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Hohhot, China, 2Key Laboratory of Agricultural and Animal Husbandry Big Data Research and
Application, Inner Mongolia Autonomous Region, Hohhot, China, 3Department of Information
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Maize leaf diseases significantly impact yield and quality. However, recognizing

these diseases from images taken in natural environments is challenging due to

complex backgrounds and high similarity of disease spots between classes.This

study proposes a lightweight multi-level attention fusion network (LFMNet)

which can identify maize leaf diseases with high similarity in natural

environment. The main components of LFMNet are PMFFM and MAttion

blocks, with three key improvements relative to existing essential blocks. First,

it improves the adaptability to the change of maize leaf disease scale through the

dense connection of partial convolution with different expansion rates and

reduces the parameters at the same time. The second improvement is that it

replaces a adaptable pooling kernel according to the size of the input feature

map on the original PPA, and the convolution layer to reshape to enhance the

feature extraction of maize leaves under complex background. The third

improvement is that it replaces different pooling kernels to obtain features of

different scales based on GMDC and generate feature weighting matrix to

enhance important regional features. Experimental results show that the

accuracy of the LFMNet model on the test dataset reaches 94.12%, which is

better than the existing heavyweight networks, such as ResNet50 and Inception

v3, and lightweight networks such as DenseNet 121,MobileNet(V3-large) and

ShuffleNet V2. The number of parameters is only 0.88m, which is better than the

current mainstream lightweight network. It is also effective to identify the disease

types with similar disease spots in leaves.
KEYWORDS

identification of maize leaf diseases, lightweight model, multi-level, complex
background, attention mechanism
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1 Introduction

Maize is not only one of the most important food crops in

China, but also a vital raw material for animal husbandry and light

industry. However, diseases are the main factors that affect corn

production, and the annual production loss is 6–10% (Zeng et al.,

2022b). In order to reduce the loss and improve the yield and

quality of maize, it is essential and necessary to use advanced

technology to monitor and provide early warning of maize

diseases (Sunil et al., 2020). It is reported that there are more

than 80 kinds of maize diseases in the world and more than 30 kinds

in China. Currently, the common and serious diseases are rust,

curvularia leaf spot, gray leaf spot, northern leaf blight, brown spot,

and southern leaf blight (Zhang et al., 2018). These diseases affect

the growth and development of maize and reduce the disease

resistance and yield. The identification and classification of maize

diseases is the basis and key of maize disease monitoring and early

warning. However, the identification and classification of maize

diseases face many difficulties and challenges. On the one hand, the

location of maize disease is scattered, a variety of lesions coexist, the

lesion area is small, and there are diseases with similar spot

characteristics, which easily cause large recognition error. On the

other hand, the image of maize leaf disease collected under natural

conditions has a complex background environment and causes

interference, which poses some difficulties to the visual and accurate

identification of maize disease.

The traditional maize leaf disease identification method relies

on agricultural technicians to perform detection on site, this

method is not only time-consuming, but also has a high

equipment cost, and the results are not real, so it is unable to

carry out disease control (Wu, 2021) in time. In order to help

farmers identify maize leaf diseases quickly, effectively and

accurately, we need a convenient and fast application algorithm,

which is of great significance to improve maize yield.

The continuous change of machine vision technology provides

a new idea for the detection of maize leaf diseases. In recent years,

deep learning technology has been widely used in agricultural

disease recognition, especially convolution neural network (CNN),

which is a powerful and efficient method, that provides a strong

driving force for the classification and recognition of maize disease

images. Bhatt et al. (2019) used adaptive enhancement algorithm

and decision tree-based strategy to improve the classifier in a

variety of CNN architectures (VGG 16,Inception v3,ResNet 50),

which can identify three kinds of maize leaf diseases with high

similarity. Jiang et al. (2021) proposed a multitasking classification

method for rice diseases based on VGG16, which overcomes the

problem of over-fitting and minimizes the loss. The classification

accuracy of rice dataset and wheat dataset is 97.22% and 98.75%,

respectively. Chen et al. (2020a) used transfer learning to improve

the final output layer of VGG network for plant disease detection.

They feed the feature information extracted from the VGG

network to the Inception module to obtain the final

classification probability. The results show that the average

classification accuracy of the model on the mixed dataset of corn

and rice is 92.00%. Wu (2021) used the pre-training model of

resnet50 and vgg19 to preserve the trained convolution layer to
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build a dual-channel model. They splice to construct a full

connection layer, flatten the feature map, and achieve a

recognition accuracy of 98.33% for three kinds of maize diseases.

Liu and Zhang (2022) proposed an Inception-V3-based transfer

learning method to address the small sample size problem of the

training data. The results of the method with pathological images

show a promising performance with an accuracy of 99.45 ± 0.17%.

In addition, Zeng et al. (2022a) improved ResNet50 by replacing

convolution kernel, activation function and loss function, and

propose SKPSNet-50 model, which classifies a corn disease dataset

in real environment with an accuracy of 92.6%. Shamsul rayhan

chy et al. (2023) integrated convolutional neural networks (CNN),

DenseNet201 and an improved CNN model with random depth

through ensemble learning. The new model combine three

different networks to achieve the best performance. The average

accuracy of the model in the maize leaf disease image of Plant

Village dataset is 98.36%. Liu et al. (2021) proposed a method to

identify plant diseases that highlights some of the characteristics of

the disease. The designed module divides the image, calculates the

weight of each block, calculates the weighted loss function using

the weight, classifies the features using LSTM network, and

achieves 99.78% recognition accuracy on the PlantVillage

dataset. Arumuga arun and Umamaheswari (2023) proposed a

multi-crop disease detection method using point-by-point and

standard convolution block cascade, and reach a detection

accuracy of 98.14%. However, these deep learning methods have

a large number of network model parameters, and the network

model design is complex, which limits their application ability in

mobile devices.

With advances in the Internet ofThings, mobile platforms

such as moblie inspection robots make precision agriculture

develop quickly (Ye et al., 2023; Tang et al., 2024). Due to the

conflict between the high computational power requirements of

the models and the limited computational power of plant

protection equipment, it is a challenging task to deploy efficient

and lightweight plant disease detection models on mobile

platforms. Chen et al. (2020b) proposed a new lightweight

network model called Mobile-DANet to identify maize diseases.

The recognition accuracy of the model is 98.5% on the open corn

dataset with simple background and 95.86% on the local corn

disease dataset with complex background. Chen Y. et al. (2022)

proposed a lightweight corn disease recognition model called

DFCANet , which re l i e s on dua l - f ea ture fus ion and

downsampling module fusion of deep and shallow features,

suppressing background noise and focusing on the lesion area.

The recognition efficiency of 5 kinds of maize leaf diseases reaches

96.63%. Zeng et al. (2022b) proposed a lightweight dense scale

network, which uses expansion convolution to improve the

adaptability to the change of maize leaf disease scale. The

number of parameters only accounts for 45.4% of the minimum

number of parameters in the comparison model (ShuffleNet V2 ~

1.3m), and the accuracy on the test dataset is 95.4%. Anita

Shrotriya et al. (2023) proposed a lightweight neural network

model, which uses depth separable convolution and expansive

convolution to extract focus disease features while reducing the

number of parameters, and finally achieves a high accuracy of
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97.73% on PlantVillage datasets. Lin et al. (2022) proposed a

lightweight CNN model called GrapeNet for identifying different

symptom stages of specific grape diseases. Compared with

DenseNet 121, which has the highest accuracy in the classical

network model, the number of parameters of GrapeNet is reduced

by 4.81 million. As a result, the training time of GrapeNet is about

two times less than that of DenseNet 121.The accuracy on the test

dataset is 86.29%. These lightweight neural network models can

show good performance in plant leaf disease image recognition

under complex background. However, under the complex

background, the characteristics of many kinds of maize leaf

diseases are highly similar, such as northern leaf spot, curvularia

leaf spot and southern leaf blight, so the actual classification effect

of these models is greatly affected.

Attention mechanism is an effective method to extract detail

features. There have been many studies on attention mechanism

with impressive results (Hu et al., 2018; Woo et al., 2018; Zhao

et al., 2020; Hou et al., 2021; Zhang et al., 2022). Among them, Hu

et al. (2018) proposed a novel architectural unit, that adaptively

recalibrates channel-wise feature responses by explicitly modelling

inter dependencies between channels, called Squeeze-and-

Excitation(SE). Woo et al. (2018) proposed a simple effective

attention module for feed-forward convolutional neural

networks called CBAM. SE and CBAM can be seamlessly

integrated into any CNN architecture and applied to image

recognition. With the lightweight design of the model, the

attention mechanism is improved towards simplicity and

efficiency. Hou et al. (2021) proposed a novel attention

mechanism for mobile networks by embedding positional

information into channel attention called coordinate attention

(CA). This model is simple and can be flexibly plugged into classic

mobile networks that reduced parameters and improved accuracy.

Li et al. (2022) proposed a new attention structure, which uses the

characteristics of the feature pyramid to fuse the features of the

adjacent lower layer to guide the upper layer to filter invalid

features, so that the deep and shallow feature information is fully

fused, and it improve the multi-scale target detection

performance. Zhang and Slamu (2023) proposed a lightweight

partial channel pooling attention mechanism, which selectively

emphasizes interdependent channel mapping through the

exchange of information between channels directly rather than

through the convolution layer. Through a large number of

experiments on object detection, it performs better on various

types of basic models. In this way, the attention mechanism has

been applied to plant disease recognition in complex scenes. Zhao

et al. (2022) proposed a RIC-Net model which combines the

improved convolution block attention module (CBAM). The

recognition effect of corn, potato and tomato is good in the

PlantVillage dataset. Wang et al. (2021) proposed an ADSNN-

BO model based on MobileNet v3 and attention enhancement

mechanism, and carried out cross-validation classification

experiments based on an open rice disease dataset. There are

four categories, which can achieve 94.65% test accuracy. Chen R.

et al. (2022) proposed a model combining channel attention and

channel pruning to reduce the parameters and complexity via the
Frontiers in Plant Science 03
L1-norm channel weight and local compression ratio. The

accuracy of model on the public dataset PlantVillage reaches

99.7% and achieves 97.7% on the local peanut leaf disease dataset.

The neural network method is effective for crop disease

identification, and it has developed in recent years. Many studies

have put forward new original networks, changed the network

structure, reduced network computation, and enhanced the

attention mechanism and fusion method. However, the existing

neural network models can not accurately identify leaf diseases with

highly similar features in fast and convenient effective way.

Therefore, the research goal of this paper is to design a

lightweight network model which can identify maize leaf diseases

with various features heights under complex background.

Inspired by the above discussion, this study designed a

convolution neural network model, namely, lightweight multi-

scale feature network (LMFNet).The main innovations and

contributions are summarized as follows:
1. A maize leaf disease dataset is established, including ten

categories, namely, healthy leaf (healthy),northern leaf

blight (nlb), gray leaf spot (gls), southern leaf blight (slb),

corn rust(rust), curvularia leaf spot (cls),brown spot (bs),

northern leaf spot (nls), autumn armyworm infection (fw)

and zinc deficiency (zd). There are four categories, namely,

cls,gls,nls and slb, with highly similar disease features.

2. The model uses partial convolution and varying expansion

rates to build parallel multi-scale feature fusion module

(PMFFM) achieving multi-scale feature extraction without

requiring multiple convolution layers or pooling layers, and

adds attention block (MAttion) to suppress complex

background information to strengthen the disease

features fusion at different scales.

3. The model outperforms some mainstream CNNs

compared with it in all metrics, with the only 0.88M

parameters. In addition, we also conducts experiments on

the necessity of the PMFFM and MAttion module for the

model using our dataset, verifing that it is essential. This

article also conducts experiments to observe the disease

features of maize leaves under complex background on the

accuracy of the model.
The rest of this article is organized as follows. The “Materials

and methods” section presents the dataset and methods adopted in

this study. The “Experimental results and analysis” section presents

the experiments for evaluating the performance of the model and

analyzes the results of the experiments. Finally, the “Conclusion”

section summarizes the main conclusions.
2 Materials and methods

2.1 Image acquisition

In this study, three ways were used to collect images of maize

leaves, namely, open source crop disease dataset, public website and
frontiersin.org
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field photography. First of all, we looked up three open source crop

disease datasets on the internet, namely CD&S (Ahmad et al., 2021),

PlantDoc (Singh et al., 2020) and Corn-Disease(GitHub-FXD96/

Corn-Diseases : Corn Diseases). These datasets provide the original

images of maize leaf diseases with high resolution and complex

background, and can reflect the real field situation. The CD&S dataset

contains 1062 images of maize northern leaf blight, gray leaf spot and

southern leaf spot, with a resolution of 3024 pixels × 3024 pixels. The

PlantDoc dataset contains 300 images of corn rust with a resolution

of 256 pixels × 256 pixels. The Corn-Disease dataset contains 323

images of maize leaves infected by armyworm and images of zinc

deficiency, with a resolution of 300 pixels × 300 pixels. Secondly, we

obtained the images of maize brown spot and Curvularia leaf spot

from the public website (google,bing). These images come from

different regions and environments and have good diversity and

representativeness. A total of 111 images of corn brown spot were

obtained with a resolution of 256 pixels × 256 pixels. A total of 117

images of corn Curvularia leaf spot were obtained with a resolution of

256 pixels × 256 pixels. Finally, we used an ordinary smartphone

(Huawei smartphone VOG-AL00, manual focus) to collect 2000

images of maize leaf diseases in the natural environment of

Hohhot, Inner Mongolia and Baoshan, Yunnan Province in June

21-31, 2023, and August 5-10, 2023. These images can reflect the

effects of different climate and soil conditions on maize leaf diseases.

After identification by agricultural technicians, we screened out

clearly discernible images of maize leaf diseases, including healthy

leaves, northern leaf blight, corn rust and southern leaf spot, which

were 225,236,212 and 273, respectively. The resolution is 1080 pixels

× 1920 pixels or 1080 pixels × 2340 pixels.

Through the above three ways, we collected a total of 3141

images of maize leaf diseases, covering the common types of maize
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leaf diseases, providing rich data resources for subsequent

identification and classification of maize leaf diseases. As the

same disease is divided into general and serious symptoms, the

inter-class variance in the dataset is small. On the other hand, in our

dataset, there are leaf images with highly similar disease features,

but not belong to the same disease which had a true label

identification by agricultural technicians. So it is easy due to label

different from the actual classification, which affects the evaluation

of the CNN model. Therefore, it is challenging for a CNN model to

identify the disease accurately.
2.2 Image preprocessing

To enhance the utilization and diversity of maize leaf disease

images, we cut the images with higher resolution and get more sub-

images. The specific cutting methods are as follows: firstly, we

selected the images with maize northern leaf blight, gray leaf spot,

northern leaf spot, corn rust and southern leaf spot, as well as

healthy leaf images. these images come from CD&S datasets and

field data, with a resolution of 3024 pixels × 3024 pixels or 1080

pixels × 1920 pixels or 1080 pixels × 2340 pixels. Then, according to

the length of the long and short edges of the image, we determine

that the cutting length is half of the longer and shorter edges, that is,

1512 pixels, 540 pixels or 1170 pixels. Then, starting from the center

point of the image, we cut to both sides along the long edge and the

short edge, respectively, and get four sub-images of the same size.

the resolution of each sub-image is 1512 pixels × 1512 pixels or 1170

pixels × 1170 pixels. Finally, we save the cut sub-image as a new file

for subsequent use and analysis. The schematic diagram of the

cutting process is shown in Figure 1. Because part of the image is
FIGURE 1

Original images are cropped and resized.
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cut, the image contains a lot of background information, and there

are no effective disease leaves, so it is necessary to screen the image

and eliminate the interference.

The number of maize disease samples was limited, and the

number of samples of different categories was not evenly

distributed. To reduce overfitting during model training and

enhance the generalization ability of the model, the dataset had to

be expanded. The specific processing methods are as follows: firstly,

we enhanced the images of maize brown spot, northern leaf spot,

zinc deficiency and autumn armyworm infection. These images

come from public websites and Corn-Disease datasets, and there are

only 111,117,179 and 144images with a resolution of 256 pixel ×

256pixel or 300pixel × 300pixel. We apply five methods of data

enhancement, namely random rotation, random offset, crosscutting

transformation, random scaling and random flipping, in order to

increase the change and difficulty of the image and improve the

generalization ability of the model. Then, we adjust the resolution of

all the maize leaf disease images uniformly, and adjust the size of the

image to 224 pixels × 224 pixels to meet the input requirements of

the image classification network. Then, according to the proportion

of 8:2, we divide the dataset into training set and verification set.

The training set is used to train the image classification network,

and the verification set is used to evaluate the performance and

effectiveness of the network. Finally, we counted the types of maize

leaf diseases and the number of images, as well as the number of

images in training set and verification set. The results are shown

in Table 1.
2.3 LFMNet model

2.3.1 The structure of model
LFMNet is a deep learning network that identifies maize leaf

diseases in the natural environments. It has two main modules: the

parallel multi-scale feature fusion module(PMFFM) and the

attention mechanism module(MAttion). The PMFFM uses

expansion convolution to extract features of maize leaf diseases
Frontiers in Plant Science 05
at different scales, which enhance the receptive field and

expression ability of the network. The MAttion uses the

attention mechanism to locate the position and extent of maize

leaf diseases accurately. The structure of the LFMNet network is

shown in Figure 2. The input of LFMNet network is a 3-channel

image of maize leaf disease, with a size of 224 pixels × 224 pixels.

The output of the network is a classification result of 10 categories,

indicating the type of maize leaf disease or healthy leaf in the

image. The network works as follows: first, it uses a 7 × 7

convolution layer and a 3 × 3 maximum pool layer to down-

sample the input image and obtain a 24-channel feature map with

a size of 56 pixels by 56 pixels. Then, it uses the PMFFM to extract

features from the feature map. The PMFFM has three partial

convolution layers with different expansion rates (1, 2, and 3) to

extract features at different scales. The input and output feature

map dimensions of the PMFFM are the same. The MAttion has a 1

× 1 convolution layer, a 3 × 3 maximum pooling layer and two

sub-modules that process the feature map in parallel: the PPA

block and the MSA block. The PPA block is a partial channel

attention block that splits the input feature map into several parts,

pooling some features, obtaining local features and reorganizing

them. Then, it concatenates the local extracted features with the

rest to generate a new feature map that enhances the ability of the

network to learn image features. The MSA is a multi-layer

attention block that has three branches. The first and second

branches focus on global information, and the third branch

focuses on local information. The branches use different pooling

kernels to explore different clues of feature information and

compute the weight of each channel on each branch. Then, they

combine the weights of the three branches to obtain the global

feature weight and focus on the disease feature region. The

MAttion1 module outputs a 48-channel feature map with a size

of 28 pixels by 28 pixels. The MAttion2 module outputs a 96-

channel feature map with a size of 14 pixels by 14 pixels. The

MAttion3 module outputs a 192-channel feature map with a size

of 7 pixels by 7 pixels. The MAttion4 module outputs a 256-

channel feature map with a size of 3 pixels by 3 pixels. Finally, the

network uses a 1 × 1 average pooling layer to pool the feature map

globally and obtain a 256-dimensional feature vector. Then, it uses

a 256 × 10 fully connected layer to classify the feature vector and

produce a 10-dimensional classification vector. The architecture

definition of the LFMNet network as shown in Table 2. PConv

stands for partial convolution.

2.3.2 PMFFM block
Leaf diseases have complex symptoms and morphological

features in different growth stages and scales. Sometimes, different

diseases have similar features at the same scale. For example,

northern leaf blight can manifest as single spots or clustered

spots, as shown in Figure 3.

To identify this disease, we need to look at the large-scale and

coarse-grained features of the leaf. On the other hand, northern

leaf spot and southern leaf blight are both characterized by round

and scattered spots. To distinguish them, we need to examine the

small-scale and fine-grained features of the leaf. Therefore, the
TABLE 1 Number of specific categories and distribution of training and
test datasets.

Disease type original expend Train set Val set

Healthy 225 900 720 180

Gray leaf spot 248 962 776 186

Brown spot 111 666 531 135

Northern leaf bright 497 1205 960 245

Northern leaf spot 553 2112 1700 412

Curvularia leaf spot 142 852 680 172

Southern leaf blight 273 1092 876 216

rust 512 1148 918 230

zinc deficiency 179 1074 860 214

armyworm 144 864 690 174
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multi-scale information of leaf disease features in the image is

crucial for accurately identifying the types of maize leaf diseases.

The PMFFM module is a type of module that extracts multi-scale

features of maize leaf diseases. It is inspired by the GMDC module

(Zeng T. et al., 2022). which uses group convolution and multi-

scale feature extraction to increase the receptive field and

expression ability of the network. The PMFFM module
Frontiers in Plant Science 06
improves on the GMDC module by using partial convolution

and varying expansion rates to achieve multi-scale feature

extraction, without requiring multiple convolution layers or

pooling layers. This reduces the model’s parameters and

computation. Figure 4 shows the structure of the PMFFM

module. The PMFFM module consists of three parallel

DMA_Block modules. Each DMA_Block module uses a 3×3

partial convolution layer with a different expansion rate (1, 2, or

3) to extract features at different scales from the input. The feature

map is then normalized and activated by a batch normalization

layer and a ReLU activation function to improve the stability and

nonlinearity of the features. Finally, the input and output features

are added together to form a new feature map using skip

connections. The PMFFM module fuses the feature maps of the

three DMA_Block outputs to obtain the global and detailed

information of different symptoms and morphological

characteristics of maize leaf disease. The input and output

feature map dimensions of the PMFFM module are the same.

The expansion rate is chosen based on the experiment of

expansion convolution (Zeng et al., 2022b). When the expansion

rate is 1, the pixel information of the original feature map is

preserved at the top layer, thus avoiding the loss of information

due to the excessive expansion rate in the middle layer.

2.3.3 MAttion block
The MAttion block is an attention module that locates maize

leaf diseases. It has a point-wise convolution layer that down-

samples the input feature maps and two attention modules that

process them in parallel.

We modify the PPA structure (Zhang and Slamu, 2023) as

shown in Figure 5. The main improvements are: first, it did not limit

the slice size of the input feature map; second, it adapted the output

size of the pooling operation for the smaller part of the slice and the

input feature map, based on the input feature map size, because the

model uses the PPA many times and the input feature map size

changes each time. Third, it did not use the convolution operation

of the original model to synthesize the new feature map, but it useed

the reshape operation, so the parameters reduced while extracting

the same features.

The pooling kernel size depends on the number of MAttion

blocks. We make a list of the number of MAttion blocks. Let N be

the number of modules, and i ϵ [MAttionn | n ϵ 1,2,3,4,…n], i be the

module number, starting from 1. In Equation 1, k is the pooling

kernel size. The formula shows that the more MAttion blocks there

are, the larger the pooling kernel size for each block. Equation 2 Xc
TABLE 2 LFMNet structure.

Layer
name

Output
tensor

Configuration Parameters

Input 3×224×224 Augmented images 0

Conv_1 24×112×112 Conv(k=7, s=2),BN,ReLU 3576

MaxPool 24×56×56 k=3,s=2 0

PMFFM1 24×56×56
[PConv(k=3),BN,
ReLU]×3,dilation=1,2,3

1116

MAttion1 48×28×28

Conv(k=1, s=1),BN,ReLU
MaxPool k=3,s=2,PPA,
MSA[AveragePool(k=3),
MaxPool(k=5),
Conv(k=1,s=1),PConv
(k=3),ReLU]

22389

PMFFM2 48×28×28
[PConv(k=3),BN,
ReLU]×3,dilation=1,2,3

4176

MAttion2 96×14×14

Conv(k=1, s=1),BN,ReLU
MaxPool k=3,s=2,PPA,
MSA[AveragePool(k=3),
MaxPool(k=5),
Conv(k=1,s=1),PConv
(k=3),ReLU]

98112

MAttion3 192×7×7

Conv(k=1, s=1),BN,ReLU
MaxPool k=3,s=2,PPA,
MSA[AveragePool(k=3),
MaxPool(k=5),
Conv(k=1,s=1),PConv
(k=3),ReLU]

352704

MAttion4 256×3×3

Conv(k=1, s=1),BN,ReLU
MaxPool k=3,s=2,PPA,
MSA[AveragePool(k=3),
MaxPool(k=5),
Conv(k=1,s=1),PConv
(k=3),ReLU]

442880

AveragePool 256 k=1 0

Classifier 10 2570

Total 924953
FIGURE 2

LFMNet model.
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FIGURE 3

Morphology of maize leaf diseases.
FIGURE 4

PMFFM block.
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(m,n) shows the size of each pixel of the input feature map and Zc (i,

j) shows the size of the feature map pixels after the pooling

operation with the kernel size k.

k = 3 + 2� i,   i ∈ ½MAttionn   ∣   n ∈ 1, 2, 3, 4,…, n� (1)

ZC(i, j) =
K2

HW o
w(i+1)

k

m=wi
k

o
h(i+1)

k

n=hi
k

XC(m, n),   (2)

The MSA structure, as shown in Figure 6, is an improvement

on MWAB (Gao and Zhou, 2023). It had three pooling operation

branches with different kernel sizes for the average and maximum

pooling layers. The original model uses a kernel size of 3 for the

average pooling layer and 5 for the maximum pooling layer. To

keep the input feature map size unchanged, the MSA structure

uses a kernel size of 3 with padding 2 for the maximum pooling

layer and replaces the kernel size of 5. The experiments on the

model show that the kernel sizes of 3 and 5 are the most effective

ones. These changes help extract important features at different

scales and transform them into feature weights using sigmoid
Frontiers in Plant Science 08
functions. The feature weights at different scales are combined to

form a complete feature weight matrix, which is multiplied by the

input feature map to produce the output feature map of the

key features.

From the theoretical analysis, it is assumed that the input of

MSA is that X = [x1,x2,…,xc,…,xc] ϵ RH×W×C,the weights of the

three branches are expressed by the Equation 3:

W1 = s (Fpwc1�1(Fpc3�3(FGAP3�3(x))))

W2 = s(Fpwc1�1(Fpc3�3(FGMP5�5(x))))

W3 = s (Fpwc1�1(Fpc3�3(x)))          

8>><
>>:

(3)

where s() is the sigmoid function, and Fpc () is the 3 × 3 part

convolutional function, Fpwc() is a 1 × 1 pointwise convolution

function. FGAP3×3 is the global average pooling function, and

FGMP5×5is the global max pooling function.

The output FMSA of the MSA can be described by the Equation

4:

FMSA = ½aW1 + (1 − a − b)W2 + bW3�⊙x (4)
FIGURE 5

PPA structure.
FIGURE 6

MSA block.
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where ȯ is the element-wise multiplication operation.a, b are

proportional parameters.
3 Experimental results and discussion

3.1 Experimental configuration and analysis

The experimental hardware in this study used Ubuntu operating

system and Intel ®Xeon ®Platinum 8255C processor (2.50GHz). The

model training and testing were accelerated by GPU, and the GPU

model was NVIDIA RTX 3090 24GB. The software environment

used Python 3.8, Cuda 11.3 and Pytorch 1.11.0 frameworks. The

related experiments were performed using the experimental data. The

experiment consisted of three parts, namely, the comparison of

different network models, the comparison of experiments on

different datasets, and the ablation experiment.

When training the maize leaf disease identification model, we

used SGD (Stochastic Gradient Descent,SGD) to optimize the

network model. SGD algorithm was relatively stable when

adjusting training parameters, and had small memory

requirements; therefore, it was suitable for most non-convex

optimization problems. The learning rate was set to 0.001, the

momentum parameter was set to a fixed value of 0.6, the number of

iterations was epochs = 800, and the number of images entered in

each batch was batch size = 32. All models use the weight

initialization strategy in (He et al., 2015) work.
3.2 Evaluation indexes

To show the performance of the network in this study, refer to

the model evaluation indicators in (Xie et al., 2018) work, we select

accuracy(Acc), precision(P), recall(R), F1-score(F1), parameters

and floating-point of operations(FLOPs) to evaluate the

performance of the network model in the identification of maize

leaf disease. These measurement indicators can be calculated by the

following Equations 5-8:

Acc   =  
TP + TN

TP + FP + TN + FN
(5)
Frontiers in Plant Science 09
P =  
TP

TP + FP
(6)

R =  
TP

TP + FN
(7)

F1 =   2� P · R
P + R

(8)

where TP, TN, FP, and FN are the number of true positive

samples, true negative samples, false-positive samples, and false-

negative samples, respectively. P estimates how many of the

predicted positive samples is positive. The R is the assessment of

how many of all positive samples can be correctly predicted as

positive. F1 is the synthesis of precision and recall. Acc measures

global sample prediction. Parameters, and FLOPs are commonly

used to measure model complexity.
3.3 Comparative experiment on different
network models

We compared LFMNet with the common maize leaf disease

identification model on the maize leaf disease dataset that we

proposed in this paper. As shown in the Table 3, the proposed

network model was tens or even hundreds of times higher than the

heavyweight network (ResNet 50, FasterNet) in terms of parameters

(Params) and FLOPs. Moreover, it had the highest average Acc,

Precision, recall and F1 scores (about 7 per- cent higher than

ResNet 50). Comparing with several commonly used lightweight

networks (Densenet-121, MobileNet V3-large, ShuffleNet V2), the

proposed model had the fewest parameters, and improved the

average Acc, Precision, recall rate and F1 score. As shown in

Figure 7, the LFMNet had better than other models at overall

performance. However, there was a abnormal situation that the

LFMNet had higher accuracy than the fasterNet model but higher

loss than the fasterNet model. This may be due to not correct

classification when identifying diseases with highly similar features,

the fasterNet distinguish different categories are divided into the

same category resulting the average accuracy low, but the overall

loss is reduced.
TABLE 3 Comparison of recognition accuracy of different models.

Models Precision Recall F1_score Accuracy Parameters(M) FLOPs

MobileNetv3 84.73 84.86 84.53 84.86 1.67 64.85M

FasterNet 90.21 90.08 90.06 90.08 31.18 4.5G

DenseNet121 90.15 90.24 90.11 90.24 6.96 2.9G

ShufferNet v2 86.05 86.13 85.87 86.13 1.26 151.37M

ResNet50 89.39 89.61 89.24 89.61 23.53 4.13G

Inception v3 86.58 86.92 86.62 86.92 23.46 3.09G

LFMNet 94.26 94.12 94.09 94.12 0.88 45.78M
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To clearly present the results of LFMNet recognition accuracy,

we drew a confusion matrix based on the dataset we built, as shown

in Figure 8. Bs, cls, fw, gls, nlb, nls, slb, rust and zd represent nine

common maize leaf diseases, and they are acronyms for the nine

maize diseases listed in Table 1. Considering the simple background

of the Healthy image, it was easy to identify, with an accuracy of

100%. The background of nlb was complex, but the disease spot was

single and wide, which wass favorable for the recognition of our

model, with an accuracy of 99.9%, and only one image was

recognized as gls. On the other hand, the area of rust disease was

large and scattered, but the features were obvious, which was also

beneficial for the identification of our model, with an accuracy of

98%. For slb, nls and gls, the background of the original image was

complex and disease-intensive and diverse, the features of disease

spots were highly similar, the recognition process had errors, and

the overall recognition accuracy is more than 97%. We believe that

the error was mainly caused by the concentration of disease spots

and mixed categories, which made these categories more difficult to

identify than other categories. Zd image recognition, because the
Frontiers in Plant Science 10
disease spot feature was not obvious and was not different from the

background, was easily disturbed by the complex background,

resulting in serious confusion, with only 83% accuracy. In

addition, the indexes of this model for identifying various maize

leaf diseases are listed in Table 4. “support” represents the number

of images.
3.4 Ablation experiments

We conducted ablation experiments on the same dataset to

compare various PMFFM and different combinations of attention

mechanism optimizations. First, without using attention

mechanism optimization methods, we employed two PMFFM

(Parallel Multi-Feature Fusion Module) blocks as the base model.

Based on this base model, we designed four combinations: LMFNet-

V0 (PMFFM=2), LMFNet-V1 (PMFFM=3), LMFNet-V2

(PMFFM=4), and LMFNet-V3 (PMFFM=5) to evaluate our

constructed dataset. The experimental results revealed that as the
A B

FIGURE 8

Obfuscation matrix.
FIGURE 7

Comparison of experimental results of models.
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number of cascaded PMFFM blocks increased, the accuracy

exhibited a downward trend. The reason behind this lies in the

structure of the PMFFM blocks. While multi-scale feature extraction

allows us to capture as many disease-related features from images as

possible, an excessive number of cascaded PMFFM blocks limits the

fine-grained extraction of disease features. This can lead to

parameter redundancy, wastage of computational resources, and a

decrease in accuracy due to overfitting. Generally, an appropriate
Frontiers in Plant Science 11
number of PMFFM blocks can effectively enhance recognition

accuracy without significantly increasing computational

complexity. Next, under the same PMFFM module combination,

we compared the MAttion attention module with the PPA

(Positional Pyramid Attention) and MSA (Multi-Scale Attention)

modules. Experimental results across all models showed that the

MAttion module in LMFNet-V0 achieved the highest recognition

accuracy. It outperformed the non-fused MAttion module in

LMFNet-V0 by 2.58% and surpassed the hybrid PPA and MSA

modules in LMFNet-V0 by 1.84% and 3.14%, respectively. This

indicates that the MAttion attention module, which combines PPA

and MSA, improves the recognition of corn leaf diseases in complex

backgrounds more effectively than individual PPA orMSAmodules.

Overall, our proposed feature extraction combination in this study

effectively identifies corn leaf disease features. As shown in Table 5,

the model constructed using two PMFFMmodules and the MAttion

attention fusion mechanism achieved the highest precision, recall,

and F1 score.

The PMFFM module is an enhanced and optimized version of

the GMDC module. To verify the impact of the PMFFM module on

the network model, we visualized the output feature maps of the

models using the GMDC module and the PMFFM module

respectively. As shown in Figure 9, the network model extracts the

texture, color, and edge of the maize leaf disease in the Conv layer.As

the network depth increases, the extracted features become more

abstract. We observed that the LFMNet with the PMFFMmodule has

richer abstract information than the LFMNet withthe GMDC

module. This is because the PMFFM employs partial convolution

and diverse dilation rates to capture more scale features, while
TABLE 5 Network model structure and comparative experiment on different optimization methods.

Model PMFFM PPA MSA MAttion Precision Recall F1_score Accuracy

LFMNet-v0 2

√ 92.42 92.66 91.94 92.66

√ 91.12 91.56 92.01 91.56

√ 94.26 94.12 94.09 94.12

91.68 91.14 91.17 91.14

LFMNet-v1 3

√ 91.23 92.44 92.05 92.44

√ 90.32 89.90 90.21 89.90

√ 93.16 93.65 93.99 93.65

88.52 87.82 87.74 87.82

LFMNet-v2 4

√ 92.12 92.99 92.34 92.99

√ 89.87 90.23 90.19 90.23

√ 91.11 91.52 90.87 91.52

89.43 88.61 88.62 88.61

LFMNet-v3 5

√ 86.14 86.39 85.93 86.39

√ 85.45 85.98 84.78 85.98

√ 87.67 88.45 88.25 88.45

87.20 85.60 85.41 85.60
TABLE 4 Identification of maize leaf disease index by LFMNet.

Precision Recall F1_score Support

bs 0.9136 0.9023 0.8985 135

cls 0.9899 0.9245 0.9561 172

fw 0.9029 0.8575 0.8796 174

gls 0.9217 0.9770 0.9485 186

healthy 0.9914 1.0000 0.9955 180

nlb 0.9593 0.9992 0.9583 245

nls 0.9700 0.9700 0.9700 412

slb 0.9896 0.9700 0.9797 216

rust 0.8850 0.9800 0.9245 230

zd 0.8711 0.8258 0.8478 214

accuracy 0.9412 2164

macro avg 0.9422 0.9323 0.9359 2164

weighted avg 0.9426 0.9412 0.9409 2164
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preserving a large amount of detail features, thereby enhancing the

model’s ability to recognize maize leaf disease.

To demonstrate that the MAttion proposed in this study can

improve the effectiveness of identifying maize leaf disease under

complex backgrounds, we visualized the three fusion methods

using ScoreCAM (Wang et al., 2019), as shown in Figure 10. The

first picture on the upper left shows maize leaf rust from the Plant

Village dataset; the background of the dataset is relatively simple,

but the disease distribution is dense. The disease spots in the

picture are mostly located at the edge,scattered, and there is also

the interference from gray leaf spots. Through identifying the

disease spot with PPA and MSA, MAttion can effectively grasp the

details of rust and identify the dense rust spot. The second picture

shows maize leaves with southern leaf blight disease, taken with a

conventional smartphone under a complex background in a field.

The image background interference is strong, the disease spots are

elongated, and there are a large number of disease spots on the
Frontiers in Plant Science 12
edge of the leaf. PPA focuses on the disease spot area more

effectively than MSA, while MAttion can accurately identify

maize leaf diseases in the presence of background interference.

The third picture shows northern leaf blight, which has a more

complex background. As the color of the disease spot is similar to

that of the land, it causes a lot of interference. While identifying

the spots, MAttion can see that part of the background is also

represented. On the whole, it can be seen that the disease spots

recognition effect of MAttion enhanced by PPA and MSA is better

and more accurate.
3.5 Comparison of experiments performed
on different datasets

To demonstrate the high accuracy of our proposed method on

different datasets, we compare LFMNet with the lightweight model
A

B C

FIGURE 9

Visualization results of the output feature maps of the convolution layer.
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by Bhuiyan et al. (2023) on the AI Challenger 2018 dataset, which

contains seven types of grape leaves. The BananaSqueezeNet is a

fast and lightweight CNN architecture that was optimized with

Bayesian Optimization. It can also recognize plant leaves with

similar disease features as LFMNet, which is why we chose it as a

baseline. Furthermore, we evaluated the performance of the two

models on our own dataset which we constructed for this study. The

average accuracy of identification is shown in Table 6. LFMNet

outperforms BananaSqueezeNet, indicating that our method has

better identification performance.
4 Conclusion

In this article, LFMNet was proposed for similar diseases

features of maize leaves under complex background recognition.

In our method, a PMFFM module is responsible for identifying
Frontiers in Plant Science 13
maize leaf diseases at different scales using different expansion

rates. In the next phase, the MAttion module is used to fuse

attention features to enhance recognition effect by combining the

PMFFM and the MAttion to build the fine-grained LFMNet

model. To verify the effectiveness and robustness of the model,

experiments were conducted on the constructed maize leaf disease

dataset and AI Challenger 2018 datasets and compared with the

lightweight and classical CNN models, such as ResNet50,

MobileNetV3, FasterNet, DenseNet121 and ShuffleNetV2. The

recognition accuracy of the model is 94.12 and 97.02%, which is

the highest.

In future work, we plan to deploy LFMNet on mobile devices

such as field robots and unmanned aerial vehicle to establish an

automated disease detection platform. In addition, to extend

LFMNet’s applicability on disease identification of other plants,

we will consider expanding its disease identification types through

transfer learning.
FIGURE 10

ScoreCAM visualization results.
TABLE 6 Comparative evaluation of experiments performed on different datasets.

Datesets Model Precision Recall F1_score Accuracy

AI Challenger 2018 datasets
BananaSqueezeNet 94.13 94.74 95.10 94.74

LFMNet 96.42 97.02 96.04 97.02

Our proposed datasets BananaSqueezeNet 90.01 90.10 89.96 90.46

LFMNet 94.26 94.12 94.09 94.12
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