall model. Additionally, a proposed Mixed Channel

Spatial Attention Mechanism (MCSAM) strengthens the correlation between

non-local channels and spatial features, enhancing the model’s extraction of

fundamental characteristics of chili leaf diseases. During the training process,

pre-trained weights are obtained from the Plant Village dataset using transfer

learning to accelerate the model’s convergence. Regarding model evaluation,

the MCCM model is compared with existing CNN models (Vgg16, ResNet34,

GoogLeNet, MobileNetV2, ShuffleNet, EfficientNetV2, ConvNeXt), and Swin-

Transformer. The results demonstrate that the MCCM model achieves average

improvements of 3.38%, 2.62%, 2.48%, and 2.53% in accuracy, precision, recall,

and F1 score, respectively. Particularly noteworthy is that compared to the

original ConvNeXt model, the MCCM model exhibits significant enhancements

across all performance metrics. Furthermore, classification experiments

conducted on rice and maize disease datasets showcase the MCCM model’s

strong generalization performance. Finally, in terms of application, a chili leaf

disease classification website is successfully developed using the Flask

framework. This website accurately identifies uploaded chili leaf disease

images, demonstrating the practical utility of the model.
KEYWORDS

MCCM convolutional neural network, MSFFM, MCSAM, transfer learning, chili leaf

disease recognition website
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1 Introduction

According to the statistical data released by the Food and

Agriculture Organization (FAO), the global chili production has

shown a consistent growth trend from 1970 to 2021 (Chen et al.,

2023). Studies have indicated a close correlation between chili

consumption and human obesity rates as well as cardiovascular

diseases (Spence, 2019). Presently, diseases affecting chili leaves

have a direct impact on the production and quality of chilis. These

leaf diseases typically manifest most prominently during the early

stages of leaf growth. The most common method for identifying

chili leaf diseases remains manual inspection of plants by qualified

professionals. However, this approach is time-consuming,

subjective, inefficient, and associated with high costs, and is also

influenced by the expertise level of the inspector. Furthermore,

existing classification strategies for chili leaf diseases have certain

limitations in dealing with the diversity and large quantity of disease

types. Therefore, the development of a method capable of

accurately, rapidly, and efficiently identifying and classifying chili

leaf diseases is of paramount importance.

In response to the aforementioned challenges, researchers have

utilized traditional machine learning algorithms, including K-

Nearest Neighbors (KNN) (Liang et al., 2021), Support Vector

Machine (SVM) (Gangsar and Tiwari, 2019), Decision Trees

(Kotsiantis, 2013), Random Forest (RF) (Gold et al., 2020), Naive

Bayes (NB) (Mondal et al., 2017), and Artificial Neural Networks

(ANN), to enhance feature extraction and classification algorithms

(Wang et al., 2018). However, the research results indicate that

while classical machine learning methods perform well in most

classification tasks, they still exhibit limitations, sub-optimality, and

challenges in addressing the complex issue of chili leaf diseases

affected by various concurrent factors. Moreover, the complexity of

managing extensive leaf disease datasets and the presence of

multiple diseases further exacerbate the challenges, thereby

complicating the formal deployment and application of the model.

With the continuous advancement of artificial intelligence

theory, deep learning has emerged as a pivotal tool in addressing

intricate visual tasks within the agricultural domain. Researchers

have extensively explored various deep learning algorithms, notably

Convolutional Neural Networks (CNN), to discern critical disease

symptoms that significantly impact crop yield. CNN, recognized as

one of the most promising technologies, has been effectively

deployed for precise identification of crop leaf diseases (Saleem

et al., 2019). Additionally, various models of Convolutional Neural

Networks have been intricately integrated with the recognition of

crop leaf diseases (Koirala et al., 2019; Van Klompenburg et al.,

2020; Abade et al., 2021). For instance, Gu et al. achieved

remarkable success in automatically detecting and assessing the

severity of bacterial spot disease in chilis through an ensemble

neural network based on CNN, attaining an impressive overall

accuracy of 95.34%. Subsequently, they proposed several deep

learning models employing transfer learning-based deep features

for diagnosing image-based diseases and pests in chilis (Wu et al.,

2020). Mathew and Mahesh utilized YOLOv5 to identify symptoms

of bacterial spot disease evident on bell chili leaves sourced from

farms (Mathew and Mahesh, 2022). Moreover, they specifically
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employed YOLOv3 to detect bacterial spot disease in bell chili plant

images, achieving an average precision of 90% (Mahesh and

Mathew, 2023). Mustafa et al. presented an approach based on a

five-layer CNN model to automatically detect diseases in bell chili

plants using leaf images, achieving an impressive accuracy of

99.99% in predicting whether the plant leaves were healthy or

infected with bacteria (Mustafa et al., 2023). Furthermore,

Chaitanya et al. proposed a ResNet CNN for the identification

and classification of various diseases in chili leaves, achieving an

overall accuracy of 86.1% (Chaitanya et al., 2023). Chen et al.

leveraged the HSV color space for preprocessing chili images,

facilitating convolutional neural networks to extract additional

features from limited samples of chili leaf disease images. The

overall accuracy reached 63.26%, representing a notable

improvement of 11.78% compared to traditional RGB

(Chen et al., 2023). In 2023, Dai et al. introduced an enhanced

lightweight model, GoogLeNet-EL, based on the GoogLeNet

architecture for the identification and classification of six types

of chili diseases, achieving an overall accuracy of 97.87%

(Dai et al., 2023).

Despite significant advancements in deep learning models for

chili disease recognition and classification, the pathological

symptoms of chili leaf diseases are highly similar, with small

inter-class differences, posing challenges to the accuracy of many

network models (Wu et al., 2020). Furthermore, acquiring high-

quality, diverse datasets of chili leaf disease images still requires

considerable effort and time. Additionally, compared to

classification models for diseases in other crops, the variety of

classification models for chili leaf diseases is relatively limited.

Finally, the practical application of chili leaf disease classification

models is currently somewhat constrained. Farmers and

agricultural practitioners may have insufficient understanding and

acceptance of deep learning technologies; they may be more

accustomed to traditional agricultural methods and tools.

Moreover, employing deep learning models for leaf disease

classification may require substantial investment in hardware

equipment, data collection, model training, etc. For some small-

scale or resource-limited farms, this could pose a significant

challenge. To overcome the challenges faced in chili leaf disease

classification, this study’s contributions primarily lie in the

following aspects:
1. Data aspect: In order to meet the demand for high-quality,

diverse training data for deep learning, we performed

various image preprocessing operations on the

downloaded 500 publicly available chili leaf disease

images, including random resizing, random aspect ratio

cropping, etc. Additionally, this study introduced data

augmentation techniques such as random Gaussian noise,

random brightness, random rotation angles, and random

occlusion to augment the data to 2500 images. Finally, we

divided the dataset into training, validation, and test sets in

a ratio of 7:1.5:1.5, providing a sufficient data augmentation

solution for the small dataset experiments.

2. Model aspect: To address the issue of singular

convolutional kernel size observed in most networks and
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enhance the model’s ability to learn features from images of

different scales, we introduced the Multi-Scale Feature

Fusion Module (MSFFM). By adjusting the network block

structure, activation functions, and normalization

operations, we optimized the overall model. Additionally,

this paper introduced the Mixed Channel Spatial Attention

Mechanism (MCSAM). Unlike the conventional Channel

Spatial Attention Mechanism (CBAM), MCSAM enhances

the correlation in non-local regions, improving the model’s

capability to extract crucial features.

3. Application aspect: To address the constraints faced in

practical applications of chili disease classification, this

study developed a chili leaf disease recognition website

using the Flask framework. By pre-training the model and

deploying it on the web, users can easily identify chili leaf

diseases by simply uploading relevant images to the

website. This approach allows users to utilize the system

without needing to understand deep learning techniques,

thus reducing manual labor and associated costs.
The remainder of the paper is organized as follows. Section 2

provides a detailed overview of the overall model architecture and

the specific methods employed. Section 3 presents accurate

experimental results through a comprehensive comparison of

experiments. Section 4 analyzes all research findings, proposes

possible improvements, and suggests future research directions.

Finally, Section 5 summarizes the main contributions of this study.
2 Materials and methods

2.1 Datasets

The chili leaf disease dataset is sourced from publicly available

datasets on the internet(https://www.kaggle.com/datasets/dhenyd/

chili-plant-disease/). The initial dataset consists of 500 images,

encompassing five categories: healthy chili leaves, leaf curl disease,

leaf spot disease, whitefly, and yellowing disease. Samples of each

category are illustrated in Figure 1.

As shown in Figure 2, the chili leaf disease dataset was subjected to

preprocessing, data augmentation, and sample categorization,
tiers in Plant Science 03
following three standardization procedures (Fujita et al., 2016). This

processed dataset was then utilized as the primary experimental dataset.

The detailed steps for standardizing the chili leaf disease dataset

are as follows:
1. Data Augmentation: Through the introduction of methods

such as random Gaussian noise, random brightness

adjustments, random rotation angles, and random

occlusion, as illustrated in Figure 3, we enabled the model

to learn more general features, not just adapting to specific

samples in the training set. This enhances the model’s

robustness. In cases where training data is limited, the

model may tend to memorize specific samples and fail to

learn general patterns. By introducing these transformations,

we expanded the original 500 chili leaf disease images to 2500,

increasing their diversity and reducing the risk of overfitting,

thus improving the model’s training performance.

2. Image Preprocessing: To comply with the requirements of

the convolutional model input, this study employed

random cropping with random sizes and aspect ratios,

uniformly resizing the original images to a size of 224 ×

224, and applying horizontal flipping. To effectively address

the issues of gradient vanishing or exploding during model

training, we normalized all images in the dataset across the

R, G, and B channels to obtain normalized images.

3. Data Set Organization and Division: After undergoing

image preprocessing and data augmentation, the original

chili leaf disease dataset was randomly divided into

training, validation, and test sets according to the typical

image split ratio (7:1.5:1.5). Table 1 illustrates the

composition of the final dataset. In this study, the model

was trained using the training set, and weights and biases

were continuously updated through backpropagation and

the Adam optimization algorithm to minimize the loss

function on the training set, enabling the model to learn

disease features more rapidly. Subsequently, the validation

set was employed to assess the disparity between predicted

outputs and actual labels. The model’s performance was

evaluated after each training epoch to prevent overfitting,

further optimizing the model’s parameters. Finally, the

performance of the trained model was assessed using the
B C D EA

FIGURE 1

Chili samples. (A) Healthy chili leaves. (B) Leaf curl disease. (C) Leaf spot disease. (D) Whitefly disease. (E) Yellowing disease. The sample types of 5
kinds of chili leaf disease datasets publicly downloaded from the Internet.
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test set to obtain the model ’s ultimate accuracy

and effectiveness.
2.2 The overall design of MCCM model

By enhancing ConvNeXt (Liu et al., 2022), this study introduces

the MCCM model, whose overall network architecture is illustrated

in Figure 4. To validate the rationality and feasibility of the

improvement approach, comprehensive comparative experiments

were conducted and applied to the recognition and classification of

chili leaf diseases. The detailed steps of the improvement method

are outlined below:
(1) To enhance the model’s perception of features of various

sizes, this study employed a Multi-Scale Feature Fusion

Module (MSFFM) composed of depth convolutions with

kernel sizes of 3×3, 5×5, and 7×7, replacing the original 7×7

depth convolution in the ConvNeXt module.

(2) By adjusting the Block structure, this study swapped the

position of the MSFFM module with a 1×1 convolutional

layer. Additionally, we replaced the activation function and

normalization operations with appropriate choices.

Specifically, GELU was replaced with LReLU, and Layer

Norm normalization was replaced with Batch Norm

normalization suitable for CNN models. These

adjustments were made to further enhance the model’s

feature extraction effectiveness.
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(3) Improved MCSAM Attention Mechanism, derived from

CBAM, was added after each Block layer to increase the

sensitivity and effectiveness of the model towards

useful features.
2.3 Multi-scale feature fusion module

Due to the presence of various types of diseases in chili leaves,

the affected areas vary in size, and their locations on the leaves differ.

This results in an uneven distribution of disease features on the

leaves. Therefore, in the original Block module of ConvNeXt, using

a single 7×7-sized convolutional kernel for depth separable

convolution is challenging for effectively extracting detailed

disease features of different sizes and those located at the edges of

the images. To enhance the model’s sensitivity to features of

different sizes and positions, this paper introduced the MSFFM

module, as shown in Figure 5A.The MSFFM comprises three

branches of depth convolution with kernel sizes of 3×3, 5×5, and

7×7. An LN layer is added after each convolutional layer to enhance

the stability and effectiveness of the training process model. The

utilization of 3×3, 5×5, and 7×7 convolutional kernels enables the

network to capture both global and local information within

individual modules, facilitating multi-scale feature extraction.

This design allows the model to acquire multi-level, multi-scale

feature representations that encompass both detailed and holistic

information present in the images. Consequently, it aids in better

understanding and analyzing the complex structures and features
B C D EA

FIGURE 3

Data augmentation. (A) Original. (B) Random brightness. (C) Random gaussian noise. (D) Random rotation angles. (E) Random occlusion. Disease
samples of chili leaves after four data enhancement methods.
FIGURE 2

Standardization processing of the chili disease dataset. The original chili leaf disease data set is first enhanced by four kinds of data, such as Gaussian
noise, and then preprocessed by three kinds of data, such as clipping, and finally divided into training set, verification set and test set according
to proportion.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1367738
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2024.1367738
within the images. This is particularly significant for detecting

targets of varying sizes, positions, and complexities, enhancing

the model’s adaptability and generalization capabilities.

Furthermore, the multi-scale feature extraction module exhibits

superior robustness when dealing with noise and variations present

in images, thereby further improving the model’s robustness

and accuracy.

The depth separable convolution, first introduced by

MobileNet, is a novel convolutional operation characterized by

significantly reducing model parameters and computational

workload while only slightly compromising accuracy, leading to a
Frontiers in Plant Science 05
substantial improvement in computational speed (Sandler et al.,

2018). In InceptionV2, a method was proposed to replace large

convolutions with multiple small convolutions. This strategy

effectively reduces the model’s parameter count while maintaining

the same feature size, thereby reducing the time required for image

inference. In this study, we made adjustments to the original

MSFFM module, as illustrated in Figure 5B. In the depth

convolution, multiple 3×3 small convolutional kernels were used

to replace the two large convolutional kernels of 5×5 and 7×7, and

the LN layer was moved downward. In the three depth separable

convolutional layers, feature fusion was performed first, followed by
B

C

A

FIGURE 4

MCCM network model. (A) MCCM. (B) MCCM Block. (C) MCSAM.MCCM model structure is composed of down-sampling, four blocks, and
classification layer. The MCCM model consists of MCCM block composed of MSFFM, MCSAM, the down-sampling layer, and the final
classification layer.
TABLE 1 Dataset information.

Categories
Sample number/piece

Training sets Validation sets Test sets Total

healthy 350 75 75 500

leaf curl 350 75 75 500

leaf spot 350 75 75 500

whitefly 350 75 75 500

yellowish 350 75 75 500

Total 1750 375 375 2500
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LN operations. This adjustment not only accelerated the model’s

computational speed but also achieved a certain improvement in

model recognition accuracy.
2.4 Mixed channel spatial
attention mechanism

Due to its ability to efficiently and accurately determine

important features through parameter updates for responsive

tasks (Zhang C. J. et al., 2021), attention mechanisms have been

widely applied in various domains (Zhang M. et al., 2021; Guo et al.,

2022; Wang et al., 2022; Qian et al., 2023). Compared to channel

attention mechanisms [such as CA (Li et al., 2019), ECA (Wang

et al., 2020), SE (Hu et al., 2018), etc.] and spatial attention

mechanisms [such as SimAM (Yang et al., 2021)], the CBAM

attention mechanism is a module that combines both channel

and spatial attention, proposed by Sanghyun Woo et al. in 2018

(Woo et al., 2018). This module comprises a Channel Attention

Module (CAM) and a Spatial Attention Module (SAM). The CAM

allows the model to adaptively determine which channels are more
Frontiers in Plant Science 06
crucial for the current task, while the SAM highlights important

regions in the image, reducing the impact on model recognition.

The structure of this module is depicted in Figure 6A.

Although SAM enables the model to establish correlations

between regions, its effectiveness is limited to local regions due to

the constraints of convolutional operations, restricting connections

between different positions within a certain space. To overcome this

limitation, this paper introduces a hybrid channel attention

mechanism between SAM and CAM. First, the features obtained

after CAM operation are globally average-pooled along the channel

direction. Next , through two branched convolutions,

dimensionality reduction is applied to different channels, and

they are fused to form a new feature representation.

Subsequently, the features are restored to the original scale

through upsampling convolution and multiplied with the input to

enhance feature connections between non-local regions. Finally,

SAM technology is utilized to enhance correlations between local

regions. This improvement in the CBAM attention mechanism

overcomes the constraints between local regions and enhances

connections between channels in non-adjacent areas. The overall

structure is depicted in Figure 6B.
B

A

FIGURE 5

MSFFM structure. (A) Before modification. (B) After modification. The MSFFM comprises three branches of depth convolution with kernel sizes of
3×3, 5×5, and 7×7. In the depth convolution, multiple 3×3 small convolutional kernels were used to replace the two large convolutional kernels of
5×5 and 7×7, and the LN layer was moved downward.
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2.5 MCCM module

According to the original ConvNeXt paper, the authors found

similarities between the Inverted Bottleneck module in MobileNetV2

and the MLP module in the Transformer block. Both modules

performed well and shared certain similarities in channel design.

Therefore, the authors decided to adopt the Inverted Bottleneck as

the primary block in the ConvNeXt network, expecting an

improvement in model accuracy. However, when attempting to

mimic the Transformer model structure by moving the Depthwise

Conv layer, originally located in the Block structure, to before the

module, it unexpectedly resulted in a decrease in model accuracy.

Subsequently, the authors conducted a series of experiments inspired

by the Swin Transformer network structure. They changed the

convolutional kernel size of the Depthwise Conv from the original

3×3 to 7×7. Additionally, the authors experimented with other kernel

sizes, including 3×3, 5×5, 9×9, and 11×11, observing their impact on

model accuracy. The experimental results showed that as the kernel size
Frontiers in Plant Science 07
increased, the accuracy exhibited a gradually rising trend. When the

kernel size reached 7×7, the accuracy reached a saturation point,

remaining unchanged compared to the original 3×3 kernel size

before the upward movement. This indicates that the model with the

Depthwise Conv layer moved upward and a kernel size set to 7×7

achieved a level of accuracy equivalent to the model with the original

3×3 kernel size before the upward movement.

Therefore, to further optimize the ConvNeXt module, this study

decided to move the existing Depthwise Conv layer downward in the

module and experiment with different kernel sizes (3×3, 5×5, 7×7, and

9×9). Surprisingly, experimental results indicated that placing the

Depthwise Conv layer in the middle of the module and using a 3×3-

sized kernel was sufficient to maintain the original accuracy. As the

kernel size increased, the accuracy showed an upward trend, reaching a

saturation point when the kernel size reached 7×7. Further

investigation revealed that using a single kernel size (3×3, 5×5, 7×7)

resulted in a continuous improvement in model accuracy. Inspired by

this, this study considered improving the model by using a multi-scale
B

A

FIGURE 6

CBAM and MCSAM attention mechanisms. (A) CBAM. (B) MCSAM. We introduce a hybrid channel attention mechanism between SAM and CAM. This
mechanism uses two branch convolution for channel fusion.
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fusion module (MSFFM) composed of kernels of sizes 3×3, 5×5, and

7×7 to enhance the model’s sensitivity to features of different sizes.

Experimental results showed a significant improvement in model

accuracy after this modification.
2.6 LRELU activation function and
batch norm

As shown in Figure 7, for further optimization of the improved

module, this study implemented two crucial adjustments: firstly,

replacing the GELU activation function in the original block with

LRELU; secondly, replacing the originally used LN operation with

BN. Specifically, in the MSFFM module, the previously shared LN

was substituted with BN.

2.6.1 LRELU and GELU
In the process of emulating the Transformer, ConvNeXt

decided to replace the common RELU activation function in

convolutional neural networks with the widely used GELU

activation function in the Transformer (Hendrycks and Gimpel,

2016). However, surprisingly, despite this change, the model’s

accuracy did not show any improvement. As shown in

Supplementary Figure S1A, the GELU used in the original

ConvNeXt block, compared to some other activation functions

like RELU (Glorot et al., 2011), has a well-defined and continuous

derivative across the entire real number range. Its mathematical

expression is given by Equation 1:

GELU(x) = 0:5

ffiffiffiffi
2
p

r
(x(1 + tanhx + 0:044715x3))

 !
(1)

Where, tanh is the hyperbolic tangent function,
ffiffiffi
2
p

q
is

a constant.

Although GELU lacks an upper bound, making it less

susceptible to gradient saturation, and has a lower bound,

providing stronger regularization effects, along with its
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smoothness aiding in improving optimization algorithm

performance, it may introduce numerical instability in certain

cases. This is especially true when the input is predominantly

negative and exceeds the lower bound. Such instability can lead to

issues like vanishing or exploding gradients, particularly in deep

neural networks. To address these limitations, this experiment opts

to use the LRELU activation function as a replacement for GELU.

According to the mathematical expression of LRELU (Equation 2)

and its derivative (Equation 3), LRELU maintains a non-zero

gradient for negative inputs, thus avoiding neuron deactivation

(Xu et al., 2015). Additionally, with its adjustable negative slope,

LRELU can learn more complex patterns.

f (x) =
x,   x ≥ 0

ax, x < 0
 a∈(0, 1)

(
(2)

f 0(x) =
1,   x ≥ 0

a , x < 0
 a∈(0, 1)

(
(3)

Therefore, we replaced the GELU activation function with

LRELU in the original ConvNeXt block, as illustrated in

Supplementary Figure S1B. LRELU exhibits a slight slope on

negative input values rather than being zero, thereby enhancing

the model’s nonlinearity and performance. Additionally, LRELU

reduces the likelihood of overfitting by introducing noise during the

training process and increasing the model’s randomness. Compared

to other activation functions, LRELU has advantages such as high

computational efficiency, robustness, and better generalization than

GELU. Furthermore, LRELU can prevent the issue of dead neurons

and contribute to faster model convergence.
2.6.2 Batch norm and layer norm
To enhance the stability of the neural network, the input data is

initially normalized using Equation 4 before being passed to the

neurons. This normalization process ensures that the input data

conforms to a standard distribution within a fixed range.
FIGURE 7

ConvNeXt block and MCCM Block. Compared to the original ConvNeXt block, in MCCM block, the MSFFM layer is moved down and GELU and LN
are replaced with LRELU and BN.
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h = f (g ·
x − m
s

+ b) (4)

Where m  is translation parameter, s   is scaling parameter, b  is

re-translation parameter, g is re-scaling parameter, and the

obtained data conforms to the distribution of mean b and

variance g square.

According to the different dimensions of normalization

operations, it can be distinguished between BN (Batch

Normalization) and LN (Layer Normalization). BN normalizes

each feature within a batch (Ioffe and Szegedy, 2015). According

to the calculation Equation 5 of BN, this method targets individual

neurons by computing the mean and variance of the neuron xi
using a small batch of data during network training.

mi =
1
MoXi,  s i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Mo(Xi − mi)

2 + e
r

(5)

Where M is the minimum batch size.

LN normalizes the distribution of a layer by normalizing along

the Hidden size dimension (Ba et al., 2016). According to the

calculation Equation 6 of LN, which takes into account all

dimensions of input in a layer, it computes the mean input value

and input variance for the layer. Then, it employs the same

normalization operation to transform the input along each

dimension.

m =o
i
Xi,  s =

ffiffiffiffiffi
o
i

r
(Xi − m)2 + e (6)

Where i represents all the input neurons in the layer. The two

parameters m,  s in the standard formula for the transformation

are all scalars (as opposed to vectors in BN), indicating that all

inputs share the same normalized transformation.

In contrast to LN, BN introduces additional noise on each small

batch of data, thereby reducing overfitting (sometimes serving as a

regularization mechanism). In contrast, LN normalizes over the

features of each individual sample, thus lacking batch-level noise.

BN standardizes the inputs for each layer, ensuring that each layer

receives inputs with similar distributions, accelerating the training

process of neural networks, alleviating gradient vanishing and

exploding issues, and making gradient propagation more

straightforward. While LN also provides some benefits in terms of

gradient propagation, generally, BN tends to achieve faster

convergence in large deep networks. Ultimately, BN often
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performs well in deep feedforward networks, whereas LN is

typically more effective when dealing with recurrent neural

networks and sequence models. Experimental results indicate that

replacing LN with BN leads to improved model accuracy. This

suggests that in the MCCM model, Batch Normalization is more

suitable compared to Layer Normalization.
2.7 Chili leaf disease classification
system design

Despite existing research on the classification of chili leaf

diseases, the practical application of this field remains relatively

limited. In this study, we have successfully developed a web-based

application for the classification of chili leaf diseases, as illustrated

in Figure 8. Users can upload images of chili leaf diseases, and the

system will automatically recognize and classify them into different

disease types. The application is built on the Flask framework,

allowing users to access it through a web browser. The backend of

the application utilizes trained MCCM model weights to generate

the corresponding classification results.
3 Experimental results and analysis

3.1 Experimental environment

The experimental setup utilized version 1.11 of the Pytorch

deep learning framework, programmed in Python 3.8. The

experiments were conducted on an Intel(R) Xeon(R) Platinum

8352V CPU and an NVIDIA RTX4090 GPU. To ensure the

validity of the experimental results, each model was configured

with identical hyperparameters, including a fixed number of epochs

(100) and batch size (32).
3.2 Model evaluation

During this study, we obtained the optimal weights for each

model through training and subsequently conducted testing and

analysis on a designated test set. In the context of chili leaf disease

classification research, commonly used model evaluation metrics

include accuracy, recall, precision, and F1 score. Additionally, the
FIGURE 8

Chili leaf disease classification system. Users use mobile devices to upload chili leaf disease pictures to the web page, and identify the disease
through the trained MCCM model.
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application of a confusion matrix allows for a more detailed analysis

of the model’s classification performance and misclassifications. In

this study, the four elements of the confusion matrix are defined as

True Positive (TP), False Positive (FP), False Negative (FN), and

True Negative (TN).

In model evaluation, accuracy refers to the proportion of correctly

classified samples to the total number of samples. In multi-class

problems, macro-averaged precision and micro-averaged precision

are commonly used for a comprehensive evaluation of performance.

Accuracy provides an understanding of the overall performance of the

model in the classification task. Precision, also known as positive

predictive value, quantifies the proportion of true positive samples

recognized by the model among all positive samples. High precision

indicates more accurate identification of positive samples by the model,

minimizing false positive predictions and reducing unnecessary

operations. Recall is a metric that measures the proportion of true

positive samples identified by the model from all true samples. High

recall indicates the model’s ability to accurately identify true positive

samples, demonstrating good discriminatory power. Recall helps

understand the model’s ability to capture all instances of the disease,

ensuring that no potential cases are missed. The F1 score is a balanced

metric that comprehensively evaluates the balance between model

accuracy and recall. A higher F1 score indicates a better balance

between precision and recall. The F1 score ensures that the model

performs well in both accurately identifying the disease and capturing

all instances. These metrics are represented by Equations 7–10 as

shown below:

Accuracy =
(TP+TN)

(TP+TN+FP+FN)
(7)

Precision =
TP

(TP+FP)
(8)

Recall =
TP

(TP+FN)
(9)

F1 − Score =
2� (Precision�Recall)
(Precision+Recall)

(10)
3.3 Comparison experiment before and
after modification of MSFFM module

To validate the effectiveness of replacing the 7×7 depthwise

separable convolution kernel in the original Block module of the

ConvNeXt model with the MSFFM (Multi-Scale Feature Fusion

Module), experiments were conducted using a preprocessed dataset

of chili diseases. The experiments were carried out on the original

ConvNeXt model, the model after adding the original MSFFM, and

the model with a shared Layer Norm normalization in the MSFFM.

The validation was performed by comparing accuracy and loss

values in the experimental results. The experimental results on the

chili disease dataset are presented in Table 2. The original

ConvNeXt block achieved an accuracy of 86.3%. When replaced

with the MSFFM module, the accuracy increased by 1.2%, and the
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loss decreased by 0.075. For the MSFFM model with shared Layer

Norm normalization, although the loss slightly increased, the

accuracy reached 88.4%, which is an improvement of 2.1%

compared to the original ConvNeXt block and 0.9% compared to

the original MSFFM model. These experiments demonstrate the

effectiveness of the MSFFM module in enhancing network

feature extraction.
3.4 Comparison experiment before and
after MCCM module optimization

To validate the effectiveness of the MCCM module after

optimizing the ConvNeXt module, this study conducted tests on

a dataset of chili leaf diseases. We utilized different kernel sizes (3×3,

5×5, 7×7, and 9×9) for the downward shifted Depthwise Conv layer

and introduced the MSFFM module for comparative experiments.

Additionally, we focused on improving the accuracy of the

proposed model by adjusting different activation functions and

normalization techniques. Based on the modified structure of the

proposed MCCM model, this paper made adjustments to both

activation functions and normalization, replacing the GELU

activation function with LRELU and the original LN operation

with BN. The results of the comparative experiments before and

after optimizing the MCCM module are presented in Table 3.

By comparing the experimental results, it was observed that

shifting the Depthwise Conv layer to the middle of the block, using

a 3×3 kernel, could maintain the original accuracy of 86.3%. As the

kernel size increased (3×3, 5×5, 7×7), the accuracy slightly improved

from 86.3% to 87%. However, when the kernel size reached 9×9, there

was a slight decrease in model accuracy, indicating that a 7×7 kernel

size reached saturation. Furthermore, after replacing with the

MSFFM module, the accuracy improved again to 88.1%. This

experimental result not only validates the effectiveness of shifting

the Depthwise Conv layer but also confirms that the multi-scale

fusion module (composed of 3×3, 5×5, 7×7 kernel sizes) enhances the

model’s sensitivity to features of different sizes.

The experimental results once again confirm that replacing the

GELU activation function in the original block with LRELU increases

accuracy by 0.4%. Compared to the LN used in the original block,

using BN increases the model’s accuracy by 1.1%, reaching 89.6%,

and the loss value is 0.271, the lowest among all experimental models.

This indicates that the adjustment of activation functions and

normalization operations brings overall optimization to the model,

validating the effectiveness of these adjustments.
TABLE 2 Comparison of experimental results before and after
modification of MSFFM module.

Test ID
Depthwise

conv
Accuracy (%) Loss

1 7×7, s=1, p=3 86.3 0.374

2 Primary MSFFM 87.5 0.299

3 MSFFM 88.4 0.316
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3.5 Performance comparison of different
attention modules

To enhance the connection between input features across channels,

non-local regions, and spatial dimensions, this study introduced the

MCSAM attention mechanism module. To verify the superior

performance of MCSAM compared to other attention mechanisms,

this paper conducted comparative experiments by adding CA, ECA,

SE, SimAM, and CBAM attention mechanisms to the blocks at the

same positions. The experimental results are shown in Table 4. The

study indicates that, except for a slight decrease in model accuracy after

adding the SimAM attention mechanism, other attention mechanisms

improve the model’s performance. From the experimental data, the

added MCSAM attention mechanism performs the best, with an

accuracy of 91.2%, an improvement of 1.6% compared to the

original model. Additionally, the loss value of the MCSAM module

is the lowest among all experimental models, at 0.236, a decrease of

0.035 compared to the original model. Therefore, compared to other

attention mechanisms, the MCSAM attention module demonstrates

outstanding performance in model accuracy.
3.6 Ablation experiment

To validate the improvement brought by the optimized MSFFM

module and MCSAM attention mechanism, ablation experiments
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were conducted by integrating the MSFFM module and MCSAM

into the ConvNeXt network. The results are shown in Table 5.

According to the analysis results in Table 5, integrating the

optimized MSFFM module into the ConvNeXt network not only

improved the accuracy by 3.3% but also resulted in a decrease in

loss. The results of disease classification testing show that compared to

the ConvNeXt model, the ConvNeXt-MSFFM model exhibits

improvements in identifying healthy chili leaves and notably

enhances the feature extraction of leaf curl. Additionally, there is a

slight improvement in the detection accuracy of leaf spot and yellowing

diseases. This indicates that the module contributes to enhancing the

model’s ability to extract features of different sizes and dimensions to

some extent. Additionally, incorporating the MCSAM attention

mechanism into the ConvNeXt network led to a 2% increase in

accuracy and a decrease in loss. The test results also indicate

significant improvements in the ConvNeXt-MCSAM model’s

recognition of healthy chili leaves, leaf curl, and yellowing diseases.

This suggests that adding the MCSAM attention mechanism effectively

strengthens the feature connections between non-local regions, thereby

enhancing the model’s capability to extract crucial features,

consequently improving accuracy and reducing loss values. Finally,

compared to the ConvNeXt, ConvNeXt-MSFFM, and ConvNeXt-

MCSAM models, the MCCM model performs better on the five

types of chili leaf diseases. Although there was no significant

improvement in detecting yellowing diseases, there was a significant

enhancement in the recognition capability of other diseases, further

confirming the superiority of the MCCM model.
3.7 Utilization of transfer learning

To expedite training and enhance prediction accuracy, we

employed transfer learning by pretraining the proposed MCCM

model on a large-scale image classification task with a vast dataset.

Subsequently, we utilized the pretrained weights obtained from this

task and applied them to our specific target task. This approach

leverages existing knowledge, obviating the need to train the model

from scratch, thereby improving efficiency and performance.

Therefore, this paper pretrained the MCCM model using the

publicly available Plant Village dataset and applied the obtained
TABLE 3 Module optimization experiment results.

Test ID First Layer AF/Norm Second Layer AF/Norm Accuracy (%) Loss

1 7×7, s1, p3 LN 1×1, s1, p0 GELU 86.3 0.374

2 MSFFM LN 1×1, s1, p0 GELU 88.4 0.316

3 1×1, s1, p0 GELU 3×3, s1, p1 LN 86.3 0.394

4 1×1, s1, p0 GELU 5×5, s1, p2 LN 86.7 0.370

5 1×1, s1, p0 GELU 7×7, s1, p3 LN 87.0 0.350

6 1×1, s1, p0 GELU 9×9, s1, p4 LN 86.8 0.363

7 1×1, s1, p0 GELU MSFFM LN 88.1 0.324

8 1×1, s1, p0 LRELU MSFFM LN 88.5 0.310

9 1×1, s1, p0 LRELU MSFFM BN 89.6 0.271
TABLE 4 The impact of different attention modules on
classification results.

Test
ID

Attention
Module

Accuracy (%) Loss

1 Original Block 89.6 0.271

2 +CA 90.0 0.225

3 +ECA 90.4 0.273

4 +SimAM 88.3 0.321

5 +CBAM 90.6 0.257

6 +MCSAM 91.2 0.236
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pretrained weights to the focal research task of classifying diseases in

chili leaf images. To preserve the high-level feature representations

acquired through pre-training, prevent excessive adjustments of these

features on the chili leaf disease classification task, enhance model

generalization, and reduce the risk of overfitting, the model’s

corresponding classification layer was frozen during the transfer

learning process.

To investigate the impact of transfer learning on classification

results, this paper compared the MCCM model with and without

transfer learning in terms of recognition accuracy on the chili leaf

disease test set and the loss value on the validation set. The

experimental results shown in Figure 9; Table 6 indicate that the

MCCM model, when applied with transfer learning, achieves an

accuracy of 93.5% and a loss value of 0.192. Compared to the

scenario without transfer learning, the accuracy improves by 2.3%,

and the loss value decreases by 0.044. Therefore, the application of

transfer learning not only accelerates the convergence speed of the

model but also significantly improves its accuracy.
3.8 Network Grad-CAM visualization

To better observe the learning capability of the MCCMmodel on

chili leaf disease features in this experiment, we predicted partial data

of each disease in the test set and visualized them using Grad-CAM.

In this study, we selected the last layer of the MCCM model as the

network’s feature visualization layer for feature visualization, as

shown in Figure 10. Through observing the visualization results, we

found that the MCCM model not only accurately predicted the

classification results for each disease but also accurately identified key

areas of different disease categories. Additionally, we noticed that the

model paid less attention to irrelevant complex backgrounds such as

soil and vegetation surrounding the leaf diseases. Furthermore, the

model exhibited high accuracy in identifying small regions of diseases

such as yellowing disease and leaf spot disease on the leaves.

Therefore, these results validate the strong learning capability of

the MCCM model on chili leaf disease features.
3.9 Performance comparison of
different models

To evaluate the performance of the MCCM model, this study

employed the chili leaf disease dataset and conducted training and

testing on various models, including the MCCM model, as well as
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Vgg16, ResNet34 (He et al., 2016), GoogLeNet, MobileNetV2,

ShuffleNet, EfficientNetV2, ConvNeXt, and Swin-Transformer

(Liu et al., 2021). By comparing the accuracy, loss, precision,

recall, and F1 values of each model, the results are presented in

Figure 11, as well as Supplementary Table S1. The research indicates

that the MCCM model exhibits a 1.5% improvement in accuracy

compared to the Swin-Transformer model and a 1.1%

improvement compared to the ResNet34 model, which is a high-

performing CNN convolutional model in terms of accuracy.

Notably, the MCCM model achieved the lowest loss value among

all models, only 0.192. Furthermore, the model outperforms others

significantly in terms of precision, recall, and F1 score. Compared to

the EfficientNetV2 model, which performs well in these metrics, the

MCCM model shows improvements of 0.82%, 0.8%, and 0.8%,

respectively. In summary, the MCCMmodel demonstrates superior

performance compared to other models. In contrast to the original

ConvNeXt model, the MCCMmodel not only achieves a significant

improvement in accuracy but also excels in metrics such as loss,

precision, recall, and F1 score, with improvements of 7.2%, 5.68%,

5.46%, and 5.55%, respectively.

Additionally, the classification performance of the model was

further assessed using a confusion matrix. Supplementary Figure S2

illustrates the confusion matrix results of this model compared to

eight other models. The model demonstrates favorable classification

performance across five categories: healthy chili leaves, leaf curl

disease, leaf spot disease, whitefly, and yellowing disease. However,

due to the potential similarity in appearance between symptoms of

leaf curl disease and yellowish disease, such as color changes and

abnormal shapes, and compared to the Swin-Transformer model

with a stronger self-attention mechanism, the effectiveness of the

MCCM model in distinguishing general symptoms of leaf curl

disease and yellowish disease may be slightly insufficient. While the

model may not exhibit optimal results in all class distinctions, its

overall classification performance remains impressive.
3.10 MCCM model generalization

3.10.1 K-fold cross-validation
To address potential biases in evaluation results arising from

specific categories or patterns within the image dataset, this study

implemented a robust training approach using 100-fold cross-

validation for the proposed MCCM model. The dataset was

partitioned into 100 subsets, with 99 subsets utilized for training in

each iteration, leaving one subset for testing. The model underwent a
TABLE 5 Experimental results of ablation of different modules.

Model
Factors

Accuracy(%) Loss
MSFFM MCSAM

ConvNeXt × × 86.3 0.374

ConvNeXt-MSFFM √ × 89.6 0.271

ConvNeXt-MCSAM × √ 88.3 0.314

MCCM √ √ 91.2 0.236
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total of 100 training epochs, each time with a different subset as the

test set. The accuracy on the test set, as depicted in Figure 12, was

recorded for each epoch. The resulting average accuracy across all

folds reached 93.49%. This meticulous 100-fold cross-validation

strategy was employed to mitigate the impact of randomness and
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enhance the model’s generalization capabilities, ensuring more

reliable and comprehensive performance evaluation.

3.10.2 Rice and maize disease test results
To validate the generalization ability of the MCCM model on

different crop diseases, this study conducted performance tests using

publicly available datasets, including rice leaf disease dataset and maize

leaf disease dataset (https://www.kaggle.com/datasets/nirmalsankalana/

rice-leaf-disease-image and https://www.kaggle.com/datasets/

smaranjitghose/corn-or-maize-leaf-disease-dataset). The rice leaf

disease dataset covers four types: rice blast, bacterial leaf blight,

brown spot, and rice tungro disease, while the maize leaf disease

dataset includes healthy states and three types of diseases: gray leaf spot,
TABLE 6 The impact of transfer learning on classification results.

Test
ID

Transfer
Learning

Accuracy (%) Loss

1 Non-Use 91.2 0.236

2 Use 93.5 0.192
B

A

FIGURE 9

Comparison of accuracy and loss of MCCM model without transfer learning and transfer learning. (A) Accuracy. (B) Loss. Accuracy curve and loss
curve of MCCM model under transfer learning and MCCM model without transfer learning under the verification set of chili leaf disease and epoch
100. The horizontal coordinate is the number of epochs, and the vertical coordinate is the corresponding accuracy and loss value.
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FIGURE 10

Comparison of Grad-CAM heat maps.
B

A

FIGURE 11

Accuracy and loss performance of MCCM model and other models. (A) Accuracy. (B) Loss. Different color curves represent the accuracy and loss
values of different models on the verification set of chili leaf disease and under epoch 100. The horizontal coordinate is the number of epochs, and
the vertical coordinate is the accuracy and loss value corresponding to each model.
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rust, and leaf blight. To ensure dataset diversity, data augmentation

techniques such as random Gaussian noise, random brightness,

random rotation angles, and random occlusion were employed,

along with random cropping, horizontal flipping, and image

normalization preprocessing methods. As shown in Figure 13, the

test results revealed that the MCCM model achieved an impressive

accuracy of 99.7% and a loss value of only 0.0096 in maize disease

classification. In rice disease classification, the accuracy reached 99.8%,

with an exceptionally low loss value of 0.00028. This indicates that the

MCCM model exhibits excellent performance in the classification of

rice and maize diseases, validating its generalization capability across

different crop diseases.
3.11 Chili leaf disease classification system

The model is deployed on a web-based platform built using the

Flask framework to make it more suitable for practical applications.

This system can rapidly and accurately identify four types of diseases

in chili plants. The efficient recognition capability assists users in

promptly identifying diseases in chili leaves and providing timely

solutions, thereby reducing the impact of chili diseases on growth,

minimizing losses, and achieving the goals of sustainable agriculture.

The website has been successfully deployed on a server, primarily

featuring disease image uploading and prediction functionalities for

the four types of chili diseases. Users can directly access the website by

visiting http://www.pepperleafdisease.com:4994/ (accessed on Dec, 1,

2023). Figure 14 displays the user interface, and the prediction results

of the chili leaf disease system. Users upload images for identification,

select the “Predict” option, and receive the recognized chili leaf

disease. The classification results are obtained in approximately 260

ms. The design of this chili leaf disease identification system not only

addresses the limitations encountered in the practical application of

chili disease classification but also alleviates the burden of manual

work and associated costs.
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4 Discussion

In the past, research on plant disease classification primarily

relied on machine learning-based methods. However, there were

challenges in handling large-scale leaf disease datasets and

applications. Therefore, researchers turned to deep learning-based

approaches, which integrate features frommultiple classical models,

significantly improving model performance and better addressing

the problem of plant leaf disease classification.

As shown in Table 7, recent research has demonstrated

significant performance of deep learning in addressing plant leaf

disease classification. However, most of these studies focused on

specific diseases, such as bacterial leaf spot disease in chili, while

overlooking other potential leaf diseases. In contrast, this study

comprehensively explored four common leaf diseases in chili and

designed effective classification and identification methods. By

introducing data augmentation techniques such as random

Gaussian noise, random rotation, random brightness, and

random occlusion, the performance of the model in chili leaf

disease classification was successfully improved. Experimental

results indicate that the MCCM deep learning model proposed in

this study performed remarkably well in classifying images of

healthy chili leaves and the four different diseases, achieving an

accuracy of 93.5%. Additionally, we developed a website for chili

leaf disease classification, providing an innovative solution for

practical applications. Although previous research has made

certain progress in methods and results, exploration in practical

applications has been relatively limited. Therefore, the contribution

of this study lies in proposing a comprehensive classification

solution for various chili leaf diseases and developing

corresponding tools at the application level, which provides

valuable references for further research and practice in the field of

plant disease identification.

While the MCCM model has shown promising results in

classifying chili leaf diseases, there are still areas for improvement.
FIGURE 12

Cross-validation accuracy. The MCCM model was cross-validated 100 numbers on the disease data of chili leaves and the corresponding accuracy
rate of each cross-validation.
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Firstly, despite augmenting the dataset from 500 to 2500 images

through techniques like image preprocessing and data

augmentation, there may still be challenges related to overfitting

or underfitting during training. Secondly, although the optimized

MCCM model exhibits high accuracy in chili leaf disease

classification, the addition of various modules has increased the

demand for computational resources, leading to longer training

times. Furthermore, the model tends to misclassify yellowing

disease as leaf curl disease. Research analysis revealed that in
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some cases, yellowing disease and leaf curl disease may exhibit

certain similarities in leaf color and texture, especially during the

early stages of the disease or under specific environmental

conditions. If the MCCM model fails to accurately capture these

subtle differences, it may easily misclassify yellowing disease as leaf

curl disease. Furthermore, compared to the more effective Swin-

Transformer model, the MCCM model can only capture

information through local receptive fields and cannot efficiently

obtain global information as the Transformer model does when
B

A

FIGURE 13

Accuracy and loss of MCCM on maize and rice disease datasets. (A) Accuracy. (B) Loss. In the figure, the blue curve and the yellow curve represent
the accuracy curve and loss curve of the maize and rice leaf disease verification set in the MCCM model and epoch 100, respectively. The horizontal
coordinate represents the number of epochs, and the vertical coordinate represents the corresponding accuracy and loss value.
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processing sequence data. Therefore, the effectiveness of the MCCM

model in distinguishing between the general symptoms of leaf curl

disease and yellowing disease may be slightly inadequate. Finally,

the chili leaf disease recognition website built on the Flask

framework needs enhancements. Currently, the website only

supports the recognition of four disease types (leaf curl disease,

leaf spot disease, whitefly, and yellowing disease), and its interactive

features are relatively basic.

In light of the aforementioned limitations, our next step

involves expanding the chili leaf disease dataset to encompass a

greater variety of types and a larger number of images (Saleem et al.,

2019). Simultaneously, we plan to streamline the model based on

practical requirements, reducing redundant connections and

parameters to achieve model lightweighting. To address the issue

of the model misclassifying yellowing disease as leaf curl disease, it’s

necessary to collect high-quality images of both yellowing disease

and leaf curl disease to ensure that the model can better extract the

subtle differences between the two. Additionally, considering the

advantages of Transformer models, further improvements to the

model structure could be made to enhance the model’s ability to

distinguish between yellowing disease and leaf curl disease.

Subsequently, we aim to broaden the website’s applicability,

enabling it to recognize additional disease types and enhancing
Frontiers in Plant Science 17
the user experience and interaction methods for more convenient

and efficient diagnostic services.
5 Conclusions

This study proposes an improved and optimized MCCM CNN

model based on the ConvNeXt network for the classification and

recognition of diseases in chili plant leaves. The model introduces the

MSFFM to enhance sensitivity to features of different sizes and

positions, effectively addressing the issue of extracting features of a

single size. The overall model performance is optimized by adjusting

the position of the MSFFM module in the block and replacing the

original GELU activation function and LN with LRELU activation

function and BN. Furthermore, the model incorporates MCSAM to

strengthen the model’s connection to non-local channels and spatial

features, improving the ability to extract useful features. Transfer

learning is employed on the Plant Village dataset to obtain pre-trained

weights, accelerating the convergence speed of the model, reducing the

risk of overfitting, and minimizing training time. Subsequently, the

MCCM model is experimentally compared with several models,

including Vgg16, ResNet34, GoogLeNet, MobileNetV2, ShuffleNet,

EfficientNetV2, ConvNeXt, and Swin-Transformer, on a preprocessed
FIGURE 14

Web page and Test prediction result.
TABLE 7 Performance comparison of relevant studies.

Literature Method Best accuracy Study object Application Date

Wu et al. MultiModel-VGR 95.34% chili leaf disease × 2020

Mathew et al. YOLOv5 90% chili leaf disease × 2023

Mustafa et al. CNN 99.99% chili leaf disease × 2023

Chaitanya et al. ResNet + CNN 86.1% chili leaf disease × 2023

Chen et al. HSV + CNN 63.26% chili leaf disease × 2023

Dai et al. GoogLeNet-EL 97.87% chili leaf disease × 2023

Ours MCCM 93.5% chili leaf disease √ 2023
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dataset of chili leaf diseases. The MCCM model achieves accuracy,

precision, recall, and F1 scores of 93.5%, 91.84%, 94.56%, and 91.68%,

respectively. Compared to the original ConvNeXt model, this

represents improvements of 1.2%, 1.5%, 1.5%, and 1.5%.

Additionally, the study analyzes the model’s performance in

different categories of chili leaf diseases using a confusion matrix,

confirming its outstanding classification and recognition capabilities.

Moreover, the MCCM model exhibits strong performance in the

classification and recognition of diseases in corn and rice plants,

demonstrating its excellent generalization capabilities.

Given the limited size of the original dataset, various data

augmentation techniques, such as random Gaussian noise and

random brightness adjustments, were employed to augment the

dataset, resulting in a final set of 2500 images. Finally, a user-

friendly website for chili leaf disease recognition was developed

using the Flask framework. This not only addresses the challenges

of practical applications in the classification of chili diseases but also

reduces manual efforts and minimizes losses caused by chili diseases.
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